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Preface
Natural Language Processing (NLP) has been used to address a wide range of 
problems, including support for search engines, summarizing and classifying text 
for web pages, and incorporating machine learning technologies to solve problems 
such as speech recognition and query analysis. It has found use wherever documents 
contain useful information.

NLP is used to enhance the utility and power of applications. It does so by making 
user input easier and converting text to more usable forms. In essence, NLP 
processes natural text found in a variety of sources, using a series of core NLP tasks 
to transform or extract information from the text.

This book focuses on core NLP tasks that will likely be encountered in an NLP 
application. Each NLP task presented in this book starts with a description of the 
problem and where it can be used. The issues that make each task difficult are 
introduced so that you can understand the problem in a better way. This is followed 
by the use of numerous Java techniques and APIs to support an NLP task.

What this book covers
Chapter 1, Introduction to NLP, explains the importance and uses of NLP.  
The NLP techniques used in this chapter are explained with simple examples 
illustrating their use.

Chapter 2, Finding Parts of Text, focuses primarily on tokenization. This is the  
first step in more advanced NLP tasks. Both core Java and Java NLP tokenization 
APIs are illustrated.
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Chapter 3, Finding Sentences, proves that sentence boundary disambiguation is an 
important NLP task. This step is a precursor for many other downstream NLP tasks 
where text elements should not be split across sentence boundaries. This includes 
ensuring that all phrases are in one sentence and supporting parts of speech analysis.

Chapter 4, Finding People and Things, covers what is commonly referred to as Named 
Entity Recognition. This task is concerned with identifying people, places, and 
similar entities in text. This technique is a preliminary step for processing queries 
and searches.

Chapter 5, Detecting Parts of Speech, shows you how to detect parts of speech,  
which are grammatical elements of text, such as nouns and verbs. Identifying  
these elements is a significant step in determining the meaning of text and  
detecting relationships within text.

Chapter 6, Classifying Texts and Documents, proves that classifying text is useful for 
tasks such as spam detection and sentiment analysis. The NLP techniques that 
support this process are investigated and illustrated.

Chapter 7, Using Parser to Extract Relationships, demonstrates parse trees. A parse tree 
is used for many purposes, including information extraction. It holds information 
regarding the relationships between these elements. An example implementing a 
simple query is presented to illustrate this process.

Chapter 8, Combined Approaches, contains techniques for extracting data from  
various types of documents, such as PDF and Word files. This is followed by an 
examination of how the previous NLP techniques can be combined into a pipeline  
to solve larger problems.

What you need for this book
Java SDK 7 is used to illustrate the NLP techniques. Various NLP APIs are needed 
and can be readily downloaded. An IDE is not required but is desirable.

Who this book is for
Experienced Java developers who are interested in NLP techniques will find this 
book useful. No prior exposure to NLP is required.
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and 
explanations of their meanings.

Code words in text are shown as follows: "The keyset method returns a set of  
all the annotation keys currently held by the Annotation object."

Database table names, folder names, filenames, file extensions, pathnames, dummy 
URLs, user input, and Twitter handles are shown as follows: "To demonstrate the use 
of POI, we will use a file called TestDocument.pdf."

A block of code is set as follows:

for (int index = 0; index < sentences.length; index++) {
    String tokens[] = tokenizer.tokenize(sentences[index]);
    Span nameSpans[] = nameFinder.find(tokens);
    for(Span span : nameSpans) {
        list.add("Sentence: " + index
            + " Span: " + span.toString() + " Entity: "
            + tokens[span.getStart()]);
    }
}

The output of code sequences looks like what is shown here:

Sentence: 0 Span: [0..1) person Entity: Joe

Sentence: 0 Span: [7..9) person Entity: Fred

Sentence: 2 Span: [0..1) person Entity: Joe

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring  
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Introduction to NLP
Natural Language Processing (NLP) is a broad topic focused on the use of 
computers to analyze natural languages. It addresses areas such as speech 
processing, relationship extraction, document categorization, and summation of  
text. However, these types of analysis are based on a set of fundamental techniques 
such as tokenization, sentence detection, classification, and extracting relationships. 
These basic techniques are the focus of this book. We will start with a detailed 
discussion of NLP, investigate why it is important, and identify application areas.

There are many tools available that support NLP tasks. We will focus on the Java 
language and how various Java Application Programmer Interfaces (APIs) support 
NLP. In this chapter, we will briefly identify the major APIs, including Apache's 
OpenNLP, Stanford NLP libraries, LingPipe, and GATE.

This is followed by a discussion of the basic NLP techniques illustrated in this book. 
The nature and use of these techniques is presented and illustrated using one of the 
NLP APIs. Many of these techniques will use models. Models are similar to a set 
of rules that are used to perform a task such as tokenizing text. They are typically 
represented by a class that is instantiated from a file. We round off the chapter with  
a brief discussion on how data can be prepared to support NLP tasks.

NLP is not easy. While some problems can be solved relatively easily, there are many 
others that require the use of sophisticated techniques. We will strive to provide a 
foundation for NLP processing so that you will be able to understand better which 
techniques are available and applicable for a given problem.
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NLP is a large and complex field. In this book, we will only be able to address a 
small part of it. We will focus on core NLP tasks that can be implemented using Java. 
Throughout this book, we will demonstrate a number of NLP techniques using both 
the Java SE SDK and other libraries, such as OpenNLP and Stanford NLP. To use these 
libraries, there are specific API JAR files that need to be associated with the project in 
which they are being used. A discussion of these libraries is found in the Survey of 
NLP tools section and contains download links to the libraries. The examples in this 
book were developed using NetBeans 8.0.2. These projects required the API JAR files 
to be added to the Libraries category of the Projects Properties dialog box.

What is NLP?
A formal definition of NLP frequently includes wording to the effect that it is a 
field of study using computer science, artificial intelligence, and formal linguistics 
concepts to analyze natural language. A less formal definition suggests that it is a 
set of tools used to derive meaningful and useful information from natural language 
sources such as web pages and text documents.

Meaningful and useful implies that it has some commercial value, though it is 
frequently used for academic problems. This can readily be seen in its support of 
search engines. A user query is processed using NLP techniques in order to generate 
a result page that a user can use. Modern search engines have been very successful  
in this regard. NLP techniques have also found use in automated help systems and 
in support of complex query systems as typified by IBM's Watson project.

When we work with a language, the terms, syntax, and semantics, are frequently 
encountered. The syntax of a language refers to the rules that control a valid sentence 
structure. For example, a common sentence structure in English starts with a subject 
followed by a verb and then an object such as "Tim hit the ball". We are not used 
to unusual sentence order such as "Hit ball Tim". Although the rule of syntax for 
English is not as rigorous as that for computer languages, we still expect a sentence 
to follow basic syntax rules.

The semantics of a sentence is its meaning. As English speakers, we understand 
the meaning of the sentence "Tim hit the ball". However, English and other natural 
languages can be ambiguous at times and a sentence's meaning may only be 
determined from its context. As we will see, various machine learning techniques  
can be used to attempt to derive the meaning of text.

As we progress with our discussions, we will introduce many linguistic terms that 
will help us better understand natural languages and provide us with a common 
vocabulary to explain the various NLP techniques. We will see how the text can be 
split into individual elements and how these elements can be classified.
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In general, these approaches are used to enhance applications, thus making them 
more valuable to their users. The uses of NLP can range from relatively simple 
uses to those that are pushing what is possible today. In this book, we will show 
examples that illustrate simple approaches, which may be all that is required for 
some problems, to the more advanced libraries and classes available to address 
sophisticated needs.

Why use NLP?
NLP is used in a wide variety of disciplines to solve many different types of 
problems. Text analysis is performed on text that ranges from a few words of user 
input for an Internet query to multiple documents that need to be summarized. We 
have seen a large growth in the amount and availability of unstructured data in 
recent years. This has taken forms such as blogs, tweets, and various other social 
media. NLP is ideal for analyzing this type of information.

Machine learning and text analysis are used frequently to enhance an application's 
utility. A brief list of application areas follow:

•	 Searching: This identifies specific elements of text. It can be as simple as 
finding the occurrence of a name in a document or might involve the use  
of synonyms and alternate spelling/misspelling to find entries that are  
close to the original search string.

•	 Machine translation: This typically involves the translation of one natural 
language into another.

•	 Summation: Paragraphs, articles, documents, or collections of documents may 
need to be summarized. NLP has been used successfully for this purpose.

•	 Named Entity Recognition (NER): This involves extracting names  
of locations, people, and things from text. Typically, this is used in 
conjunction with other NLP tasks such as processing queries.

•	 Information grouping: This is an important activity that takes textual data 
and creates a set of categories that reflect the content of the document. You 
have probably encountered numerous websites that organize data based on 
your needs and have categories listed on the left-hand side of the website.

•	 Parts of Speech Tagging (POS): In this task, text is split up into different 
grammatical elements such as nouns and verbs. This is useful in analyzing 
the text further.

•	 Sentiment analysis: People's feelings and attitudes regarding movies,  
books, and other products can be determined using this technique. This  
is useful in providing automated feedback with regards to how well a 
product is perceived.
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•	 Answering queries: This type of processing was illustrated when IBM's 
Watson successfully won a Jeopardy competition. However, its use is not 
restricted to winning game shows and has been used in a number of other 
fields including medicine.

•	 Speech recognition: Human speech is difficult to analyze. Many of the 
advances that have been made in this field are the result of NLP efforts.

•	 Natural Language Generation: This is the process of generating text from  
a data or knowledge source, such as a database. It can automate reporting  
of information such as weather reports, or summarize medical reports.

NLP tasks frequently use different machine learning techniques. A common 
approach starts with training a model to perform a task, verifying that the model 
is correct, and then applying the model to a problem. We will examine this process 
further in Understanding NLP models later in the chapter.

Why is NLP so hard?
NLP is not easy. There are several factors that makes this process hard. For example, 
there are hundreds of natural languages, each of which has different syntax rules. 
Words can be ambiguous where their meaning is dependent on their context. Here, 
we will examine a few of the more significant problem areas.

At the character level, there are several factors that need to be considered. For example, 
the encoding scheme used for a document needs to be considered. Text can be encoded 
using schemes such as ASCII, UTF-8, UTF-16, or Latin-1. Other factors such as 
whether the text should be treated as case-sensitive or not may need to be considered. 
Punctuation and numbers may require special processing. We sometimes need to 
consider the use of emoticons (character combinations and special character images), 
hyperlinks, repeated punctuation (… or ---), file extension, and usernames with 
embedded periods. Many of these are handled by preprocessing text as we will  
discuss in Preparing data later in the chapter.

When we Tokenize text, it usually means we are breaking up the text into a 
sequence of words. These words are called Tokens. The process is referred to as 
Tokenization. When a language uses whitespace characters to delineate words,  
this process is not too difficult. With a language like Chinese, it can be quite  
difficult since it uses unique symbols for words.

Words and morphemes may need to be assigned a part of speech label identifying 
what type of unit it is. A Morpheme is the smallest division of text that has meaning. 
Prefixes and suffixes are examples of morphemes. Often, we need to consider 
synonyms, abbreviation, acronyms, and spellings when we work with words.
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Stemming is another task that may need to be applied. Stemming is the process of 
finding the word stem of a word. For example, words such as "walking", "walked",  
or "walks" have the word stem "walk". Search engines often use stemming to assist  
in asking a query.

Closely related to stemming is the process of Lemmatization. This process 
determines the base form of a word called its lemma. For example, for the word 
"operating", its stem is "oper" but its lemma is "operate". Lemmatization is a more 
refined process than stemming and uses vocabulary and morphological techniques 
to find a lemma. This can result in more precise analysis in some situations.

Words are combined into phrases and sentences. Sentence detection can be 
problematic and is not as simple as looking for the periods at the end of a sentence. 
Periods are found in many places including abbreviations such as Ms. and in 
numbers such as 12.834.

We often need to understand which words in a sentence are nouns and which  
are verbs. We are sometimes concerned with the relationship between words.  
For example, Coreferences resolution determines the relationship between  
certain words in one or more sentences. Consider the following sentence:

"The city is large but beautiful. It fills the entire valley."

The word "it" is the coreference to city. When a word has multiple meanings  
we might need to perform Word Sense Disambiguation to determine the meaning 
that was intended. This can be difficult to do at times. For example, "John went  
back home".

Does the home refer to a house, a city, or some other unit? Its meaning can 
sometimes be inferred from the context in which it is used. For example,  
"John went back home. It was situated at the end of a cul-de-sac."

In spite of these difficulties, NLP is able to perform these tasks reasonably 
well in most situations and provide added value to many problem 
domains. For example, sentiment analysis can be performed on customer 
tweets resulting in possible free product offers for dissatisfied customers. 
Medical documents can be readily summarized to highlight the relevant 
topics and improved productivity.
Summarization is the process of producing a short description of 
different units. These units can include multiple sentences, paragraphs, 
a document, or multiple documents. The intent may be to identify 
those sentences that convey the meaning of the unit, determine the 
prerequisites for understanding a unit, or to find items within these units. 
Frequently, the context of the text is important in accomplishing this task.
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Survey of NLP tools
There are many tools available that support NLP. Some of these are available 
with the Java SE SDK but are limited in their utility for all but the simplest types 
of problems. Other libraries such as Apache's OpenNLP and LingPipe provide 
extensive and sophisticated support for NLP problems.

Low-level Java support includes string libraries, such as String, StringBuilder, 
and StringBuffer. These classes possess methods that perform searching, matching, 
and text replacement. Regular expressions use special encoding to match substrings. 
Java provides a rich set of techniques to use regular expressions.

As discussed earlier, tokenizers are used to split text into individual elements. Java 
provides supports for tokenizers with:

• The String class' split method
• The StreamTokenizer class
• The StringTokenizer class

There also exists a number of NLP libraries/APIs for Java. A partial list of  
Java-based NLP APIs are found in the following table. Most of these are open  
source. In addition, there are a number of commercial APIs available. We will 
focus on the open source APIs:

API URL
Apertium http://www.apertium.org/

General 
Architecture for 
Text Engineering

http://gate.ac.uk/

Learning Based Java http://cogcomp.cs.illinois.edu/page/
software_view/LBJ

LinguaStream http://www.linguastream.org/

LingPipe http://alias-i.com/lingpipe/

Mallet http://mallet.cs.umass.edu/

MontyLingua http://web.media.mit.edu/~hugo/montylingua/

Apache OpenNLP http://opennlp.apache.org/

UIMA http://uima.apache.org/

Stanford Parser http://nlp.stanford.edu/software

http://www.apertium.org/
http://gate.ac.uk/
http://cogcomp.cs.illinois.edu/page/software_view/11
http://cogcomp.cs.illinois.edu/page/software_view/11
http://www.linguastream.org/
http://alias-i.com/lingpipe/
http://mallet.cs.umass.edu/
http://web.media.mit.edu/~hugo/montylingua/
http://opennlp.apache.org/
http://uima.apache.org/
http://nlp.stanford.edu/software
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Many of these NLP tasks are combined to form a pipeline. A pipeline consists 
of various NLP tasks, which are integrated into a series of steps to achieve some 
processing goal. Examples of frameworks that support pipelines are GATE and 
Apache UIMA.

In the next section, we will coverer several NLP APIs in more depth. A brief 
overview of their capabilities will be presented along with a list of useful links  
for each API.

Apache OpenNLP
The Apache OpenNLP project addresses common NLP tasks and will be used 
throughout this book. It consists of several components that perform specific 
tasks, permit models to be trained, and support for testing the models. The general 
approach, used by OpenNLP, is to instantiate a model that supports the task from  
a file and then executes methods against the model to perform a task.

For example, in the following sequence, we will tokenize a simple string. For 
this code to execute properly, it must handle the FileNotFoundException 
and IOException exceptions. We use a try-with-resource block to open a 
FileInputStream instance using the en-token.bin file. This file contains a  
model that has been trained using English text:

try (InputStream is = new FileInputStream(
        new File(getModelDir(), "en-token.bin"))){
    // Insert code to tokenize the text
} catch (FileNotFoundException ex) {
    …
} catch (IOException ex) {
    …
}

An instance of the TokenizerModel class is then created using this file inside  
the try block. Next, we create an instance of the Tokenizer class, as shown here:

TokenizerModel model = new TokenizerModel(is);
Tokenizer tokenizer = new TokenizerME(model);

The tokenize method is then applied, whose argument is the text to be tokenized. 
The method returns an array of String objects:

String tokens[] = tokenizer.tokenize("He lives at 1511 W."  
 + "Randolph.");
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A for-each statement displays the tokens as shown here. The open and close brackets 
are used to clearly identify the tokens:

for (String a : tokens) {
  System.out.print("[" + a + "] ");
}
System.out.println();

When we execute this, we will get output as shown here:

[He] [lives] [at] [1511] [W.] [Randolph] [.]

In this case, the tokenizer recognized that W. was an abbreviation and that the last 
period was a separate token demarking the end of the sentence.

We will use the OpenNLP API for many of the examples in this book. OpenNLP 
links are listed in the following table:

OpenNLP Website
Home https://opennlp.apache.org/

Documentation https://opennlp.apache.org/documentation.html

Javadoc http://nlp.stanford.edu/nlp/javadoc/javanlp/
index.html

Download https://opennlp.apache.org/cgi-bin/download.cgi

Wiki https://cwiki.apache.org/confluence/display/
OPENNLP/Index%3bjsessionid=32B408C73729ACCCDD07
1D9EC354FC54

Stanford NLP
The Stanford NLP Group conducts NLP research and provides tools for NLP tasks. 
The Stanford CoreNLP is one of these toolsets. In addition, there are other tool 
sets such as the Stanford Parser, Stanford POS tagger, and the Stanford Classifier. 
The Stanford tools support English and Chinese languages and basic NLP tasks, 
including tokenization and name entity recognition.

These tools are released under the full GPL but it does not allow them to be used in 
commercial applications, though a commercial license is available. The API is well 
organized and supports the core NLP functionality.

There are several tokenization approaches supported by the Stanford group. We will 
use the PTBTokenizer class to illustrate the use of this NLP library. The constructor 
demonstrated here uses a Reader object, a LexedTokenFactory<T> argument, and a 
string to specify which of the several options is to be used.

https://opennlp.apache.org/
https://opennlp.apache.org/documentation.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/index.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/index.html
https://opennlp.apache.org/cgi-bin/download.cgi
https://cwiki.apache.org/confluence/display/OPENNLP/Index%3bjsessionid=32B408C73729ACCCDD071D9EC354FC54
https://cwiki.apache.org/confluence/display/OPENNLP/Index%3bjsessionid=32B408C73729ACCCDD071D9EC354FC54
https://cwiki.apache.org/confluence/display/OPENNLP/Index%3bjsessionid=32B408C73729ACCCDD071D9EC354FC54
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The LexedTokenFactory is an interface that is implemented by the 
CoreLabelTokenFactory and WordTokenFactory classes. The former class supports 
the retention of the beginning and ending character positions of a token, whereas the 
latter class simply returns a token as a string without any positional information.  
The WordTokenFactory class is used by default.

The CoreLabelTokenFactory class is used in the following example. A 
StringReader is created using a string. The last argument is used for the option 
parameter, which is null for this example. The Iterator interface is implemented 
by the PTBTokenizer class allowing us to use the hasNext and next methods to 
display the tokens:

PTBTokenizer ptb = new PTBTokenizer(
new StringReader("He lives at 1511 W. Randolph."),
new CoreLabelTokenFactory(), null);
while (ptb.hasNext()) {
  System.out.println(ptb.next());
}

The output is as follows:

He

lives

at

1511

W.

Randolph

.

We will use the Stanford NLP library extensively in this book. A list of Stanford  
links is found in the following table. Documentation and download links are  
found in each of the distributions:

Stanford NLP Website
Home http://nlp.stanford.edu/index.shtml

CoreNLP http://nlp.stanford.edu/software/corenlp.
shtml#Download

Parser http://nlp.stanford.edu/software/lex-parser.shtml

POS Tagger http://nlp.stanford.edu/software/tagger.shtml

java-nlp-user 
Mailing List

https://mailman.stanford.edu/mailman/listinfo/
java-nlp-user

http://nlp.stanford.edu/index.shtml
http://nlp.stanford.edu/software/corenlp.shtml#Download
http://nlp.stanford.edu/software/corenlp.shtml#Download
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/tagger.shtml
https://mailman.stanford.edu/mailman/listinfo/java-nlp-user
https://mailman.stanford.edu/mailman/listinfo/java-nlp-user
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LingPipe
LingPipe consists of a set of tools to perform common NLP tasks. It supports model 
training and testing. There are both royalty free and license versions of the tool.  
The production use of the free version is limited.

To demonstrate the use of LingPipe, we will illustrate how it can be used to tokenize 
text using the Tokenizer class. Start by declaring two lists, one to hold the tokens 
and a second to hold the whitespace:

List<String> tokenList = new ArrayList<>();
List<String> whiteList = new ArrayList<>();

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Next, declare a string to hold the text to be tokenized:

String text = "A sample sentence processed \nby \tthe " +
    "LingPipe tokenizer.";

Now, create an instance of the Tokenizer class. As shown in the following code 
block, a static tokenizer method is used to create an instance of the Tokenizer  
class based on a Indo-European factory class:

Tokenizer tokenizer = IndoEuropeanTokenizerFactory.INSTANCE.
tokenizer(text.toCharArray(), 0, text.length());

The tokenize method of this class is then used to populate the two lists:

tokenizer.tokenize(tokenList, whiteList);

Use a for-each statement to display the tokens:

for(String element : tokenList) {
  System.out.print(element + " ");
}
System.out.println();

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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The output of this example is shown here:

A sample sentence processed by the LingPipe tokenizer

A list of LingPipe links can be found in the following table:

LingPipe Website
Home http://alias-i.com/lingpipe/index.html

Tutorials http://alias-i.com/lingpipe/demos/tutorial/
read-me.html

JavaDocs http://alias-i.com/lingpipe/docs/api/index.html

Download http://alias-i.com/lingpipe/web/install.html

Core http://alias-i.com/lingpipe/web/download.html

Models http://alias-i.com/lingpipe/web/models.html

GATE
General Architecture for Text Engineering (GATE) is a set of tools written in  
Java and developed at the University of Sheffield in England. It supports many  
NLP tasks and languages. It can also be used as a pipeline for NLP processing.

It supports an API along with GATE Developer, a document viewer that displays 
text along with annotations. This is useful for examining a document using 
highlighted annotations. GATE Mimir, a tool for indexing and searching text 
generated by various sources, is also available. Using GATE for many NLP tasks 
involves a bit of code. GATE Embedded is used to embed GATE functionality 
directly in code. Useful GATE links are listed in the following table:

Gate Website
Home https://gate.ac.uk/

Documentation https://gate.ac.uk/documentation.html

JavaDocs http://jenkins.gate.ac.uk/job/GATE-Nightly/
javadoc/

Download https://gate.ac.uk/download/

Wiki http://gatewiki.sf.net/

http://alias-i.com/lingpipe/index.html
http://alias-i.com/lingpipe/demos/tutorial/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/read-me.html
http://alias-i.com/lingpipe/docs/api/index.html
http://alias-i.com/lingpipe/web/install.html
http://alias-i.com/lingpipe/web/download.html
http://alias-i.com/lingpipe/web/models.html
https://gate.ac.uk/
https://gate.ac.uk/documentation.html
http://jenkins.gate.ac.uk/job/GATE-Nightly/javadoc/
http://jenkins.gate.ac.uk/job/GATE-Nightly/javadoc/
https://gate.ac.uk/download/
http://gatewiki.sf.net/
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UIMA
The Organization for the Advancement of Structured Information Standards 
(OASIS) is a consortium focused on information-oriented business technologies. 
It developed the Unstructured Information Management Architecture (UIMA)
standard as a framework for NLP pipelines. It is supported by the Apache UIMA.

Although it supports pipeline creation, it also describes a series of design patterns, 
data representations, and user roles for the analysis of text. UIMA links are listed  
in the following table:

Apache UIMA Website
Home https://uima.apache.org/

Documentation https://uima.apache.org/documentation.html

JavaDocs https://uima.apache.org/d/uimaj-2.6.0/apidocs/
index.html

Download https://uima.apache.org/downloads.cgi

Wiki https://cwiki.apache.org/confluence/display/UIMA/
Index

Overview of text processing tasks
Although there are numerous NLP tasks that can be performed, we will focus only 
on a subset of these tasks. A brief overview of these tasks is presented here, which  
is also reflected in the following chapters:

•	 Finding Parts of Text
•	 Finding Sentences
•	 Finding People and Things
•	 Detecting Parts of Speech
•	 Classifying Text and Documents
•	 Extracting Relationships
•	 Combined Approaches

Many of these tasks are used together with other tasks to achieve some objective. 
We will see this as we progress through the book. For example, tokenization is 
frequently used as an initial step in many of the other tasks. It is a fundamental  
and basic step.

https://uima.apache.org/
https://uima.apache.org/documentation.html
https://uima.apache.org/d/uimaj-2.6.0/apidocs/index.html
https://uima.apache.org/d/uimaj-2.6.0/apidocs/index.html
https://uima.apache.org/downloads.cgi
https://cwiki.apache.org/confluence/display/UIMA/Index
https://cwiki.apache.org/confluence/display/UIMA/Index
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Finding parts of text
Text can be decomposed into a number of different types of elements such as words, 
sentences, and paragraphs. There are several ways of classifying these elements. 
When we refer to parts of text in this book, we are referring to words, sometimes 
called tokens. Morphology is the study of the structure of words. We will use a 
number of morphology terms in our exploration of NLP. However, there are many 
ways of classifying words including the following:

•	 Simple words: These are the common connotations of what a word means 
including the 17 words of this sentence.

•	 Morphemes: These are the smallest units of a word that is meaningful.  
For example, in the word "bounded", "bound" is considered to be a 
morpheme. Morphemes also include parts such as the suffix, "ed".

•	 Prefix/Suffix: This precedes or follows the root of a word. For example, in  
the word graduation, the "ation" is a suffix based on the word "graduate".

•	 Synonyms: This is a word that has the same meaning as another word. 
Words such as small and tiny can be recognized as synonyms. Addressing 
this issue requires word sense disambiguation.

•	 Abbreviations: These shorten the use of a word. Instead of using Mister 
Smith, we use Mr. Smith.

•	 Acronyms: These are used extensively in many fields including computer 
science. They use a combination of letters for phrases such as FORmula 
TRANslation for FORTRAN. They can be recursive such as GNU. Of  
course, the one we will continue to use is NLP.

•	 Contractions: We'll find these useful for commonly used combinations  
of words such as the first word of this sentence.

•	 Numbers: A specialized word that normally uses only digits. However,  
more complex versions can include a period and a special character to  
reflect scientific notation or numbers of a specific base.

Identifying these parts is useful for other NLP tasks. For example, to determine 
the boundaries of a sentence, it is necessary to break it apart and determine which 
elements terminate a sentence.

The process of breaking text apart is called tokenization. The result is a stream of 
tokens. The elements of the text that determine where elements should be split are 
called Delimiters. For most English text, whitespace is used as a delimiter. This type 
of a delimiter typically includes blanks, tabs, and new line characters.
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Tokenization can be simple or complex. Here, we will demonstrate a simple 
tokenization using the String class' split method. First, declare a string to  
hold the text that is to be tokenized:

String text = "Mr. Smith went to 123 Washington avenue.";

The split method uses a regular expression argument to specify how the text 
should be split. In the next code sequence, its argument is the string \\s+.  
This specifies that one or more whitespaces be used as the delimiter:

String tokens[] = text.split("\\s+");

A for-each statement is used to display the resulting tokens:

for(String token : tokens) {
  System.out.println(token);
}

When executed, the output will appear as shown here:

Mr.

Smith

went

to

123

Washington

avenue.

In Chapter 2, Finding Parts of Text, we will explore the tokenization process in depth.

Finding sentences
We tend to think of the process of identifying sentences as a simple process.  
In English, we look for termination characters such as a period, question mark,  
or exclamation mark. However, as we will see in Chapter 3, Finding Sentences, this 
is not always that simple. Factors that make it more difficult to find the end of 
sentences include the use of embedded periods in such phrases as "Dr. Smith"  
or "204 SW. Park Street".

This process is also called Sentence Boundary Disambiguation (SBD). This is 
a more significant problem in English than it is in languages such as Chinese or 
Japanese that have unambiguous sentence delimiters.
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Identifying sentences is useful for a number of reasons. Some NLP tasks, such as 
POS tagging and entity extraction, work on individual sentences. Question-anwering  
applications also need to identify individual sentences. For these processes to work 
correctly, sentence boundaries must be determined correctly.

The following example demonstrates how sentences can be found using the Stanford 
DocumentPreprocessor class. This class will generate a list of sentences based on 
either simple text or an XML document. The class implements the Iterable interface 
allowing it to be easily used in a for-each statement.

Start by declaring a string containing the sentences, as shown here:

String paragraph = "The first sentence. The second sentence.";

Create a StringReader object based on the string. This class supports simple read 
type methods and is used as the argument of the DocumentPreprocessor constructor:

Reader reader = new StringReader(paragraph);
DocumentPreprocessor documentPreprocessor = 
new DocumentPreprocessor(reader);

The DocumentPreprocessor object will now hold the sentences of the paragraph. In 
the next statement, a list of strings is created and is used to hold the sentences found:

List<String> sentenceList = new LinkedList<String>();

Each element of the documentPreprocessor object is then processed and consists of 
a list of the HasWord objects, as shown in the following block of code. The HasWord 
elements are objects that represent a word. An instance of StringBuilder is used to 
construct the sentence with each element of the hasWordList element being added 
to the list. When the sentence has been built, it is added to the sentenceList list:

for (List<HasWord> element : documentPreprocessor) {
  StringBuilder sentence = new StringBuilder();
  List<HasWord> hasWordList = element;
  for (HasWord token : hasWordList) {
      sentence.append(token).append(" ");
  }
  sentenceList.add(sentence.toString());
}

A for-each statement is then used to display the sentences:

for (String sentence : sentenceList) {
  System.out.println(sentence);
}
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The output will appear as shown here:

The first sentence . 

The second sentence . 

The SBD process is covered in depth in Chapter 3, Finding Sentences.

Finding people and things
Search engines do a pretty good job of meeting the needs of most users. People 
frequently use a search engine to find the address of a business or movie show times. 
A word processor can perform a simple search to locate a specific word or phrase in 
a text. However, this task can get more complicated when we need to consider other 
factors such as whether synonyms should be used or if we are interested in finding 
things closely related to a topic.

For example, let's say we visit a website because we are interested in buying a new 
laptop. After all, who doesn't need a new laptop? When you go to the site, a search 
engine will be used to find laptops that possess the features you are looking for. The 
search is frequently conducted based on previous analysis of vendor information. 
This analysis often requires text to be processed in order to derive useful information 
that can eventually be presented to a customer.

The presentation may be in the form of facets. These are normally displayed on 
the left-hand side of a web page. For example, the facets for laptops might include 
categories such as an Ultrabook, Chromebook, or hard disk size. This is illustrated  
in the following figure, which is part of an Amazon web page:
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Some searches can be very simple. For example, the String class and related classes 
have methods such as the indexOf and lastIndexOf methods that can find the 
occurrence of a String class. In the simple example that follows, the index of the 
occurrence of the target string is returned by the indexOf method:

String text = "Mr. Smith went to 123 Washington avenue.";
String target = "Washington";
int index = text.indexOf(target);
System.out.println(index);

The output of this sequence is shown here:

22

This approach is useful for only the simplest problems.

When text is searched, a common technique is to use a data structure called an 
inverted index. This process involves tokenizing the text and identifying terms of 
interest in the text along with their position. The terms and their positions are then 
stored in the inverted index. When a search is made for the term, it is looked up in 
the inverted index and the positional information is retrieved. This is faster than 
searching for the term in the document each time it is needed. This data structure is 
used frequently in databases, information retrieval systems, and search engines.

More sophisticated searches might involve responding to queries such as: "Where 
are good restaurants in Boston?" To answer this query we might need to perform 
entity recognition/resolution to identify the significant terms in the query, perform 
semantic analysis to determine the meaning of the query, search and then rank 
candidate responses.

To illustrate the process of finding names, we use a combination of a tokenizer 
and the OpenNLP TokenNameFinderModel class to find names in a text. Since this 
technique may throw an IOException, we will use a try-catch block to handle it. 
Declare this block and an array of strings holding the sentences, as shown here:

try {
    String[] sentences = {  
        "Tim was a good neighbor. Perhaps not as good a Bob " + 
        "Haywood, but still pretty good. Of course Mr. Adam " + 
        "took the cake!"};
    // Insert code to find the names here
  } catch (IOException ex) {
    ex.printStackTrace();
}
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Before the sentences can be processed, we need to tokenize the text. Set up the 
tokenizer using the Tokenizer class, as shown here:

Tokenizer tokenizer = SimpleTokenizer.INSTANCE;

We will need to use a model to detect sentences. This is needed to avoid grouping 
terms that may span sentence boundaries. We will use the TokenNameFinderModel 
class based on the model found in the en-ner-person.bin file. An instance of  
TokenNameFinderModel is created from this file as follows:

TokenNameFinderModel model = new TokenNameFinderModel(
new File("C:\\OpenNLP Models", "en-ner-person.bin"));

The NameFinderME class will perform the actual task of finding the name.  
An instance of this class is created using the TokenNameFinderModel instance,  
as shown here:

NameFinderME finder = new NameFinderME(model);

Use a for-each statement to process each sentence as shown in the following  
code sequence. The tokenize method will split the sentence into tokens and the 
find method returns an array of Span objects. These objects store the starting and 
ending indexes for the names identified by the find method:

for (String sentence : sentences) {
    String[] tokens = tokenizer.tokenize(sentence);
    Span[] nameSpans = finder.find(tokens);
    System.out.println(Arrays.toString(
    Span.spansToStrings(nameSpans, tokens)));
}

When executed, it will generate the following output:

[Tim, Bob Haywood, Adam]

The primary focus of Chapter 4, Finding People and Things, is name recognition.

Detecting Parts of Speech
Another way of classifying the parts of text is at the sentence level. A sentence 
can be decomposed into individual words or combinations of words according 
to categories, such as nouns, verbs, adverbs, and prepositions. Most of us learned 
how to do this in school. We also learned not to end a sentence with a preposition 
contrary to what we did in the second sentence of this paragraph.
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Detecting the Parts of Speech (POS) is useful in other tasks such as extracting 
relationships and determining the meaning of text. Determining these relationships 
is called Parsing. POS processing is useful for enhancing the quality of data sent to 
other elements of a pipeline.

The internals of a POS process can be complex. Fortunately, most of the complexity 
is hidden from us and encapsulated in classes and methods. We will use a couple of 
OpenNLP classes to illustrate this process. We will need a model to detect the POS. 
The POSModel class will be used and instanced using the model found in the  
en-pos-maxent.bin file, as shown here:

POSModel model = new POSModelLoader().load(
    new File("../OpenNLP Models/" "en-pos-maxent.bin"));

The POSTaggerME class is used to perform the actual tagging. Create an instance  
of this class based on the previous model as shown here:

POSTaggerME tagger = new POSTaggerME(model);

Next, declare a string containing the text to be processed:

String sentence = "POS processing is useful for enhancing the " 
   + "quality of data sent to other elements of a pipeline.";

Here, we will use a whitespace tokenizer to tokenize the text:

String tokens[] = WhitespaceTokenizer.INSTANCE.tokenize(sentence);

The tag method is then used to find those parts of speech, which stored the results  
in an array of strings:

String[] tags = tagger.tag(tokens);

The tokens and their corresponding tags are then displayed:

for(int i=0; i<tokens.length; i++) {
    System.out.print(tokens[i] + "[" + tags[i] + "] ");
}

When executed, the following output will be produced:

POS[NNP] processing[NN] is[VBZ] useful[JJ] for[IN] enhancing[VBG] the[DT] 
quality[NN] of[IN] data[NNS] sent[VBN] to[TO] other[JJ] elements[NNS] 
of[IN] a[DT] pipeline.[NN]

Each token is followed by an abbreviation, contained within brackets, for its part of 
speech. For example, NNP means that it is a proper noun. These abbreviations will 
be covered in Chapter 5, Detecting Parts of Speech, which is devoted to exploring this 
topic in depth.
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Classifying text and documents
Classification is concerned with assigning labels to information found in text or 
documents. These labels may or may not be known when the process occurs. When 
labels are known, the process is called classification. When the labels are unknown, 
the process is called clustering.

Also of interest in NLP is the process of categorization. This is the process of 
assigning some text element into one of the several possible groups. For example, 
military aircraft can be categorized as either fighter, bomber, surveillance,  
transport, or rescue.

Classifiers can be organized by the type of output they produce. This can be binary, 
which results in a yes/no output. This type is often used to support spam filters. 
Other types will result in multiple possible categories.

Classification is more of a process than many of the other NLP tasks. It involves the 
steps that we will discuss in Understanding NLP models later in the chapter. Due to  
the length of this process, we will not illustrate the process here. In Chapter 6, 
Classifying Text and Documents, we will investigate the classification process and 
provide a detailed example.

Extracting relationships
Relationship extraction identifies relationships that exist in text. For example, with 
the sentence "The meaning and purpose of life is plain to see", we know that the topic 
of the sentence is "The meaning and purpose of life". It is related to the last phrase 
that suggests that it is "plain to see".

Humans can do a pretty good job at determining how things are related to each 
other, at least at a high level. Determining deep relationships can be more difficult. 
Using a computer to extract relationships can also be challenging. However, 
computers can process large datasets to find relationships that would not be  
obvious to a human or that could not be done in a reasonable period of time.

There are numerous relationships possible. These include relationships such as 
where something is located, how two people are related to each other, what are  
the parts of a system, and who is in charge. Relationship extraction is useful for  
a number of tasks including building knowledge bases, performing analysis 
of trends, gathering intelligence, and performing product searches. Finding 
relationships is sometimes called Text Analytics.
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There are several techniques that we can use to perform relationship extractions. 
These are covered in more detail in Chapter 7, Using a Parser to Extract Relationships. 
Here, we will illustrate one technique to identify relationships within a sentence 
using the Stanford NLP StanfordCoreNLP class. This class supports a pipeline 
where annotators are specified and applied to text. Annotators can be thought of as 
operations to be performed. When an instance of the class is created, the annotators 
are added using a Properties object found in the java.util package.

First, create an instance of the Properties class. Then assign the annotators  
as follows:

Properties properties = new Properties();        
properties.put("annotators", "tokenize, ssplit, parse");

We used three annotators, which specify the operations to be performed. In this  
case, these are the minimum required to parse the text. The first one, tokenize,  
will tokenize the text. The ssplit annotator splits the tokens into sentences.  
The last annotator, parse, performs the syntactic analysis, parsing, of the text.

Next, create an instance of the StanfordCoreNLP class using the properties'  
reference variable:

StanfordCoreNLP pipeline = new StanfordCoreNLP(properties);

Next, an Annotation instance is created, which uses the text as its argument:

Annotation annotation = new Annotation(
    "The meaning and purpose of life is plain to see.");

Apply the annotate method against the pipeline object to process the annotation 
object. Finally, use the prettyPrint method to display the result of the processing:

pipeline.annotate(annotation);
pipeline.prettyPrint(annotation, System.out);

The output of this code is shown as follows:

Sentence #1 (11 tokens):

The meaning and purpose of life is plain to see.
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[Text=The CharacterOffsetBegin=0 CharacterOffsetEnd=3 PartOfSpeech=DT] 
[Text=meaning CharacterOffsetBegin=4 CharacterOffsetEnd=11 
PartOfSpeech=NN] [Text=and CharacterOffsetBegin=12 CharacterOffsetEnd=15 
PartOfSpeech=CC] [Text=purpose CharacterOffsetBegin=16 
CharacterOffsetEnd=23 PartOfSpeech=NN] [Text=of CharacterOffsetBegin=24 
CharacterOffsetEnd=26 PartOfSpeech=IN] [Text=life CharacterOffsetBegin=27 
CharacterOffsetEnd=31 PartOfSpeech=NN] [Text=is CharacterOffsetBegin=32 
CharacterOffsetEnd=34 PartOfSpeech=VBZ] [Text=plain 
CharacterOffsetBegin=35 CharacterOffsetEnd=40 PartOfSpeech=JJ] [Text=to 
CharacterOffsetBegin=41 CharacterOffsetEnd=43 PartOfSpeech=TO] [Text=see 
CharacterOffsetBegin=44 CharacterOffsetEnd=47 PartOfSpeech=VB] [Text=. 
CharacterOffsetBegin=47 CharacterOffsetEnd=48 PartOfSpeech=.] 

(ROOT

  (S

    (NP

      (NP (DT The) (NN meaning)

        (CC and)

        (NN purpose))

      (PP (IN of)

        (NP (NN life))))

    (VP (VBZ is)

      (ADJP (JJ plain)

        (S

          (VP (TO to)

            (VP (VB see))))))

    (. .)))

root(ROOT-0, plain-8)

det(meaning-2, The-1)

nsubj(plain-8, meaning-2)

conj_and(meaning-2, purpose-4)

prep_of(meaning-2, life-6)

cop(plain-8, is-7)

aux(see-10, to-9)

xcomp(plain-8, see-10)
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The first part of the output displays the text along with the tokens and POS.  
This is followed by a tree-like structure showing the organization of the sentence. 
The last part shows relationships between the elements at a grammatical level. 
Consider the following example:

prep_of(meaning-2, life-6)

This shows how the preposition, "of", is used to relate the words "meaning" and 
"life". This information is useful for many text simplification tasks.

Using combined approaches
As suggested earlier, NLP problems often involve using more than one basic NLP 
task. These are frequently combined in a pipeline to obtain the desired results.  
We saw one use of a pipeline in the previous section, Extracting relationships.

Most NLP solutions will use pipelines. We will provide several examples of  
pipelines in Chapter 8, Combined Approaches.

Understanding NLP models
Regardless of the NLP task being performed or the NLP tool set being used, there 
are several steps that they all have in common. In this section, we will present these 
steps. As you go through the chapters and techniques presented in this book, you 
will see these steps repeated with slight variations. Getting a good understanding  
of them now will ease the task of learning the techniques.

The basic steps include:

•	 Identifying the task
•	 Selecting a model
•	 Building and training the model
•	 Verifying the model
•	 Using the model

We will discuss each of these tasks in the following sections.
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Identifying the task
It is important to understand the problem that needs to be solved. Based on this 
understanding, a solution can be devised that consists of a series of steps. Each of 
these steps will use an NLP task.

For example, suppose we want to answer a query such as "Who is the mayor of 
Paris?" We will need to parse the query into the POS, determine the nature of the 
question, the qualifying elements of the question, and eventually use a repository  
of knowledge, created using other NLP tasks, to answer the question.

Other problems may not be quite as involved. We might only need to break apart 
text into components so that the text can be associated with a category. For example, 
a vendor's product description may be analyzed to determine the potential product 
categories. The analysis of the description of a car would allow it to be placed into 
categories such as sedan, sports car, SUV, or compact.

Once you have an idea of what NLP tasks are available, you will be better able to 
match it with the problem you are trying to solve.

Selecting a model
Many of the tasks that we will examine are based on models. For example, if we need 
to split a document into sentences, we need an algorithm to do this. However, even the 
best sentence boundary detection techniques have problems doing this correctly every 
time. This has resulted in the development of models that examine the elements of text 
and then use this information to determine where sentence breaks occur.

The right model can be dependent on the nature of the text being processed. A model 
that does well for determining the end of sentences for historical documents might 
not work well when applied to medical text.

Many models have been created that we can use for the NLP task at hand. Based on 
the problem that needs to be solved, we can make informed decisions as to which 
model is the best. In some situations, we might need to train a new model. These 
decisions frequently involve trade-offs between accuracy and speed. Understanding 
the problem domain and the required quality of results permits us to select the 
appropriate model.



Chapter 1

[ 25 ]

Building and training the model
Training a model is the process of executing an algorithm against a set of data, 
formulating the model, and then verifying the model. We may encounter situations 
where the text that needs to be processed is significantly different from what we 
have seen and used before. For example, using models trained using journalistic 
text might not work well when processing tweets. This may mean that the existing 
models will not work well with this new data. When this situation arises, we will 
need to train a new model.

To train a model, we will often use data that has been "marked up" in such a way 
that we know the correct answer. For example, if we are dealing with POS tagging, 
then the data will have POS elements (such as nouns and verbs) marked in the data. 
When the model is being trained, it will use this information to create the model. 
This dataset is called a corpus.

Verifying the model
Once the model has been created, we need to verify it against a sample set. The 
typical verification approach is to use a sample set where the correct responses are 
known. When the model is used with this data, we are able to compare its result to 
the known good results and assess the quality of the model. Often, only part of a 
corpus is used for training while the other part is used for verification.

Using the model
Using the model is simply applying the model to the problem at hand. The details 
are dependent on the model being used. This was illustrated in several of the earlier 
demonstrations, such as in the Detecting Parts of Speech section where we used the 
POS model as contained in the en-pos-maxent.bin file.

Preparing data
An important step in NLP is finding and preparing data for processing. This includes 
data for training purposes and the data that needs to be processed. There are several 
factors that need to be considered. Here, we will focus on the support Java provides 
for working with characters.

We need to consider how characters are represented. Although we will deal 
primarily with English text, other languages present unique problems. Not only are 
there differences in how a character can be encoded, the order in which text is read 
will vary. For example, Japanese orders its text in columns going from right to left.
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There are also a number of possible encodings. These include ASCII, Latin, and 
Unicode to mention a few. A more complete list is found in the following table. 
Unicode, in particular, is a complex and extensive encoding scheme:

Encoding Description
ASCII A character encoding using 128 (0-127) values.
Latin There are several Latin variations that uses 256 values. They include 

various combination of the umlaut, such as ẗ, and other characters. 
Various versions of Latin have been introduced to address various 
Indo-European languages, such as Turkish and Esperanto.

Big5 A two-byte encoding to address the Chinese character set.
Unicode There are three encodings for Unicode: UTF-8, UTF-16, and UTF-32. 

These use 1, 2, and 4 bytes, respectively. This encoding is able to 
represent all known languages in existence today, including newer 
languages such as Klingon and Elvish.

Java is capable of handling these encoding schemes. The javac executable's –encoding 
command-line option is used to specify the encoding scheme to use. In the following 
command line, the Big5 encoding scheme is specified:

javac –encoding Big5

Character processing is supported using the primitive data type char, the Character 
class, and several other classes and interfaces as summarized in the following table:

Character type Description
char Primitive data type.
Character Wrapper class for char.
CharBuffer This class support a buffer of char providing methods for 

get/put characters or a sequence of characters operations.
CharSequence An interface implemented by CharBuffer, Segment, 

String, StringBuffer and StringBuilder. It 
supports read-only access to a sequence of chars.

Java also provides a number of classes and interfaces to support strings.  
These are summarized in the following table. We will use these in many of  
our examples. The String, StringBuffer, and StringBuilder classes provide 
similar string processing capabilities but differ in whether they can be modified 
and whether they are thread-safe. The CharacterIterator interface and the 
StringCharacterIterator class provide techniques to traverse  
character sequences. 
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The Segment class represents a fragment of text.

Class/Interface Description
String An immutable string.
StringBuffer Represents a modifiable string. It is thread-safe.
StringBuilder Compatible with the StringBuffer class but is  

not thread-safe.
Segment Represents a fragment of text in a character array.  

It provides rapid access to character data in an array.
CharacterIterator Defines an iterator for text. It supports bidirectional 

traversal of text.
StringCharacterIterator A class that implements the CharacterIterator 

interface for a String.

We also need to consider the file format if we are reading from a file. Often data is 
obtained from sources where the words are annotated. For example, if we use a web 
page as the source of text, we will find that it is marked up with HTML tags. These 
are not necessarily relevant to the analysis process and may need to be removed.

The Multi-Purpose Internet Mail Extensions (MIME) type is used to characterize 
the format used by a file. Common file types are listed in the following table. Either 
we need to explicitly remove or alter the markup found in a file or use specialized 
software to deal with it. Some of the NLP APIs provide tools to deal with specialized 
file formats.

File format MIME type Description
Text plain/text Simple text file
Office Type 
Document

application/msword
application/vnd.oasis.
opendocument.text

Microsoft Office
Open Office

PDF application/pdf Adobe Portable Document 
Format

HTML text/html Web pages
XML text/xml eXtensible Markup Language
Database Not applicable Data can be in a number of 

different formats

Many of the NLP APIs assume that the data is clean. When it is not, it needs to be 
cleaned lest we get unreliable and misleading results.
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Summary
In this chapter we introduced NLP and it uses. We found that it is used in many 
places to solve many different types of problems ranging from simple searches to 
sophisticated classification problems. The Java support for NLP in terms of core 
string support and advanced NLP libraries were presented. The basic NLP tasks 
were explained and illustrated using code. We also examined the process of training, 
verifying, and using models.

In this book, we will lay the foundation for using the basic NLP tasks using both 
simple and more sophisticated approaches. You may find that some problems 
require only simple approaches and when that is the case, knowing how to use the 
simple techniques may be more than adequate. In other situations, a more complex 
technique may be needed. In either case, you will be prepared to identify what tool is 
needed and be able to choose the appropriate technique for the task.

In the next chapter, we will examine the process of tokenization in depth and see 
how it can be used to find parts of text.
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Finding Parts of Text
Finding parts of text is concerned with breaking text down into individual units 
called tokens, and optionally performing additional processing on these tokens.  
This additional processing can include stemming, lemmatization, stopword removal, 
synonym expansion, and converting text to lowercase.

We will demonstrate several tokenization techniques found in the standard Java 
distribution. These are included because sometimes this is all you may need to do 
the job. There may be no need to import NLP libraries in this situation. However, 
these techniques are limited. This is followed by a discussion of specific tokenizers 
or tokenization approaches supported by NLP APIs. These examples will provide a 
reference for how the tokenizers are used and the type of output they produce. This 
is followed by a simple comparison of the differences between the approaches.

There are many specialized tokenizers. For example, the Apache Lucene project 
supports tokenizers for various languages and specialized documents. The 
WikipediaTokenizer class is a tokenizer that handles Wikipedia-specific documents 
and the ArabicAnalyzer class handles Arabic text. It is not possible to illustrate all 
of these varying approaches here.

We will also examine how certain tokenizers can be trained to handle specialized 
text. This can be useful when a different form of text is encountered. It can often 
eliminate the need to write a new and specialized tokenizer.

Next, we will illustrate how some of these tokenizers can be used to support specific 
operations such as stemming, lemmatization, and stopword removal. POS can also 
be considered as a special instance of parts of text. However, this topic is investigated 
in Chapter 5, Detecting Parts of Speech.
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Understanding the parts of text
There are a number of ways of categorizing parts of text. For example, we may be 
concerned with character-level issues such as punctuations with a possible need to 
ignore or expand contractions. At the word level, we may need to perform different 
operations such as:

•	 Identifying morphemes using stemming and/or lemmatization
•	 Expanding abbreviations and acronyms
•	 Isolating number units

We cannot always split words with punctuations because the punctuations are 
sometimes considered to be part of the word, such as the word "can't". We may also 
be concerned with grouping multiple words to form meaningful phrases. Sentence 
detection can also be a factor. We do not necessarily want to group words that cross 
sentence boundaries.

In this chapter, we are primarily concerned with the tokenization process and a few 
specialized techniques such as stemming. We will not attempt to show how they are 
used in other NLP tasks. Those efforts are reserved for later chapters.

What is tokenization?
Tokenization is the process of breaking text down into simpler units. For most 
text, we are concerned with isolating words. Tokens are split based on a set of 
delimiters. These delimiters are frequently whitespace characters. Whitespace in 
Java is defined by the Character class' isWhitespace method. These characters are 
listed in the following table. However, there may be a need at times to use a different 
set of delimiters. For example, different delimiters can be useful when whitespace 
delimiters obscure text breaks, such as paragraph boundaries, and detecting these 
text breaks is important.

Character Meaning
Unicode space character (space_separator, line_separator, or paragraph_separator)
\t U+0009 horizontal tabulation
\n U+000A line feed
\u000B U+000B vertical tabulation
\f U+000C form feed
\r U+000D carriage return
\u001C U+001C file separator
\u001D U+001D group separator



Chapter 2

[ 31 ]

Character Meaning
\u001E U+001E record separator
\u001F U+001F unit separator

The tokenization process is complicated by a large number of factors such as:

•	 Language: Different languages present unique challenges. Whitespace is  
a commonly used delimiter but it will not be sufficient if we need to work 
with Chinese, where they are not used.

•	 Text format: Text is often stored or presented using different formats.  
How simple text is processed versus HTML or other markup techniques  
will complicate the tokenization process.

•	 Stopwords: Commonly used words might not be important for some NLP 
tasks such as general searches. These common words are called stopwords. 
Stopwords are sometimes removed when they do not contribute to the NLP 
task at hand. These can include words such as "a", "and", and "she".

•	 Text expansion: For acronyms and abbreviations, it is sometimes desirable  
to expand them so that postprocesses can produce better quality results.  
For example, if a search is interested in the word "machine", then knowing 
that IBM stands for International Business Machines can be useful.

•	 Case: The case of a word (upper or lower) may be significant in some 
situations. For example, the case of a word can help identify proper nouns. 
When identifying the parts of text, conversion to the same case can be useful 
in simplifying searches.

•	 Stemming and lemmatization: These processes will alter the words to get to 
their "roots".

Removing stopwords can save space in an index and make the indexing process 
faster. However, some search engines do not remove stopwords because they can be 
useful for certain queries. For example, when performing an exact match, removing 
stopwords will result in misses. Also, the NER task often depends on stopword 
inclusion. Recognizing that "Romeo and Juliet" is a play is dependent on the 
inclusion of the word "and".

There are many lists which define stopwords. Sometimes what 
constitutes a stopword is dependent on the problem domain. A list of 
stopwords can be found at http://www.ranks.nl/stopwords. 
It lists a few categories of English stopwords and stopwords for 
languages other than English. At http://www.textfixer.com/
resources/common-english-words.txt, you will find a 
comma-separated formatted list of English stopwords.

http://www.ranks.nl/stopwords
http://www.textfixer.com/resources/common-english-words.txt
http://www.textfixer.com/resources/common-english-words.txt
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A list of the top ten stopwords adapted from Stanford (http://library.stanford.
edu/blogs/digital-library-blog/2011/12/stopwords-searchworks-be-or-
not-be) are listed in the following table:

Stopword Occurrences
the 7,578
of 6,582
and 4,106
in 2,298
a 1,137
to 1,033
for 695
on 685
an 289
with 231

We will focus on the techniques used to tokenize English text. This usually involves 
using whitespace or other delimiters to return a list of tokens.

Parsing is closely related to tokenization. They are both concerned with 
identifying parts of text, but parsing is also concerned with identifying 
the parts of speech and their relationship to each other.

Uses of tokenizers
The output of tokenization can be used for simple tasks such as spell checkers and 
processing simple searches. It is also useful for various downstream NLP tasks such 
as identifying POS, sentence detection, and classification. Most of the chapters that 
follow will involve tasks that require tokenization.

Frequently, the tokenization process is just one step in a larger sequence of tasks. 
These steps involve the use of pipelines, as we will illustrate in Using a pipeline later 
in this chapter. This highlights the need for tokenizers that produce quality results 
for the downstream task. If the tokenizer does a poor job, then the downstream task 
will be adversely affected.

http://library.stanford.edu/blogs/digital-library-blog/2011/12/stopwords-searchworks-be-or-not-be
http://library.stanford.edu/blogs/digital-library-blog/2011/12/stopwords-searchworks-be-or-not-be
http://library.stanford.edu/blogs/digital-library-blog/2011/12/stopwords-searchworks-be-or-not-be
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There are many different tokenizers and tokenization techniques available in Java. 
There are several core Java classes that were designed to support tokenization. Some 
of these are now outdated. There are also a number of NLP APIs designed to address 
both simple and complex tokenization problems. The next two sections will examine 
these approaches. First, we will see what the Java core classes have to offer, and then 
we will demonstrate a number of the NLP API tokenization libraries.

Simple Java tokenizers
There are several Java classes that support simple tokenization; some of them are  
as follows:

•	 Scanner

•	 String

•	 BreakIterator

•	 StreamTokenizer

•	 StringTokenizer

Although these classes provide limited support, it is useful to understand how they  
can be used. For some tasks, these classes will suffice. Why use a more difficult  
to understand and less efficient approach when a core Java class can do the job?  
We will cover each of these classes as they support the tokenization process.

The StreamTokenizer and StringTokenizer classes should not be used for new 
development. Instead, the String class' split method is usually a better choice. 
They have been included here in case you run across them and wonder whether  
they should be used or not.

Using the Scanner class
The Scanner class is used to read data from a text source. This might be standard input 
or it could be from a file. It provides a simple-to-use technique to support tokenization.

The Scanner class uses whitespace as the default delimiter. An instance  
of the Scanner class can be created using a number of different constructors.  
The constructor in the following sequence uses a simple string. The next method 
retrieves the next token from the input stream. The tokens are isolated from the 
string, stored into a list of strings, and then displayed:

Scanner scanner = new Scanner("Let's pause, and then " 
   + " reflect.");
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List<String> list = new ArrayList<>();
while(scanner.hasNext()) {
    String token = scanner.next();
    list.add(token);
}
for(String token : list) {
    System.out.println(token);
}

When executed, we get the following output:

Let's

pause,

and

then

reflect.

This simple implementation has several shortcomings. If we needed our contractions 
to be identified and possibly split, as demonstrated with the first token, then this 
implementation fails to do it. Also, the last word of the sentence was returned with a 
period attached to it.

Specifying the delimiter
If we are not happy with the default delimiter, there are several methods we can use 
to change its behavior. Several of these methods are summarized in the following 
table Reference source not found. This list is provided to give you an idea of 
what is possible.

Method Effect
useLocale Uses the locale to set the default delimiter matching
useDelimiter Sets the delimiters based on a string or a pattern
useRadix Specifies the radix to use when working with numbers
skip Skips input matching a pattern and ignores the delimiters
findInLine Finds the next occurrence of a pattern ignoring delimiters

Here, we will demonstrate the use of the useDelimiter method. If we use the 
following statement immediately before the while statement in the previous 
section's example, the only delimiters that will be used will be the blank space, 
apostrophe, and period.

scanner.useDelimiter("[ ,.]");
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When executed, the following will be displayed. The blank line reflects the use of the 
comma delimiter. It has the undesirable effect of returning an empty string as a token 
in this example:

Let's

pause

and

then

reflect

This method uses a pattern as defined in a string. The open and close brackets are 
used to create a class of characters. This is a regular expression that matches those 
three characters. An explanation of Java patterns can be found at http://docs.
oracle.com/javase/8/docs/api/. The delimiter list can be reset to whitespaces 
using the reset method.

Using the split method
We demonstrated the String class' split method in Chapter 1, Introduction to NLP.  
It is duplicated here for convenience:

String text = "Mr. Smith went to 123 Washington avenue.";
String tokens[] = text.split("\\s+");
for (String token : tokens) {
    System.out.println(token);
}

The output is as follows:

Mr.

Smith

went

to

123

Washington

avenue.

The split method also uses a regular expression. If we replace the text with the 
same string we used in the previous section, "Let's pause, and then reflect.",  
we will get the same output.

http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
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The split method has an overloaded version that uses an integer to specify how many 
times the regular expression pattern is applied to the target text. Using this parameter 
can stop the operation after the specified number of matches has been made.

The Pattern class also has a split method. It will split its argument based on the 
pattern used to create the Pattern object.

Using the BreakIterator class
Another approach for tokenization involves the use of the BreakIterator class.  
This class supports the location of integer boundaries for different units of text.  
In this section, we will illustrate how it can be used to find words.

The class has a single default constructor which is protected. We will use the static 
getWordInstance method to get an instance of the class. This method is overloaded 
with one version using a Locale object. The class possesses several methods to 
access boundaries as listed in the following table. It has one field, DONE, that is used 
to indicate that the last boundary has been found.

Method Usage
first Returns the first boundary of the text
next Returns the next boundary following the current one
previous Returns the boundary preceding the current one
setText Associates a string with the BreakIterator instance

To demonstrate this class, we declare an instance of the BreakIterator class and a 
string to use with it:

BreakIterator wordIterator = BreakIterator.getWordInstance();
String text = "Let's pause, and then reflect.";

The text is then assigned to the instance and the first boundary is determined:

wordIterator.setText(text);
int boundary = wordIterator.first();

The loop that follows will store the beginning and ending boundary indexes for 
word breaks using the begin and end variables. The boundary values are integers. 
Each boundary pair and its associated text are displayed. 
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When the last boundary is found, the loop terminates:

while (boundary != BreakIterator.DONE) {
    int begin = boundary;
    System.out.print(boundary + "-");
    boundary = wordIterator.next();
    int end = boundary;
    if(end == BreakIterator.DONE) break;
    System.out.println(boundary + " ["
    + text.substring(begin, end) + "]");
}

The output follows where the brackets are used to clearly delineate the text:

0-5 [Let's]

5-6 [ ]

6-11 [pause]

11-12 [,]

12-13 [ ]

13-16 [and]

16-17 [ ]

17-21 [then]

21-22 [ ]

22-29 [reflect]

29-30 [.]

This technique does a fairly good job of identifying the basic tokens.

Using the StreamTokenizer class
The StreamTokenizer class, found in the java.io package, is designed to tokenize 
an input stream. It is an older class and is not as flexible as the StringTokenizer 
class discussed in the next section. An instance of the class is normally created  
based on a file and will tokenize the text found in the file. It can be constructed  
using a string.

The class uses a nextToken method to return the next token in the stream. The token 
returned is an integer. The value of the integer reflects the type of token returned. 
Based on the token type, the token can be handled in different ways. 
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The StreamTokenizer class fields are shown in the following table:

Field Data Type Meaning
nval double Contains a number if the current token is a number
sval String Contains the token if the current token is a  

word token
TT_EOF static int A constant for the end of the stream
TT_EOL static int A constant for the end of the line
TT_NUMBER static int The number of tokens read
TT_WORD static int A constant indicating  a word token
ttype int The type of token read

In this example, a tokenizer is created followed by the declaration of the isEOF 
variable, which is used to terminate the loop. The nextToken method returns the 
token type. Based on the token type, numeric and string tokens are displayed:

try {
    StreamTokenizer tokenizer = new StreamTokenizer(
          newStringReader("Let's pause, and then reflect."));
    boolean isEOF = false;
    while (!isEOF) {
        int token = tokenizer.nextToken();
        switch (token) {
            case StreamTokenizer.TT_EOF:
                isEOF = true;
                break;
            case StreamTokenizer.TT_EOL:
                break;
            case StreamTokenizer.TT_WORD:
                System.out.println(tokenizer.sval);
                break;
            case StreamTokenizer.TT_NUMBER:
                System.out.println(tokenizer.nval);
                break;
            default:
                System.out.println((char) token);
        }
    }
} catch (IOException ex) {
    // Handle the exception
}

When executed, we get the following output:

Let

'
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This is not what we would normally expect. The problem is that the tokenizer uses 
apostrophes (single quote character) and double quotes to denote quoted text.  
Since there is no corresponding match, it consumes the rest of the string.

We can use the ordinaryChar method to specify which characters should be  
treated as common characters. The single quote and comma characters are 
designated as ordinary characters here:

tokenizer.ordinaryChar('\'');
tokenizer.ordinaryChar(',');

When these statements are added to the previous code and executed, we get the 
following output:

Let

'

s

pause

,

and

then

reflect.

The apostrophe is not a problem now. These two characters are treated as delimiters 
and returned as tokens. There is also a whitespaceChars method available that 
specifies which characters are to be treated as whitespaces.

Using the StringTokenizer class
The StringTokenizer class is found in the java.util package. It provides more 
flexibility than the StreamTokenizer class and is designed to handle strings from 
any source. The class' constructor accepts the string to be tokenized as its parameter 
and uses the nextToken method to return the token. The hasMoreTokens method 
returns true if more tokens exist in the input stream. This is illustrated in the 
following sequence:

StringTokenizerst = new StringTokenizer("Let's pause, and " 
    + "then reflect.");
while (st.hasMoreTokens()) {
    System.out.println(st.nextToken());
}
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When executed, we get the following output:

Let's

pause,

and

then

reflect.

The constructor is overloaded, allowing the delimiters to be specified and whether 
the delimiters should be returned as a token.

Performance considerations with java  
core tokenization
When using these core Java tokenization approaches, it is worthwhile to briefly 
discuss how well they perform. Measuring performance can be tricky at times due 
to the various factors that can impact code execution. With that said, an interesting 
comparison of the performance of several Java core tokenization techniques is 
found at http://stackoverflow.com/questions/5965767/performance-of-
stringtokenizer-class-vs-split-method-in-java. For the problem they were 
addressing, the indexOf method was fastest.

NLP tokenizer APIs
In this section, we will demonstrate several different tokenization techniques using 
the OpenNLP, Stanford, and LingPipe APIs. Although there are a number of other 
APIs available, we restricted the demonstration to these APIs. The examples will  
give you an idea of what techniques are available.

We will use a string called paragraph to illustrate these techniques. The string 
includes a new line break that may occur in real text in unexpected places. It is 
defined here:

private String paragraph = "Let's pause, \nand then + 
    + "reflect.";

http://stackoverflow.com/questions/5965767/performance-of-stringtokenizer-class-vs-split-method-in-java
http://stackoverflow.com/questions/5965767/performance-of-stringtokenizer-class-vs-split-method-in-java
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Using the OpenNLPTokenizer class
OpenNLP possesses a Tokenizer interface that is implemented by three classes: 
SimpleTokenizer, TokenizerME, and WhitespaceTokenizer. This interface 
supports two methods:

•	 tokenize: This is passed a string to tokenize and returns an array of  
tokens as strings.

•	 tokenizePos: This is passed a string and returns an array of Span  
objects. The Span class is used to specify the beginning and ending  
offsets of the tokens.

Each of these classes is demonstrated in the following sections.

Using the SimpleTokenizer class
As the name implies, the SimpleTokenizer class performs simple tokenization of 
text. The INSTANCE field is used to instantiate the class as shown in the following 
code sequence. The tokenize method is executed against the paragraph variable 
and the tokens are then displayed:

SimpleTokenizer simpleTokenizer = SimpleTokenizer.INSTANCE;
String tokens[] = simpleTokenizer.tokenize(paragraph);
for(String token : tokens) {
    System.out.println(token);
}

When executed, we get the following output:

Let

'

s

pause

,

and

then

reflect

.

Using this tokenizer, punctuation is returned as separate tokens.



Finding Parts of Text

[ 42 ]

Using the WhitespaceTokenizer class
As its name implies, this class uses whitespaces as delimiters. In the following code 
sequence, an instance of the tokenizer is created and the tokenize method is executed 
against it using paragraph as input. The for statement then displays the tokens:

String tokens[] =  
WhitespaceTokenizer.INSTANCE.tokenize(paragraph);
for (String token : tokens) {
    System.out.println(token);
}

The output is as follows:

Let's

pause,

and

then

reflect.

Although this does not separate contractions and similar units of text, it can be useful 
for some applications. The class also possesses a tokizePos method that returns 
boundaries of the tokens.

Using the TokenizerME class
The TokenizerME class uses models created using Maximum Entropy (maxent) and 
a statistical model to perform tokenization. The maxent model is used to determine 
the relationship between data, in our case, text. Some text sources, such as various 
social media, are not well formatted and use a lot of slang and special symbols such 
as emoticons. A statistical tokenizer, such as the maxent model, improves the quality 
of the tokenization process.

A detailed discussion of this model is not possible here due to 
its complexity. A good starting point for an interested reader 
can be found at http://en.wikipedia.org/w/index.
php?title=Multinomial_logistic_regression&redirect=no.

A TokenizerModel class hides the model and is used to instantiate the tokenizer. 
The model must have been previously trained. In the next example, the tokenizer is 
instantiated using the model found in the en-token.bin file. This model has been 
trained to work with common English text. 

http://en.wikipedia.org/w/index.php?title=Multinomial_logistic_regression&redirect=no
http://en.wikipedia.org/w/index.php?title=Multinomial_logistic_regression&redirect=no
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The location of the model file is returned by the method getModelDir, which you 
will need to implement. The returned value is dependent on where the models are 
stored on your system. Many of these models can be found at http://opennlp.
sourceforge.net/models-1.5/.

After the instance of a FileInputStream class is created, the input stream is used 
as the argument of the TokenizerModel constructor. The tokenize method will 
generate an array of strings. This is followed by code to display the tokens:

try {
    InputStream modelInputStream = new FileInputStream(
        new File(getModelDir(), "en-token.bin"));
    TokenizerModel model = new  
        TokenizerModel(modelInputStream);
    Tokenizer tokenizer = new TokenizerME(model);
    String tokens[] = tokenizer.tokenize(paragraph);
    for (String token : tokens) {
        System.out.println(token);
    }
} catch (IOException ex) {
    // Handle the exception
}

The output is as follows:

Let

's

pause

,

and

then

reflect

.

Using the Stanford tokenizer
Tokenization is supported by several Stanford NLP API classes; a few of them are  
as follows:

•	 The PTBTokenizer class
•	 The DocumentPreprocessor class
•	 The StanfordCoreNLP class as a pipeline

Each of these examples will use the paragraph string as defined earlier.

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
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Using the PTBTokenizer class
This tokenizer mimics the Penn Treebank 3 (PTB) tokenizer (http://www.cis.
upenn.edu/~treebank/). It differs from PTB in terms of its options and its support 
for Unicode. The PTBTokenizer class supports several older constructors; however, 
it is suggested that the three-argument constructor be used. This constructor uses a 
Reader object, a LexedTokenFactory<T>argument, and a string to specify which of 
the several options to use.

The LexedTokenFactory interface is implemented by the CoreLabelTokenFactory 
and WordTokenFactory classes. The former class supports the retention of the 
beginning and ending character positions of a token whereas the latter class simply 
returns a token as a string without any positional information. The WordTokenFactory 
class is used by default. We will demonstrate the use of both classes.

The CoreLabelTokenFactory class is used in the following example. A 
StringReader instance is created using paragraph. The last argument is used for the 
options, which is null for this example. The Iterator interface is implemented by 
the PTBTokenizer class allowing us to use the hasNext and next method to display 
the tokens.

PTBTokenizer ptb = new PTBTokenizer(
    new StringReader(paragraph), new  
CoreLabelTokenFactory(),null);
while (ptb.hasNext()) {
    System.out.println(ptb.next());
}

The output is as follows:

Let

's

pause

,

and

then

reflect

.

The same output can be obtained using the WordTokenFactory class, as shown here:

PTBTokenizerptb = new PTBTokenizer(
    new StringReader(paragraph), new WordTokenFactory(), null);

http://www.cis.upenn.edu/~treebank/
http://www.cis.upenn.edu/~treebank/
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The power of the CoreLabelTokenFactory class is realized with the options 
parameter of the PTBTokenizer constructor. These options provide a means  
to control the behavior of the tokenizer. Options include such controls as how  
to handle quotes, how to map ellipses, and whether it should treat British  
English spellings or American English spellings. A list of options can be found at  
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/
PTBTokenizer.html.

In the following code sequence, the PTBTokenizer object is created using the 
CoreLabelTokenFactory variable ctf along with an option of "invertible=true". 
This option allows us to obtain and use a CoreLabel object which will give us the 
beginning and ending position of each token:

CoreLabelTokenFactory ctf = new CoreLabelTokenFactory();
PTBTokenizer ptb = new PTBTokenizer(
    new StringReader(paragraph),ctf,"invertible=true");
while (ptb.hasNext()) {
    CoreLabel cl = (CoreLabel)ptb.next();
    System.out.println(cl.originalText() + " (" + 
        cl.beginPosition() + "-" + cl.endPosition() + ")");
}

The output of this sequence is as follows. The numbers within the parentheses 
indicate the tokens' beginning and ending positions:

Let (0-3)

's (3-5)

pause (6-11)

, (11-12)

and (14-17)

then (18-22)

reflect (23-30)

. (30-31)

Using the DocumentPreprocessor class
The DocumentPreprocessor class tokenizes input from an input stream. In addition, 
it implements the Iterable interface making it easy to traverse the tokenized 
sequence. The tokenizer supports the tokenization of simple text and XML data.

To illustrate this process, we will use an instance of StringReader class that uses the 
paragraph string, as defined here:

Reader reader = new StringReader(paragraph);

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/PTBTokenizer.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/PTBTokenizer.html
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An instance of the DocumentPreprocessor class is then instantiated:

DocumentPreprocessor documentPreprocessor =
      new DocumentPreprocessor(reader);

The DocumentPreprocessor class implements the Iterable<java.util.
List<HasWord>> interface. The HasWord interface contains two methods that deal 
with words: a setWord and a word method. The latter method returns a word as a 
string. In the next code sequence, the DocumentPreprocessor class splits the input 
text into sentences which are stored as a List<HasWord>. An Iterator object is used 
to extract a sentence and then a for-each statement will display the tokens:

Iterator<List<HasWord>> it = documentPreprocessor.iterator();
while (it.hasNext()) {
    List<HasWord> sentence = it.next();
    for (HasWord token : sentence) {
        System.out.println(token);
    }
}

When executed, we get the following output:

Let

's

pause

,

and

then

reflect

.

Using a pipeline
Here, we will use the StanfordCoreNLP class as demonstrated in Chapter 1, 
Introduction to NLP. However, we use a simpler annotator string to tokenize 
the paragraph. As shown next, a Properties object is created and assigned the 
annotators tokenize and ssplit. 

The tokenize annotator specifies that tokenization will occur and the ssplit 
annotation results in sentences being split:

Properties properties = new Properties();
properties.put("annotators", "tokenize, ssplit");
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The StanfordCoreNLP class and the Annotation classes are created next:

StanfordCoreNLP pipeline = new StanfordCoreNLP(properties);
Annotation annotation = new Annotation(paragraph);

The annotate method is executed to tokenize the text and then the prettyPrint 
method will display the tokens:

pipeline.annotate(annotation);
pipeline.prettyPrint(annotation, System.out);

Various statistics are displayed followed by the tokens marked up with position 
information in the output, which is as follows:

Sentence #1 (8 tokens):

Let's pause, 

and then reflect.

[Text=Let CharacterOffsetBegin=0 CharacterOffsetEnd=3] [Text='s 
CharacterOffsetBegin=3 CharacterOffsetEnd=5] [Text=pause 
CharacterOffsetBegin=6 CharacterOffsetEnd=11] [Text=, 
CharacterOffsetBegin=11 CharacterOffsetEnd=12] [Text=and 
CharacterOffsetBegin=14 CharacterOffsetEnd=17] [Text=then 
CharacterOffsetBegin=18 CharacterOffsetEnd=22] [Text=reflect 
CharacterOffsetBegin=23 CharacterOffsetEnd=30] [Text=. 
CharacterOffsetBegin=30 CharacterOffsetEnd=31]

Using LingPipe tokenizers
LingPipe supports a number of tokenizers. In this section, we will illustrate the use 
of the IndoEuropeanTokenizerFactory class. In later sections, we will demonstrate 
other ways that LingPipe supports tokenization. Its INSTANCE field provides an 
instance of an Indo-European tokenizer. The tokenizer method returns an instance 
of a Tokenizer class based on the text to be processed, as shown here:

char text[] = paragraph.toCharArray();
TokenizerFactory tokenizerFactory =  
IndoEuropeanTokenizerFactory.INSTANCE;
Tokenizer tokenizer = tokenizerFactory.tokenizer(text, 0,  
text.length);
for (String token : tokenizer) {
    System.out.println(token);
}
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The output is as follows:

Let

'

s

pause

,

and

then

reflect

.

These tokenizers support the tokenization of "normal" text. In the next section,  
we will demonstrate how a tokenizer can be trained to deal with unique text.

Training a tokenizer to find parts of text
Training a tokenizer is useful when we encounter text that is not handled well  
by standard tokenizers. Instead of writing a custom tokenizer, we can create a 
tokenizer model that can be used to perform the tokenization.

To demonstrate how such a model can be created, we will read training data from 
a file and then train a model using this data. The data is stored as a series of words 
separated by whitespace and <SPLIT> fields. This <SPLIT> field is used to provide 
further information about how tokens should be identified. They can help identify 
breaks between numbers, such as 23.6, and punctuation characters such as commas. 
The training data we will use is stored in the file training-data.train, and is 
shown here:

These fields are used to provide further information about how tokens 
should be identified<SPLIT>. 
They can help identify breaks between numbers<SPLIT>, such as 
23.6<SPLIT>, punctuation characters such as commas<SPLIT>.

The data that we use does not represent unique text, but it does illustrate how to 
annotate text and the process used to train a model.

We will use the OpenNLP TokenizerME class' overloaded train method to create a 
model. The last two parameters require additional explanations. The maxent is used 
to determine the relationship between elements of text. 
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We can specify the number of features the model must address before it is included 
in the model. These features can be thought of as aspects of the model. Iterations 
refer to the number of times the training procedure will iterate when determining  
the model's parameters. Few of the TokenME class parameters are as follows:

Parameter Usage
String A code for the language used
ObjectStream<TokenSample> An ObjectStream parameter containing the 

training data
boolean If true, then alphanumeric data is ignored
int Specifies how many times a feature is processed
int The number of iterations used to train the  

maxent model

In the example that follows, we start by defining a BufferedOutputStream object 
that will be used to store the new model. Several of the methods used in the example 
will generate exceptions, which are handled in catch blocks:

BufferedOutputStream modelOutputStream = null;
try {
    …
} catch (UnsupportedEncodingException ex) {
    // Handle the exception
} catch (IOException ex) {
    // Handle the exception
}

An instance of an ObjectStream class is created using the PlainTextByLineStream 
class. This uses the training file and the character encoding scheme as its constructor 
arguments. This is used to create a second ObjectStream instance of the 
TokenSample objects. These objects are text with token span information included:

ObjectStream<String> lineStream = new PlainTextByLineStream(
    new FileInputStream("training-data.train"), "UTF-8");
ObjectStream<TokenSample> sampleStream = 
    new TokenSampleStream(lineStream);

The train method can now be used as shown in the following code. English is 
specified as the language. Alphanumeric information is ignored. The feature and 
iteration values are set to 5 and 100 respectively.

TokenizerModel model = TokenizerME.train(
    "en", sampleStream, true, 5, 100);
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The parameters of the train method are given in detail in the following table:

Parameter Meaning
Language code A string specifying the natural language used
Samples The sample text
Alphanumeric optimization If true, then alphanumeric are skipped
Cutoff The number of times a feature is processed
Iterations The number of iterations performed to train the model

The next code sequence will create an output stream and then write the model out to 
the mymodel.bin file. The model is then ready to be used:

BufferedOutputStream modelOutputStream = new  
BufferedOutputStream(
    new FileOutputStream(new File("mymodel.bin")));
model.serialize(modelOutputStream);

The details of the output will not be discussed here. However, it essentially 
chronicles the training process. The output of the sequence is as follows, but the last 
section has been abbreviated where most of the iterations steps have been deleted to 
save space:

Indexing events using cutoff of 5

Dropped event F:[p=2, s=3.6,, p1=2, p1_num, p2=bok, p1f1=23, f1=3, f1_
num, f2=., f2_eos, f12=3.]

Dropped event F:[p=23, s=.6,, p1=3, p1_num, p2=2, p2_num, p21=23, 
p1f1=3., f1=., f1_eos, f2=6, f2_num, f12=.6]

Dropped event F:[p=23., s=6,, p1=., p1_eos, p2=3, p2_num, p21=3., 
p1f1=.6, f1=6, f1_num, f2=,, f12=6,]

  Computing event counts...  done. 27 events

  Indexing...  done.

Sorting and merging events... done. Reduced 23 events to 4.

Done indexing.

Incorporating indexed data for training...  

done.

  Number of Event Tokens: 4

      Number of Outcomes: 2

    Number of Predicates: 4

...done.

Computing model parameters ...

Performing 100 iterations.
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  1:  ...loglikelihood=-15.942385152878742  0.8695652173913043

  2:  ...loglikelihood=-9.223608340603953  0.8695652173913043

  3:  ...loglikelihood=-8.222154969329086  0.8695652173913043

  4:  ...loglikelihood=-7.885816898591612  0.8695652173913043

  5:  ...loglikelihood=-7.674336804488621  0.8695652173913043

  6:  ...loglikelihood=-7.494512270303332  0.8695652173913043

Dropped event T:[p=23.6, s=,, p1=6, p1_num, p2=., p2_eos, p21=.6, 
p1f1=6,, f1=,, f2=bok]

  7:  ...loglikelihood=-7.327098298508153  0.8695652173913043

  8:  ...loglikelihood=-7.1676028756216965  0.8695652173913043

  9:  ...loglikelihood=-7.014728408489079  0.8695652173913043

...

100:  ...loglikelihood=-2.3177060257465376  1.0

We can use the model as shown in the following sequence. This is the same 
technique we used in the section Using the TokenizerME class. The only difference is 
the model used here:

try {
    paragraph = "A demonstration of how to train a  
tokenizer.";
    InputStream modelIn = new FileInputStream(new File(
        ".", "mymodel.bin"));
    TokenizerModel model = new TokenizerModel(modelIn);
    Tokenizer tokenizer = new TokenizerME(model);
    String tokens[] = tokenizer.tokenize(paragraph);
    for (String token : tokens) {
        System.out.println(token);
} catch (IOException ex) {
    ex.printStackTrace();
}

The output is as follows:

A

demonstration

of

how

to

train

a

tokenizer

.
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Comparing tokenizers
A brief comparison of the NLP APIs tokenizers is shown in the following table.  
The tokens generated are listed under the tokenizer's name. They are based on the 
same text, "Let's pause, \nand then reflect.". Keep in mind that the output is based on 
a simple use of the classes. There may be options not included in the examples that 
will influence how the tokens are generated. The intent is to simply show the type of 
output that can be expected based on the sample code and data.

Simple 
Tokenizer

Whitespace 
Tokenizer

Tokenizer 
ME

PTB 
Tokenizer

Document
Preprocessor

IndoEuropean
TokenizerFactory

Let Let's Let Let Let Let
' pause, 's 's 's '
s and pause pause pause s
pause then , , , pause
, reflect. and and and ,
and then then then and
then reflect reflect reflect then
reflect . . . reflect
. .

Understanding normalization
Normalization is a process that converts a list of words to a more uniform sequence. 
This is useful in preparing text for later processing. By transforming the words to a 
standard format, other operations are able to work with the data and will not have 
to deal with issues that might compromise the process. For example, converting all 
words to lowercase will simplify the searching process.

The normalization process can improve text matching. For example, there are several 
ways that the term "modem router" can be expressed, such as modem and router, 
modem & router, modem/router, and modem-router. By normalizing these words to 
the common form, it makes it easier to supply the right information to a shopper.

Understand that the normalization process might also compromise an NLP task. 
Converting to lowercase letters can decrease the reliability of searches when the  
case is important.
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Normalization operations can include the following:

•	 Changing characters to lowercase
•	 Expanding abbreviations
•	 Removing stopwords
•	 Stemming and lemmatization

We will investigate these techniques here except for expanding abbreviations.  
This technique is similar to the technique used to remove stopwords, except that  
the abbreviations are replaced with their expanded version.

Converting to lowercase
Converting text to lowercase is a simple process that can improve search results.  
We can either use Java methods such as the String class' toLowerCase 
method, or use the capability found in some NLP APIs such as LingPipe's 
LowerCaseTokenizerFactory class. The toLowerCase method is demonstrated here:

String text = "A Sample string with acronyms, IBM, and UPPER "  
  + "and lowercase letters.";
String result = text.toLowerCase();
System.out.println(result);

The output will be as follows:

a sample string with acronyms, ibm, and upper and lowercase letters.

LingPipe's LowerCaseTokenizerFactory approach is illustrated in the section 
Normalizing using a pipeline, later in this chapter.

Removing stopwords
There are several approaches to remove stopwords. A simple approach is to create 
a class to hold and remove stopwords. Also, several NLP APIs provide support for 
stopword removal. We will create a simple class called StopWords to demonstrate 
the first approach. We will then use LingPipe's EnglishStopTokenizerFactory 
class to demonstrate the second approach.
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Creating a StopWords class
The process of removing stopwords involves examining a stream of tokens, 
comparing them to a list of stopwords, and then removing the stopwords from the 
stream. To illustrate this approach, we will create a simple class that supports basic 
operations as defined in the following table:

Constructor/Method Usage
Default constructor Uses a default set of stopwords
Single argument 
constructor

Uses stopwords stored in a file

addStopWord Adds a new stopword to the internal list
removeStopWords Accepts an array of words and returns a new array 

with the stopwords removed

Create a class called StopWords, which declares two instance variables as shown 
in the following code block. The variable defaultStopWords is an array that holds 
the default stopword list. The HashSet variable stopwords list is used to hold the 
stopwords for processing purposes:

public class StopWords {

    private String[] defaultStopWords = {"i", "a", "about", "an",  
      "are", "as", "at", "be", "by", "com", "for", "from", "how",  
      "in", "is", "it", "of", "on", "or", "that", "the", "this",  
      "to", "was", "what", "when", where", "who", "will", "with"};

    private static HashSet stopWords  = new HashSet();
    ...
}

Two constructors of the class follow which populate the HashSet:

public StopWords() {
    stopWords.addAll(Arrays.asList(defaultStopWords));
}

public StopWords(String fileName) {
    try {
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        BufferedReader bufferedreader = 
                new BufferedReader(new FileReader(fileName));
        while (bufferedreader.ready()) {
            stopWords.add(bufferedreader.readLine());
        }
    } catch (IOException ex) {
        ex.printStackTrace();
    }
}

The convenience method addStopWord allows additional words to be added:

public void addStopWord(String word) {
    stopWords.add(word);
}

The removeStopWords method is used to remove the stopwords. It creates an 
ArrayList to hold the original words passed to the method. The for loop is used to 
remove stopwords from this list. The contains method will determine if the word 
submitted is a stopword, and if so, remove it. The ArrayList is converted to an 
array of strings and then returned. This is shown as follows:

public String[] removeStopWords(String[] words) {
    ArrayList<String> tokens = 
        new ArrayList<String>(Arrays.asList(words));
    for (int i = 0; i < tokens.size(); i++) {
        if (stopWords.contains(tokens.get(i))) {
            tokens.remove(i);
        }
    }
    return (String[]) tokens.toArray( 
        new String[tokens.size()]);
}

The following sequence illustrates how StopWords can be used. First, we declare 
an instance of the StopWords class using the default constructor. The OpenNLP 
SimpleTokenizer class is declared and the sample text is defined, as shown here:

StopWords stopWords = new StopWords();
SimpleTokenizer simpleTokenizer = SimpleTokenizer.INSTANCE;
paragraph = "A simple approach is to create a class "
    + "to hold and remove stopwords.";
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The sample text is tokenized and then passed to the removeStopWords method.  
The new list is then displayed:

String tokens[] = simpleTokenizer.tokenize(paragraph);
String list[] = stopWords.removeStopWords(tokens);
for (String word : list) {
    System.out.println(word);
}

When executed, we get the following output. The "A" is not removed because it is 
uppercase and the class does not perform case conversion:

A

simple

approach

create

class

hold

remove

stopwords

.

Using LingPipe to remove stopwords
LingPipe possesses the EnglishStopTokenizerFactory class that we will 
use to identify and remove stopwords. The words in this list are found in 
http://alias-i.com/lingpipe/docs/api/com/aliasi/tokenizer/
EnglishStopTokenizerFactory.html. They include words such as a, was,  
but, he, and for.

The factory class' constructor requires a TokenizerFactory instance as its 
argument. We will use the factory's tokenizer method to process a list of words  
and remove the stopwords. We start by declaring the string to be tokenized:

String paragraph = "A simple approach is to create a class " 
    + "to hold and remove stopwords.";

Next, we create an instance of a TokenizerFactory based on the 
IndoEuropeanTokenizerFactory class. We then use that factory as the  
argument to create our EnglishStopTokenizerFactory instance:

TokenizerFactory factory =  
IndoEuropeanTokenizerFactory.INSTANCE;
factory = new EnglishStopTokenizerFactory(factory);

http://alias-i.com/lingpipe/docs/api/com/aliasi/tokenizer/EnglishStopTokenizerFactory.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/tokenizer/EnglishStopTokenizerFactory.html
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Using the LingPipe Tokenizer class and the factory's tokenizer method, the text 
as declared in the paragraph variable is processed. The tokenizer method uses an 
array of char, a starting index, and its length:

Tokenizer tokenizer = factory.tokenizer(paragraph.toCharArray(),  
  0, paragraph.length());

The following for-each statement will iterate over the revised list:

for (String token : tokenizer) {
    System.out.println(token);
}

The output will be as follows:

A

simple

approach

create

class

hold

remove

stopwords

.

Notice that although the letter, "A" is a stopword, it was not removed from the list.  
This is because the stopword list uses a lowercase 'a' and not an uppercase 'A'.  
As a result, it missed the word. We will correct this problem in the section 
Normalizing using a pipeline, later in the chapter.

Using stemming
Finding the stem of a word involves removing any prefixes or suffixes and what is left 
is considered to be the stem. Identifying stems is useful for tasks where finding similar 
words is important. For example, a search may be looking for occurrences of words 
like "book". There are many words that contain this word including books, booked, 
bookings, and bookmark. It can be useful to identify stems and then look for their 
occurrence in a document. In many situations, this can improve the quality of a search.

A stemmer may produce a stem that is not a real word. For example, it may decide 
that bounties, bounty, and bountiful all have the same stem, "bounti". This can still 
be useful for searches.
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Similar to stemming is Lemmatization. This is the process of finding 
its lemma, its form as found in a dictionary. This can also be useful 
for some searches. Stemming is frequently viewed as a more primitive 
technique, where the attempt to get to the "root" of a word involves 
cutting off parts of the beginning and/or ending of a token.
Lemmatization can be thought of as a more sophisticated approach 
where effort is devoted to finding the morphological or vocabulary 
meaning of a token. For example, the word "having" has a stem of  
"hav" while its lemma is "have". Also, the words "was" and "been"  
have different stems but the same lemma, "be".
Lemmatization can often use more computational resources than 
stemming. They both have their place and their utility is partially 
determined by the problem that needs to be solved.

Using the Porter Stemmer
The Porter Stemmer is a commonly used stemmer for English. Its home page can  
be found at http://tartarus.org/martin/PorterStemmer/. It uses five steps to 
stem a word.

Although Apache OpenNLP 1.5.3 does not contain the PorterStemmer class, its 
source code can be downloaded from https://svn.apache.org/repos/asf/
opennlp/trunk/opennlp-tools/src/main/java/opennlp/tools/stemmer/
PorterStemmer.java. It can then be added to your project.

In the next example, we demonstrate the PorterStemmer class against an array  
of words. The input could as easily have originated from some other text source.  
An instance of the PorterStemmer class is created and then its stem method is 
applied to each word of the array:

String words[] = {"bank", "banking", "banks", "banker", "banked",  
    "bankart"};
PorterStemmer ps = new PorterStemmer();
for(String word : words) {
    String stem = ps.stem(word);
    System.out.println("Word: " + word + "  Stem: " + stem);
}

When executed, you will get the following output:

Word: bank  Stem: bank

Word: banking  Stem: bank

http://tartarus.org/martin/PorterStemmer/
https://svn.apache.org/repos/asf/opennlp/trunk/opennlp-tools/src/main/java/opennlp/tools/stemmer/PorterStemmer.java
https://svn.apache.org/repos/asf/opennlp/trunk/opennlp-tools/src/main/java/opennlp/tools/stemmer/PorterStemmer.java
https://svn.apache.org/repos/asf/opennlp/trunk/opennlp-tools/src/main/java/opennlp/tools/stemmer/PorterStemmer.java
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Word: banks  Stem: bank

Word: banker  Stem: banker

Word: banked  Stem: bank

Word: bankart  Stem: bankart

The last word is used in combination with the word "lesion" as in "Bankart lesion". 
This is an injury of the shoulder and doesn't have much to do with the previous 
words. It does show that only common affixes are used when finding the stem.

Other potentially useful PorterStemmer class methods are found in the  
following table:

Method Meaning
add This will add a char to the end of the current stem word
stem The method used without an argument will return true if a 

different stem occurs
reset Reset the stemmer so a different word can be used

Stemming with LingPipe
The PorterStemmerTokenizerFactory class is used to find stems using LingPipe. 
In this example, we will use the same words array as in the previous section. The 
IndoEuropeanTokenizerFactory class is used to perform the initial tokenization 
followed by the use of the Porter Stemmer. These classes are defined here:

TokenizerFactory tokenizerFactory =  
IndoEuropeanTokenizerFactory.INSTANCE;
TokenizerFactory porterFactory = 
    new PorterStemmerTokenizerFactory(tokenizerFactory);

An array to hold the stems is declared next. We reuse the words array declared in the 
previous section. Each word is processed individually. The word is tokenized and its 
stem is stored in stems as shown in the following code block. The words and their 
stems are then displayed:

String[] stems = new String[words.length];
for (int i = 0; i < words.length; i++) {
    Tokenization tokenizer = new Tokenization(words[i],porterFactory);
    stems = tokenizer.tokens();
    System.out.print("Word: " + words[i]);
    for (String stem : stems) {
        System.out.println("  Stem: " + stem);
    }
}
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When executed, we get the following output:

Word: bank  Stem: bank

Word: banking  Stem: bank

Word: banks  Stem: bank

Word: banker  Stem: banker

Word: banked  Stem: bank

Word: bankart  Stem: bankart

We have demonstrated Porter Stemmer using OpenNLP and LingPipe examples.  
It is worth noting that there are other types of stemmers available including NGrams 
and various mixed probabilistic/algorithmic approaches.

Using lemmatization
Lemmatization is supported by a number of NLP APIs. In this section, we will 
illustrate how lemmatization can be performed using the StanfordCoreNLP and the 
OpenNLPLemmatizer classes. The lemmatization process determines the lemma of a 
word. A lemma can be thought of as the dictionary form of a word. For example, the 
lemma of "was" is "be".

Using the StanfordLemmatizer class
We will use the StanfordCoreNLP class with a pipeline to demonstrate 
lemmatization. We start by setting up the pipeline with four annotators including 
lemma as shown here:

StanfordCoreNLP pipeline;
Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma");
pipeline = new StanfordCoreNLP(props);

These annotators are needed and are explained as follows:

Annotator Operation to be Performed
tokenize Tokenization
ssplit Sentence splitting
pos POS tagging
lemma Lemmatization
ner NER
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Annotator Operation to be Performed
parse Syntactic parsing
dcoref Coreference resolution

A paragraph variable is used with the Annotation constructor and the annotate 
method is then executed, as shown here:

String paragraph = "Similar to stemming is Lemmatization. " 
    +"This is the process of finding its lemma, its form " + 
    +"as found in a dictionary.";
Annotation document = new Annotation(paragraph);
pipeline.annotate(document);

We now need to iterate over the sentences and tokens of the sentences.  
The Annotation and CoreMap class' get methods will return values of the type 
specified. If there are no values of the specified type, it will return null. We will  
use these classes to obtain a list of lemmas.

First, a list of sentences is returned and then each word of each sentence is processed 
to find lemmas. The list of sentences and lemmas are declared here:

List<CoreMap> sentences =  
    document.get(SentencesAnnotation.class);
List<String> lemmas = new LinkedList<>();

Two for-each statements iterate over the sentences to populate the lemmas list.  
Once this is completed, the list is displayed:

for (CoreMap sentence : sentences) {
    for (CoreLabelword : sentence.get(TokensAnnotation.class)) {
        lemmas.add(word.get(LemmaAnnotation.class));
    }
}

System.out.print("[");
for (String element : lemmas) {
    System.out.print(element + " ");
}
System.out.println("]");

The output of this sequence is as follows:

[similar to stem be lemmatization . this be the process of find its lemma 
, its form as find in a dictionary . ]
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Comparing this to the original test, we see that it does a pretty good job:

Similar to stemming is Lemmatization. This is the process of finding its 
lemma, its form as found in a dictionary.

Using lemmatization in OpenNLP
OpenNLP also supports lemmatization using the JWNLDictionary class. This 
class' constructor uses a string that contains the path of the dictionary files used to 
identify roots. We will use a WordNet dictionary developed at Princeton University 
(wordnet.princeton.edu). The actual dictionary is a series of files stored in a 
directory. These files contain a list of words and their "root". For the example used 
in this section, we will use the dictionary found at https://code.google.com/p/
xssm/downloads/detail?name=SimilarityUtils.zip&can=2&q=.

The JWNLDictionary class' getLemmas method is passed the word we want to 
process and a second parameter that specifies the POS for the word. It is important 
that the POS match the actual word type if we want accurate results.

In the next code sequence, we create an instance of the JWNLDictionary class using a 
path ending with \\dict\\. This is the location of the dictionary. We also define our 
sample text. The constructor can throw IOException and JWNLException, which we 
deal with in a try-catch block sequence:

try {
    dictionary = new JWNLDictionary("…\\dict\\");
    paragraph = "Eat, drink, and be merry, for life is but a dream";
    …
} catch (IOException | JWNLException ex)
    //
}

Following the text initialization, add the following statements. First, we tokenize  
the string using the WhitespaceTokenizer class as explained in the section  
Using the WhitespaceTokenizer class. Then, each token is passed to the getLemmas 
method with an empty string as the POS type. The original token and its lemmas  
are then displayed:

String tokens[] =  
    WhitespaceTokenizer.INSTANCE.tokenize(paragraph);
for (String token : tokens) {
    String[] lemmas = dictionary.getLemmas(token, "");
    for (String lemma : lemmas) {

wordnet.princeton.edu
https://code.google.com/p/xssm/downloads/detail?name=SimilarityUtils.zip&can=2&q=
https://code.google.com/p/xssm/downloads/detail?name=SimilarityUtils.zip&can=2&q=
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        System.out.println("Token: " + token + "  Lemma: "  
            + lemma);
    }
}

The output is as follows:

Token: Eat,  Lemma: at

Token: drink,  Lemma: drink

Token: be  Lemma: be

Token: life  Lemma: life

Token: is  Lemma: is

Token: is  Lemma: i

Token: a  Lemma: a

Token: dream  Lemma: dream

The lemmatization process works well except for the token "is" that returns two 
lemmas. The second one is not valid. This illustrates the importance of using the 
proper POS for a token. We could have used one or more of the POS tags as the 
argument to the getLemmas method. However, this begs the question: how do we 
determine the correct POS? This topic is discussed in detail in Chapter 5, Detecting 
Parts of Speech.

A short list of POS tags is found in the following table. This list is adapted from 
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_
pos.html. The complete list of The University of Pennsylvania (Penn) Treebank Tag-
set can be found at http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html.

Tag Description
JJ Adjective
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
POS Possessive ending
PRP Personal pronoun
RB Adverb
RP Particle
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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Normalizing using a pipeline
In this section, we will combine many of the normalization techniques 
using a pipeline. To demonstrate this process, we will expand upon the 
example used in Using LingPipe to remove stopwords. We will add two 
additional factories to normalize text: LowerCaseTokenizerFactory and 
PorterStemmerTokenizerFactory.

The LowerCaseTokenizerFactory factory is added before the creation of the 
EnglishStopTokenizerFactory and the PorterStemmerTokenizerFactory  
after the creation of the EnglishStopTokenizerFactory, as shown here:

paragraph = "A simple approach is to create a class "
     + "to hold and remove stopwords.";
TokenizerFactory factory =  
    IndoEuropeanTokenizerFactory.INSTANCE;
factory = new LowerCaseTokenizerFactory(factory);
factory = new EnglishStopTokenizerFactory(factory);
factory = new PorterStemmerTokenizerFactory(factory);
Tokenizer tokenizer =  
    factory.tokenizer(paragraph.toCharArray(), 0,  
    paragraph.length());
for (String token : tokenizer) {
    System.out.println(token);
}

The output is as follows:

simpl

approach

creat

class

hold

remov

stopword

.

What we have left are the stems of the words in lowercase with the  
stopwords removed.
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Summary
In this chapter, we illustrated various approaches to tokenize text and perform 
normalization on text. We started with simple tokenization technique based on core 
Java classes such as the String class' split method and the StringTokenizer class. 
These approaches can be useful when we decide to forgo the use of NLP API classes.

We demonstrated how tokenization can be performed using the OpenNLP, Stanford, 
and LingPipe APIs. We found there are variations in how tokenization can be 
performed and in options that can be applied in these APIs. A brief comparison of 
their outputs was provided.

Normalization was discussed, which can involve converting characters to lowercase, 
expanding abbreviation, removing stopwords, stemming, and lemmatization.  
We illustrated how these techniques can be applied using both core Java classes  
and the NLP APIs.

In the next chapter, we will investigate the issues involved with determining the  
end of sentences using various NLP APIs.
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Finding Sentences
Partitioning text into sentences is also called Sentence Boundary Disambiguation 
(SBD). This process is useful for many downstream NLP tasks that require analysis 
within sentences; for example, POS and phrase analysis typically work within  
a sentence.

In this chapter, we will explain in further detail why SBD is difficult. Then we will 
examine some core Java approaches that may work in some situations, and move 
on to the use of models by various NLP APIs. We will also examine training and 
validating approaches for sentence detection models. We can add additional rules 
to refine the process further, but this will work only up to a certain point. After that, 
models must be trained to handle both common and specialized situations. The later 
part of this chapter focuses on these models and their use.

The SBD process
The SBD process is language dependent and is often not straightforward. Common 
approaches to detect sentences include using a set of rules or training a model to 
detect them. A set of simple rules for detecting a sentence follows. The end of a 
sentence is detected if:

•	 The text is terminated by a period, question mark, or exclamation mark
•	 The period is not preceded by an abbreviation or followed by a digit

Although this works well for most sentences, it will not work for all of them.  
For example, it is not always easy to determine what an abbreviation is, and 
sequences such as ellipses may be confused with periods.
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Most search engines are not concerned with SBD. They are only interested in a 
query's tokens and their positions. POS taggers and other NLP tasks that perform 
extraction of data will frequently process individual sentences. The detection of 
sentence boundaries will help separate phrases that might appear to span sentences. 
For example, consider the following sentence:

"The construction process was over. The hill where the house was built was short."

If we were searching for the phrase "over the hill", we would inadvertently pick  
up it here.

Many of the examples in this chapter will use the following text to demonstrate SBD. 
This text consists of three simple sentences followed by a more complicated sentence:

private static String paragraph = "When determining the end of sentences "

    + "we need to consider several factors. Sentences may end with "
    + "exclamation marks! Or possibly questions marks? Within "
    + "sentences we may find numbers like 3.14159, abbreviations "
    + "such as found in Mr. Smith, and possibly ellipses either "
    + "within a sentence …, or at the end of a sentence…";

What makes SBD difficult?
Breaking text into sentences is difficult for a number of reasons:

•	 Punctuation is frequently ambiguous
•	 Abbreviations often contain periods
•	 Sentences may be embedded within each other by the use of quotes
•	 With more specialized text, such as tweets and chat sessions, we may  

need to consider the use of new lines or completion of clauses

Punctuation ambiguity is best illustrated by the period. It is frequently used to 
demark the end of a sentence. However, it can be used in a number of other contexts 
as well, including abbreviation, numbers, e-mail addresses, and ellipses. Other 
punctuation characters, such as question and exclamation marks, are also used in 
embedded quotes and specialized text such as code that may be in a document.
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Periods are used in a number of situations:

•	 To terminate a sentence
•	 To end an abbreviation
•	 To end an abbreviation and terminate a sentence
•	 For ellipses
•	 For ellipses at the end of a sentence
•	 Embedded in quotes or brackets

Most sentences we encounter end with a period. This makes them easy to identify. 
However, when they end with an abbreviation, it a bit more difficult to identify 
them. The following sentence contains abbreviations with periods:

"Mr. and Mrs. Smith went to the ball."

In the next two sentences, we have an abbreviation that occurs at the end of  
the sentence:

"He was an agent of the CIA."

"He was an agent of the C.I.A."

In the last sentence, each letter of the abbreviation is followed by a period.  
Although not common, this may occur and we cannot simply ignore it.

Another issue that makes SBD difficult is trying to determine whether or not a word 
is an abbreviation. We cannot simply treat all uppercase sequences as abbreviations. 
Perhaps the user typed in a word in all caps by accident or the text was preprocessed 
to convert all characters to lowercase. Also, some abbreviations consist of a sequence of 
uppercase and lowercase letters. To handle abbreviations, a list of valid abbreviations 
is sometimes used. However, the abbreviations are often domain-specific.

Ellipses can further complicate the problem. They may be found as a single character 
(Extended ASCII 0x85 or Unicode (U+2026)) or as a sequence of three periods. 
In addition, there is the Unicode horizontal ellipsis (U+2026), the vertical ellipsis 
(U+22EE), and the presentation form for the vertical and horizontal ellipsis (U+FE19). 
Besides these, there are HTML encodings. For Java, \uFE19 is used. These variations 
on encoding illustrate the need for good preprocessing of text before it is analyzed.

The next two sentences illustrate possible uses of the ellipses:

"And then there was … one."

"And the list goes on and on and …"
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The second sentence was terminated by an ellipsis. In some situations, as suggested 
by the MLA handbook (http://www.mlahandbook.org/fragment/public_index), 
we can use brackets to distinguish ellipses that have been added from ellipses that 
were part of the original text, as shown here:

"The people […] used various forms of transportation […]" (Young 73).

We will also find sentences embedded in another sentence, such as:

The man said, "That's not right."

Exclamation marks and questions marks present other problems, even though the 
occurrence of these characters is more limited than that of the period. There are 
places other than at the end of a sentence where exclamation marks can occur. In the 
case of some words, such as Yahoo!, the exclamation mark is a part of the word. In 
addition, multiple exclamation marks are used for emphasis such as "Best wishes!!" 
This can lead to identification of multiple sentences where they do not actually exist.

Understanding SBD rules of LingPipe's 
HeuristicSentenceModel class
There are other rules that can be used to perform SBD. LingPipe's 
HeuristicSentenceModel class uses a series of token rules to perform SBD. We will 
present them here, as they provide insight into what rules can be useful.

This class uses three sets of tokens and two flags to assist in the process:

•	 Possible Stops: This is a set of tokens that can be the last token of a sentence
•	 Impossible Penultimates: These tokens cannot be the second to last  

token in a sentence
•	 Impossible Starts: This is a set of tokens that cannot be used to start  

a sentence
•	 Balance Parentheses: This flag indicates that a sentence should not be 

terminated until all matching parentheses are matched in that sentence
•	 Force Final Boundary: This specifies that the final token in an input stream 

should be treated as a sentence terminator even if it is not a possible stop

http://www.mlahandbook.org/fragment/public_index
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Balance parentheses include () and []. However, this rule will fail if the text is 
malformed. The default token sets are listed in the following table:

Possible 
Stops

Impossible Penultimates Impossible Starts

. any single letter closed parentheses

.. personal and professional titles, ranks, and so on ,
! commas, colons, and quotes ;
? common abbreviations :
" directions -
'' corporate designators --
). time, months, and so on ---

U.S. political parties %
U.S. states (not ME or IN) "
shipping terms
address abbreviations

Although LingPipe's HeuristicSentenceModel class uses these rules, there is no 
reason they cannot be used in other implementations of SBD tools.

Heuristic approaches for SBD might not always be as accurate as other techniques. 
However, they may work in a particular domain and often have the advantages of 
being faster and using less memory.

Simple Java SBDs
Sometimes, text may be simple enough that Java core support will suffice.  
There are two approaches that will perform SBD: using regular expressions  
and using the BreakIterator class. We will examine both approaches here.

Using regular expressions
Regular expressions can be difficult to understand. While simple expressions are not 
usually a problem, as they become more complex, their readability worsens. This is 
one of the limitations of regular expressions when trying to use them for SBD.

We will present two different regular expressions. The first expression is simple, but 
does not do a very good job. It illustrates a solution that may be too simple for some 
problem domains. The second is more sophisticated and does a better job.
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In this example, we create a regular expression class that matches periods, question 
marks, and exclamation marks. The String class' split method is used to split the 
text into sentences:

String simple = "[.?!]";
String[] splitString = (paragraph.split(simple));
for (String string : splitString) {
    System.out.println(string);
}

The output is as follows:

When determining the end of sentences we need to consider several factors

 Sentences may end with exclamation marks

 Or possibly questions marks

 Within sentences we may find numbers like 3

14159, abbreviations such as found in Mr

 Smith, and possibly ellipses either within a sentence …, or at the end 
of a sentence…

As expected, the method splits the paragraph into characters regardless of whether 
they are part of a number or abbreviation.

A second approach follows, which produces better results. This example 
has been adapted from an example found at http://stackoverflow.com/
questions/5553410/regular-expression-match-a-sentence. The Pattern class, 
which compiles the following regular expression, is used:

[^.!?\s][^.!?]*(?:[.!?](?!['"]?\s|$)[^.!?]*)*[.!?]?['"]?(?=\s|$)

The comment in the following code sequence provides an explanation of what each 
part represents:

Pattern sentencePattern = Pattern.compile(
    "# Match a sentence ending in punctuation or EOS.\n"
    + "[^.!?\\s]    # First char is non-punct, non-ws\n"
    + "[^.!?]*      # Greedily consume up to punctuation.\n"
    + "(?:          # Group for unrolling the loop.\n"
    + "  [.!?]      # (special) inner punctuation ok if\n"
    + "  (?!['\"]?\\s|$)  # not followed by ws or EOS.\n"
    + "  [^.!?]*    # Greedily consume up to punctuation.\n"
    + ")*           # Zero or more (special normal*)\n"
    + "[.!?]?       # Optional ending punctuation.\n"
    + "['\"]?       # Optional closing quote.\n"
    + "(?=\\s|$)",
    Pattern.MULTILINE | Pattern.COMMENTS);

http://stackoverflow.com/questions/5553410/regular-expression-match-a-sentence
http://stackoverflow.com/questions/5553410/regular-expression-match-a-sentence
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Another representation of this expression can be generated using the display tool 
found at http://regexper.com/. As shown in the following diagram, it graphically 
depicts the expression and can clarify how it works:

The matcher method is executed against the sample paragraph and then the results 
are displayed:

Matcher matcher = sentencePattern.matcher(paragraph);
while (matcher.find()) {
    System.out.println(matcher.group());
}

The output follows. The sentence terminators are retained, but there are still 
problems with abbreviations:

When determining the end of sentences we need to consider several 
factors.

Sentences may end with exclamation marks!

Or possibly questions marks?

Within sentences we may find numbers like 3.14159, abbreviations such as 
found in Mr.

Smith, and possibly ellipses either within a sentence …, or at the end of 
a sentence…

Using the BreakIterator class
The BreakIterator class can be used to detect various text boundaries such as those 
between characters, words, sentences, and lines. Different methods are used to create 
different instances of the BreakIterator class as follows:

•	 For characters, the getCharacterInstance method is used
•	 For words, the getWordInstance method is used
•	 For sentences, the getSentenceInstance method is used
•	 For lines, the getLineInstance method is used

http://regexper.com/
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Detecting breaks between characters is important at times, for example, when we 
need to process characters that are composed of multiple Unicode characters such as 
ü. This character is sometimes formed by combining the \u0075 (u) and \u00a8 (¨) 
Unicode characters. The class will identify these types of characters. This capability 
is further detailed at https://docs.oracle.com/javase/tutorial/i18n/text/
char.html.

The BreakIterator class can be used to detect the end of a sentence. It uses a 
cursor that references the current boundary. It supports a next and a previous 
method that moves the cursor forward and backwards in the text, respectively. 
BreakIterator has a single, protected default constructor. To obtain an instance 
of the BreakIterator class to detect the end of a sentence, use the static 
getSentenceInstance method, as shown here:

BreakIterator sentenceIterator =  
BreakIterator.getSentenceInstance();

There is also an overloaded version of the method. It takes a Locale instance  
as an argument:

Locale currentLocale = new Locale("en", "US");
BreakIterator sentenceIterator = 
    BreakIterator.getSentenceInstance(currentLocale);

Once an instance has been created, the setText method will associate the text to  
be processed with the iterator:

sentenceIterator.setText(paragraph);

BreakIterator identifies the boundaries found in text using a series of methods and 
fields. All of these return integer values, and they are detailed in the following table:

Method Usage
first Returns the first boundary of the text
next Returns the boundary following the current boundary
previous Returns the boundary preceding the current boundary
DONE The final integer, which is assigned a value of -1 (indicating that there are 

no more boundaries to be found)

https://docs.oracle.com/javase/tutorial/i18n/text/char.html
https://docs.oracle.com/javase/tutorial/i18n/text/char.html
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To use the iterator in a sequential fashion, the first boundary is identified using the 
first method, and then the next method is called repeatedly to find the subsequent 
boundaries. The process is terminated when Done is returned. This technique 
is illustrated in the next code sequence, which uses the previously declared 
sentenceIterator instance:

int boundary = sentenceIterator.first();
while (boundary != BreakIterator.DONE) {
    int begin = boundary;
    System.out.print(boundary + "-");
    boundary = sentenceIterator.next();
    int end = boundary;
    if (end == BreakIterator.DONE) {
        break;
    }
    System.out.println(boundary + " ["
        + paragraph.substring(begin, end) + "]");
}

On execution, we get the following output:

0-75 [When determining the end of sentences we need to consider several 
factors. ]

75-117 [Sentences may end with exclamation marks! ]

117-146 [Or possibly questions marks? ]

146-233 [Within sentences we may find numbers like 3.14159 , 
abbreviations such as found in Mr. ]

233-319 [Smith, and possibly ellipses either within a sentence … , or at 
the end of a sentence…]

319-

This output works for simple sentences but is not successful with more  
complex sentences.

The uses of both regular expressions and the BreakIterator class have limitations. 
They are useful for text consisting of relatively simple sentences. However, when the 
text becomes more complex, it is better to use the NLP APIs instead, as discussed in 
the next section.
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Using NLP APIs
There are a number of NLP API classes that support SBD. Some are rule-based, 
whereas others use models that have been trained using common and uncommon 
text. We will illustrate the use of sentence detection classes using the OpenNLP, 
Stanford, and LingPipe APIs.

The models can also be trained. The discussion of this approach is illustrated in the 
Training a Sentence Detector model section of this chapter. Specialized models are 
needed when working with specialized text such as medical or legal text.

Using OpenNLP
OpenNLP uses models to perform SBD. An instance of the SentenceDetectorME 
class is created, based on a model file. Sentences are returned by the sentDetect 
method, and position information is returned by the sentPosDetect method.

Using the SentenceDetectorME class
A model is loaded from a file using the SentenceModel class. An instance of the 
SentenceDetectorME class is then created using the model, and the sentDetect 
method is invoked to perform SDB. The method returns an array of strings, with 
each element holding a sentence.

This process is demonstrated in the following example. A try-with-resources block 
is used to open the en-sent.bin file, which contains a model. Then the paragraph 
string is processed. Next, various IO type exceptions are caught (if necessary). 
Finally, a for-each statement is used to display the sentences:

try (InputStream is = new FileInputStream(
        new File(getModelDir(), "en-sent.bin"))) {
    SentenceModel model = new SentenceModel(is);
    SentenceDetectorME detector = new SentenceDetectorME(model);
    String sentences[] = detector.sentDetect(paragraph);
    for (String sentence : sentences) {
        System.out.println(sentence);
    }
} catch (FileNotFoundException ex) {
    // Handle exception
} catch (IOException ex) {
    // Handle exception
}
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On execution, we get the following output:

When determining the end of sentences we need to consider several 
factors.

Sentences may end with exclamation marks!

Or possibly questions marks?

Within sentences we may find numbers like 3.14159, abbreviations such as 
found in Mr. Smith, and possibly ellipses either within a sentence …, or 
at the end of a sentence…

The output worked well for this paragraph. It caught both simple sentences and the 
more complex sentences. Of course, text that is processed is not always perfect. The 
following paragraph has extra spaces in some spots and is missing spaces where it 
needs them. This problem is likely to occur in the analysis of chat sessions:

paragraph = " This sentence starts with spaces and ends with " 
    + "spaces . This sentence has no spaces between the next "
    + "one.This is the next one.";

When we use this paragraph with the previous example, we get the  
following output:

This sentence starts with spaces and ends with spaces  .

This sentence has no spaces between the next one.This is the next one.

The leading spaces of the first sentence were removed, but the ending spaces were 
not. The third sentence was not detected and was merged with the second sentence.

The getSentenceProbabilities method returns an array of doubles representing 
the confidence of the sentences detected from the last use of the sentDetect method. 
Add the following code after the for-each statement that displayed the sentences:

double probablities[] = detector.getSentenceProbabilities();
for (double probablity : probablities) {
    System.out.println(probablity);
}

By executing with the original paragraph, we get the following output:

0.9841708738988814

0.908052385070974

0.9130082376342675

1.0

The numbers reflects a high level of probabilities for the SDB effort.
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Using the sentPosDetect method
The SentenceDetectorME class possesses a sentPosDetect method that returns 
Span objects for each sentence. Use the same code as found in the previous section, 
except for two changes: replace the sentDetect method with the sentPosDetect 
method, and the for-each statement with the method used here:

Span spans[] = sdetector.sentPosDetect(paragraph);
for (Span span : spans) {
    System.out.println(span);
}

The output that follows uses the original paragraph. The Span objects contain 
positional information returned from the default execution of the toString method:

[0..74)

[75..116)

[117..145)

[146..317)

The Span class possesses a number of methods. The next code sequence 
demonstrates the use of the getStart and getEnd methods to clearly show  
the text represented by those spans:

for (Span span : spans) {
    System.out.println(span + "[" + paragraph.substring(
        span.getStart(), span.getEnd()) +"]");
}

The output shows the sentences identified:

 [0..74)[When determining the end of sentences we need to consider 
several factors.]

[75..116)[Sentences may end with exclamation marks!]

[117..145)[Or possibly questions marks?]

[146..317)[Within sentences we may find numbers like 3.14159, 
abbreviations such as found in Mr. Smith, and possibly ellipses either 
within a sentence …, or at the end of a sentence…]
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There are a number of other Span methods that can be valuable. These are listed in 
the following table:

Method Meaning
contains An overloaded method that determines whether another 

Span object or index is contained with the target
crosses Determines whether two spans overlap
length The length of the span
startsWith Determines whether the span starts the target span

Using the Stanford API
The Stanford NLP library supports several techniques used to perform sentence 
detection. In this section, we will demonstrate the process using the following classes:

•	 PTBTokenizer

•	 DocumentPreprocessor

•	 StanfordCoreNLP

Although all of them perform SBD, each uses a different approach to performing  
the process.

Using the PTBTokenizer class
The PTBTokenizer class uses rules to perform SBD and has a variety of tokenization 
options. The constructor for this class possesses three parameters:

•	 A Reader class that encapsulates the text to be processed
•	 An object that implements the LexedTokenFactory interface
•	 A string holding the tokenization options

These options allow us to specify the text, the tokenizer to be used, and any options 
that we may need to use for a specific text stream.

In the following code sequence, an instance of the StringReader class is created to 
encapsulate the text. The CoreLabelTokenFactory class is used with the options left 
as null for this example:

PTBTokenizer ptb = new PTBTokenizer(new StringReader(paragraph),  
    new CoreLabelTokenFactory(), null);
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We will use the WordToSentenceProcessor class to create a List instance of List 
class to hold the sentences and their tokens. Its process method takes the tokens 
produced by the PTBTokenizer instance to create the List of list class as  
shown here:

WordToSentenceProcessor wtsp = new WordToSentenceProcessor();
List<List<CoreLabel>> sents = wtsp.process(ptb.tokenize());

This List instance of list class can be displayed in several ways. In the next 
sequence, the toString method of the List class displays the list enclosed in 
brackets, with its elements separated by commas:

for (List<CoreLabel> sent : sents) {
    System.out.println(sent);
}

The output of this sequence produces the following:

[When, determining, the, end, of, sentences, we, need, to, consider, 
several, factors, .]

[Sentences, may, end, with, exclamation, marks, !]

[Or, possibly, questions, marks, ?]

[Within, sentences, we, may, find, numbers, like, 3.14159, ,, 
abbreviations, such, as, found, in, Mr., Smith, ,, and, possibly, 
ellipses, either, within, a, sentence, ..., ,, or, at, the, end, of, a, 
sentence, ...]

An alternate approach shown here displays each sentence on a separate line:

for (List<CoreLabel> sent : sents) {
    for (CoreLabel element : sent) {
        System.out.print(element + " ");
     }
    System.out.println();
}

The output is as follows:

When determining the end of sentences we need to consider several factors 
. 

Sentences may end with exclamation marks ! 

Or possibly questions marks ? 

Within sentences we may find numbers like 3.14159 , abbreviations such as 
found in Mr. Smith , and possibly ellipses either within a sentence ... , 
or at the end of a sentence ... 
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If we are only interested in the positions of the words and sentences, we can use the 
endPosition method, as illustrated here:

for (List<CoreLabel> sent : sents) {
    for (CoreLabel element : sent) {
        System.out.print(element.endPosition() + " ");
     }
    System.out.println();
}

When this is executed, we get the following output. The last number on each line is 
the index of the sentence boundary:

4 16 20 24 27 37 40 45 48 57 65 73 74 

84 88 92 97 109 115 116 

119 128 138 144 145 

152 162 165 169 174 182 187 195 196 210 215 218 224 227 231 237 238 242 
251 260 267 274 276 285 287 288 291 294 298 302 305 307 316 317

The first elements of each sentence are displayed in the following sequence along 
with its index:

for (List<CoreLabel> sent : sents) {
    System.out.println(sent.get(0) + " " 
        + sent.get(0).beginPosition());
}

The output is as follows:

When 0

Sentences 75

Or 117

Within 146

If we are interested in the last elements of a sentence, we can use the following 
sequence. The number of elements of a list is used to display the terminating 
character and its ending position:

for (List<CoreLabel> sent : sents) {
    int size = sent.size();
    System.out.println(sent.get(size-1) + " " 
        + sent.get(size-1).endPosition());
}
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This will produce the following output:

. 74

! 116

? 145

... 317

There are a number of options available when the constructor of the PTBTokenizer 
class is invoked. These options are enclosed as the constructor's third parameter.  
The option string consists of the options separated by commas, as shown here:

"americanize=true,normalizeFractions=true,asciiQuotes=true".

Several of these options are listed in this table:

Option Meaning
invertible Used to indicate that the tokens and 

whitespace must be preserved so that the 
original string can be reconstructed

tokenizeNLs Indicates that the ends of lines must be 
treated as tokens

americanize If true, this will rewrite British spellings as 
American spellings

normalizeAmpersandEntity Will convert the XML &amp character to an 
ampersand

normalizeFractions Converts common fraction characters such as 
½ to the long form (1/2)

asciiQuotes Will convert quote characters to the simpler ' 
and " characters

unicodeQuotes Will convert quote characters to characters 
that range from U+2018 to U+201D

The following sequence illustrates the use of this option string;

paragraph = "The colour of money is green. Common fraction "
    + "characters such as ½  are converted to the long form 1/2. "
    + "Quotes such as "cat" are converted to their simpler form.";
ptb = new PTBTokenizer(
    new StringReader(paragraph), new CoreLabelTokenFactory(),
    "americanize=true,normalizeFractions=true,asciiQuotes=true");
wtsp = new WordToSentenceProcessor();
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sents = wtsp.process(ptb.tokenize());
for (List<CoreLabel> sent : sents) {
    for (CoreLabel element : sent) {
        System.out.print(element + " ");
    }
    System.out.println();
}

The output is as follows:

The color of money is green . 

Common fraction characters such as 1/2 are converted to the long form 1/2 
. 

Quotes such as " cat " are converted to their simpler form .

The British spelling of the word "colour" was converted to its American equivalent. 
The fraction ½ was expanded to three characters: 1/2. In the last sentence, the smart 
quotes were converted to their simpler form.

Using the DocumentPreprocessor class
When an instance of the DocumentPreprocessor class is created, it uses its Reader 
parameter to produce a list of sentences. It also implements the Iterable interface, 
which makes it easy to traverse the list.

In the following example, the paragraph is used to create a StringReader object, and 
this object is used to instantiate the DocumentPreprocessor instance:

Reader reader = new StringReader(paragraph);
DocumentPreprocessor dp = new DocumentPreprocessor(reader);
for (List sentence : dp) {
    System.out.println(sentence);
}

On execution, we get the following output:

[When, determining, the, end, of, sentences, we, need, to, consider, 
several, factors, .]

[Sentences, may, end, with, exclamation, marks, !]

[Or, possibly, questions, marks, ?]

[Within, sentences, we, may, find, numbers, like, 3.14159, ,, 
abbreviations, such, as, found, in, Mr., Smith, ,, and, possibly, 
ellipses, either, within, a, sentence, ..., ,, or, at, the, end, of, a, 
sentence, ...]



Finding Sentences

[ 84 ]

By default, PTBTokenizer is used to tokenize the input. The setTokenizerFactory 
method can be used to specify a different tokenizer. There are several other methods 
that can be useful, as detailed in the following table:

Method Purpose
setElementDelimiter Its argument specifies an XML element. Only the 

text inside of those elements will be processed.
setSentenceDelimiter The processor will assume that the string 

argument is a sentence delimiter.
setSentenceFinalPuncWords Its string array argument specifies the end of 

sentences delimiters.
setKeepEmptySentences When used with whitespace models, if its 

argument is true, then empty sentences  
will be retained.

The class can process either plain text or XML documents.

To demonstrate how an XML file can be processed, we will create a simple XML file 
called XMLText.xml, containing the following data:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"?>
<document>
    <sentences>
        <sentence id="1">
            <word>When</word>
            <word>the</word>
            <word>day</word>
            <word>is</word>
            <word>done</word>
            <word>we</word>
            <word>can</word>
            <word>sleep</word>
            <word>.</word>
        </sentence>
        <sentence id="2">
            <word>When</word>
            <word>the</word>
            <word>morning</word>
            <word>comes</word>
            <word>we</word>
            <word>can</word>
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            <word>wake</word>
            <word>.</word>
        </sentence>
        <sentence id="3">
            <word>After</word>
            <word>that</word>
            <word>who</word>
            <word>knows</word>
            <word>.</word>
        </sentence>
    </sentences>
</document>

We will reuse the code from the previous example. However, we will open the 
XMLText.xml file instead, and use DocumentPreprocessor.DocType.XML as 
the second argument of the constructor of the DocumentPreprocessor class, as 
shown next. This will specify that the processor should treat the text as XML text. 
In addition, we will specify that only those XML elements that are within the 
<sentence> tag should be processed:

try {
    Reader reader = new FileReader("XMLText.xml");
    DocumentPreprocessor dp = new DocumentPreprocessor(
        reader, DocumentPreprocessor.DocType.XML);
    dp.setElementDelimiter("sentence");
    for (List sentence : dp) {
        System.out.println(sentence);
    }
} catch (FileNotFoundException ex) {
    // Handle exception
}

The output of this example is as follows:

[When, the, day, is, done, we, can, sleep, .] 

[When, the, morning, comes, we, can, wake, .]

[After, that, who, knows, .]

A cleaner output is possible using a ListIterator, as shown here:

for (List sentence : dp) {
    ListIterator list = sentence.listIterator();
     while (list.hasNext()) {
        System.out.print(list.next() + " ");
    }
    System.out.println();
}
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Its output is the following:

When the day is done we can sleep . 

When the morning comes we can wake . 

After that who knows .

If we had not specified an element delimiter, then each word would have been 
displayed like this:

[When]

[the]

[day]

[is]

[done]

...

[who]

[knows]

[.]

Using the StanfordCoreNLP class
The StanfordCoreNLP class supports sentence detection using the ssplit annotator. 
In the following example, the tokenize and ssplit annotators are used. A pipeline 
object is created and the annotate method is applied against the pipeline using the 
paragraph as its argument:

Properties properties = new Properties();
properties.put("annotators", "tokenize, ssplit");
StanfordCoreNLP pipeline = new StanfordCoreNLP(properties);
Annotation annotation = new Annotation(paragraph);
pipeline.annotate(annotation);

The output contains a lot of information. Only the output for the first line is  
shown here:

Sentence #1 (13 tokens):

When determining the end of sentences we need to consider several 
factors.
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[Text=When CharacterOffsetBegin=0 CharacterOffsetEnd=4] 
[Text=determining CharacterOffsetBegin=5 CharacterOffsetEnd=16] 
[Text=the CharacterOffsetBegin=17 CharacterOffsetEnd=20] 
[Text=end CharacterOffsetBegin=21 CharacterOffsetEnd=24] [Text=of 
CharacterOffsetBegin=25 CharacterOffsetEnd=27] [Text=sentences 
CharacterOffsetBegin=28 CharacterOffsetEnd=37] [Text=we 
CharacterOffsetBegin=38 CharacterOffsetEnd=40] [Text=need 
CharacterOffsetBegin=41 CharacterOffsetEnd=45] [Text=to 
CharacterOffsetBegin=46 CharacterOffsetEnd=48] [Text=consider 
CharacterOffsetBegin=49 CharacterOffsetEnd=57] [Text=several 
CharacterOffsetBegin=58 CharacterOffsetEnd=65] [Text=factors 
CharacterOffsetBegin=66 CharacterOffsetEnd=73] [Text=. 
CharacterOffsetBegin=73 CharacterOffsetEnd=74] 

Alternatively, we can use the xmlPrint method. This will produce the output in 
XML format, which can often be easier for extracting the information of interest.  
This method is shown here, and it requires that the IOException be handled:

try {
    pipeline.xmlPrint(annotation, System.out);
} catch (IOException ex) {
    // Handle exception
}

A partial listing of the output is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>
  <document>
    <sentences>
      <sentence id="1">
        <tokens>
          <token id="1">
            <word>When</word>
            <CharacterOffsetBegin>0</CharacterOffsetBegin>
            <CharacterOffsetEnd>4</CharacterOffsetEnd>
          </token>
...
         <token id="34">
            <word>...</word>
            <CharacterOffsetBegin>316</CharacterOffsetBegin>
            <CharacterOffsetEnd>317</CharacterOffsetEnd>
          </token>
        </tokens>
      </sentence>
    </sentences>
  </document>
</root>
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Using LingPipe
LingPipe uses a hierarchy of classes to support SBD, as shown in the following 
figure. At the base of this hierarchy is the AbstractSentenceModel class whose 
primary method is an overloaded boundaryIndices method. This method returns 
an integer array of a boundary index where each element of the array represents a 
sentence boundary.

Derived from this class is the HeuristicSentenceModel class. This class uses a 
series of Possible Stops, Impossible Penultimates, and Impossible Starts token 
sets. These were discussed earlier in the Understanding SBD rules of LingPipe's 
HeuristicSentenceModel class section of the chapter.

The IndoEuropeanSentenceModel and MedlineSentenceModel classes are derived 
from the HeuristicSentenceModel class. They have been trained for English and 
specialized medical text respectively. We will illustrate both of these classes.

Using the IndoEuropeanSentenceModel class
The IndoEuropeanSentenceModel model is used for English text. Its two-argument 
constructor will specify:

•	 Whether the final token must be a stop
•	 Whether parentheses should be balanced
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The default constructor does not force the final token to be a stop or 
expect that parentheses should be balanced. The sentence model needs 
to be used with a tokenizer. We will use the default constructor of the 
IndoEuropeanTokenizerFactory class for this purpose, as shown here:

TokenizerFactory TOKENIZER_FACTORY=  
IndoEuropeanTokenizerFactory.INSTANCE;
SentenceModel sentenceModel = new IndoEuropeanSentenceModel();

A tokenizer is created and its tokenize method is invoked to populate two lists:

List<String> tokenList = new ArrayList<>();
List<String> whiteList = new ArrayList<>();
Tokenizer tokenizer= TOKENIZER_FACTORY.tokenizer(
    paragraph.toCharArray(),0, paragraph.length());
tokenizer.tokenize(tokenList, whiteList);

The boundaryIndices method returns an array of integer boundary indexes.  
The method requires two String array arguments containing tokens and 
whitespaces. The tokenize method used two List for these elements.  
This means we need to convert the List into equivalent arrays, as shown here:

String[] tokens = new String[tokenList.size()];
String[] whites = new String[whiteList.size()];
tokenList.toArray(tokens);
whiteList.toArray(whites);

We can then use the boundaryIndices method and display the indexes:

int[] sentenceBoundaries=  
sentenceModel.boundaryIndices(tokens, whites);
for(int boundary : sentenceBoundaries) {
    System.out.println(boundary);
}

The output is shown here:

12

19

24

To display the actual sentences, we will use the following sequence. The whitespace 
indexes are one off from the token:

int start = 0;
for(int boundary : sentenceBoundaries) {
    while(start<=boundary) {
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        System.out.print(tokenList.get(start)  
    + whiteList.get(start+1));
        start++;
    }
    System.out.println();
}

The following output is the result:

When determining the end of sentences we need to consider several 
factors. 

Sentences may end with exclamation marks! 

Or possibly questions marks?

Unfortunately, it missed the last sentence. This is due to the last sentence ending in 
an ellipsis. If we add a period to the end of the sentence, we get the following output:

When determining the end of sentences we need to consider several 
factors. 

Sentences may end with exclamation marks! 

Or possibly questions marks? 

Within sentences we may find numbers like 3.14159, abbreviations such as 
found in Mr. Smith, and possibly ellipses either within a sentence …, or 
at the end of a sentence….

Using the SentenceChunker class
An alternative approach is to use the SentenceChunker class to perform SBD.  
The constructor of this class requires a TokenizerFactory object and a 
SentenceModel object, as shown here:

TokenizerFactory tokenizerfactory =  
IndoEuropeanTokenizerFactory.INSTANCE;
SentenceModel sentenceModel = new IndoEuropeanSentenceModel();

The SentenceChunker instance is created using the tokenizer factory and  
sentence instances:

SentenceChunker sentenceChunker = 
    new SentenceChunker(tokenizerfactory, sentenceModel);

The SentenceChunker class implements the Chunker interface that uses a chunk 
method. This method returns an object that implements the Chunking interface.  
This object specifies "chunks" of text with a character sequence (CharSequence).
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The chunk method uses a character array and indexes within the array to specify 
which portions of the text need to be processed. A Chunking object is returned  
like this:

Chunking chunking = sentenceChunker.chunk(
    paragraph.toCharArray(),0, paragraph.length());

We will use the Chunking object for two purposes. First, we will use its chunkSet 
method to return a Set of Chunk objects. Then we will obtain a string holding all  
the sentences:

Set<Chunk> sentences = chunking.chunkSet();
String slice = chunking.charSequence().toString();

A Chunk object stores character offsets of the sentence boundaries. We will use its 
start and end methods in conjunction with the slice to display the sentences, as 
shown next. Each element, sentence, holds the sentence's boundary. We use this 
information to display each sentence in the slice:

for (Chunk sentence : sentences) {
    System.out.println("[" + slice.substring(sentence.start(),  
      sentence.end()) + "]");
}

The following is the output. However, it still has problems with sentences ending 
with an ellipsis, so a period has been added to the end of the last sentence before  
the text is processed.

[When determining the end of sentences we need to consider several 
factors.]

[Sentences may end with exclamation marks!]

[Or possibly questions marks?]

[Within sentences we may find numbers like 3.14159, abbreviations such as 
found in Mr. Smith, and possibly ellipses either within a sentence …, or 
at the end of a sentence….]

Although the IndoEuropeanSentenceModel class works reasonably well for English 
text, it may not always work well for specialized text. In the next section, we will 
examine the use of the MedlineSentenceModel class, which has been trained to 
work with medical text.
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Using the MedlineSentenceModel class
The LingPipe sentence model uses MEDLINE, which is a large collection of 
biomedical literature. This collection is stored in XML format and is maintained by 
the United States National Library of Medicine (http://www.nlm.nih.gov/).

LingPipe uses its MedlineSentenceModel class to perform SBD. This model has been 
trained against the MEDLINE data. It uses simple text and tokenizes it into tokens 
and whitespace. The MEDLINE model is then used to find the text's sentences.

In the next example, we will use a paragraph from http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3139422/ to demonstrate the use of the model, as declared here:

paragraph = "HepG2 cells were obtained from the American Type  
Culture " 
    + "Collection (Rockville, MD, USA) and were used only until " 
    + "passage 30. They were routinely grown at 37°C in Dulbecco's "
    + "modified Eagle's medium (DMEM) containing 10 % fetal bovine "
    + "serum (FBS), 2 mM glutamine, 1 mM sodium pyruvate, and 25 "
    + "mM glucose (Invitrogen, Carlsbad, CA, USA) in a humidified "
    + "atmosphere containing 5% CO2. For precursor and 13C-sugar " 
    + "experiments, tissue culture treated polystyrene 35 mm "
    + "dishes (Corning Inc, Lowell, MA, USA) were seeded with 2 "
    + "× 106 cells and grown to confluency in DMEM.";

The code that follows is based on the SentenceChunker class, as demonstrated in the 
previous section. The difference is in the use of the MedlineSentenceModel class:

TokenizerFactory tokenizerfactory =  
    IndoEuropeanTokenizerFactory.INSTANCE;
MedlineSentenceModel sentenceModel = new  
    MedlineSentenceModel();
SentenceChunker sentenceChunker = 
    new SentenceChunker(tokenizerfactory,  
sentenceModel);
Chunking chunking = sentenceChunker.chunk(
    paragraph.toCharArray(), 0, paragraph.length());
Set<Chunk> sentences = chunking.chunkSet();
String slice = chunking.charSequence().toString();
for (Chunk sentence : sentences) {
    System.out.println("["
        + slice.substring(sentence.start(),  
sentence.end()) 
        + "]");
}

http://www.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139422/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139422/
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The output is as follows:

[HepG2 cells were obtained from the American Type Culture Collection 
(Rockville, MD, USA) and were used only until passage 30.]

[They were routinely grown at 37°C in Dulbecco's modified Eagle's medium 
(DMEM) containing 10 % fetal bovine serum (FBS), 2 mM glutamine, 1 mM 
sodium pyruvate, and 25 mM glucose (Invitrogen, Carlsbad, CA, USA) in a 
humidified atmosphere containing 5% CO2.]

[For precursor and 13C-sugar experiments, tissue culture treated 
polystyrene 35 mm dishes (Corning Inc, Lowell, MA, USA) were seeded with 
2 × 106 cells and grown to confluency in DMEM.] 

When executed against medical text, this model will perform better than  
other models.

Training a Sentence Detector model
We will use OpenNLP's SentenceDetectorME class to illustrate the training process. 
This class has a static train method that uses sample sentences found in a file.  
The method returns a model that is usually serialized to a file for later use.

Models use specially annotated data to clearly specify where a sentence ends. 
Frequently, a large file is used to provide a good sample for training purposes. Part 
of the file is used for training purposes, and the rest is used to verify the model after 
it has been trained.

The training file used by OpenNLP consists of one sentence per line. Usually, at least 
10 to 20 sample sentences are needed to avoid processing errors. To demonstrate the 
process, we will use a file called sentence.train. It consists of Chapter 5, Twenty 
Thousand Leagues under the Sea by Jules Verne. The text of the book can be found at 
http://www.gutenberg.org/files/164/164-h/164-h.htm#chap05. The file can 
be downloaded from www.packtpub.com.

A FileReader object is used to open the file. This object is used as the argument of 
the PlainTextByLineStream constructor. The stream that results consists of a string 
for each line of the file. This is used as the argument of the SentenceSampleStream 
constructor, which converts the sentence strings to SentenceSample objects. These 
objects hold the beginning index of each sentence. This process is shown next, where 
the statements are enclosed in a try block to handle exceptions that may be thrown 
by these statements:

try {
    ObjectStream<String> lineStream = new PlainTextByLineStream(
        new FileReader("sentence.train"));

http://www.gutenberg.org/files/164/164-h/164-h.htm#chap05
www.packtpub.com
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    ObjectStream<SentenceSample> sampleStream
        = new SentenceSampleStream(lineStream);
    ...
    } catch (FileNotFoundException ex) {
        // Handle exception
    } catch (IOException ex) {
        // Handle exception
}

Now the train method can be used like this:

SentenceModel model = SentenceDetectorME.train("en",  
    sampleStream, true,
    null, TrainingParameters.defaultParams());

The output of the method is a trained model. The parameters of this method are 
detailed in the following table:

Parameter Meaning
"en" Specifies that the language of the  

text is English
sampleStream The training text stream
true Specifies whether end tokens shown 

should be used
null A dictionary for abbreviations
TrainingParameters.defaultParams() Specifies that the default training 

parameters should be used

In the following sequence, an OutputStream is created and used to save the model in 
the modelFile file. This allows the model to be reused for other applications:

OutputStream modelStream = new BufferedOutputStream(
    new FileOutputStream("modelFile"));
model.serialize(modelStream);

The output of this process is as follows. All the iterations have not been shown here 
to save space. The default cuts off indexing events to 5 and iterations to 100:

Indexing events using cutoff of 5

    Computing event counts...  done. 93 events

    Indexing...  done.

Sorting and merging events... done. Reduced 93 events to 63.
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Done indexing.

Incorporating indexed data for training...  

done.

    Number of Event Tokens: 63

        Number of Outcomes: 2

      Number of Predicates: 21

...done.

Computing model parameters ...

Performing 100 iterations.

  1:  ... loglikelihood=-64.4626877920749    0.9032258064516129

  2:  ... loglikelihood=-31.11084296202819    0.9032258064516129

  3:  ... loglikelihood=-26.418795734248626    0.9032258064516129

  4:  ... loglikelihood=-24.327956749903198    0.9032258064516129

  5:  ... loglikelihood=-22.766489585258565    0.9032258064516129

  6:  ... loglikelihood=-21.46379347841989    0.9139784946236559

  7:  ... loglikelihood=-20.356036369911394    0.9139784946236559

  8:  ... loglikelihood=-19.406935608514992    0.9139784946236559

  9:  ... loglikelihood=-18.58725539754483    0.9139784946236559

 10:  ... loglikelihood=-17.873030559849326    0.9139784946236559

 ...

 99:  ... loglikelihood=-7.214933901940582    0.978494623655914

100:  ... loglikelihood=-7.183774954664058    0.978494623655914

Using the Trained model
We can then use the model as illustrated in the next code sequence. This is based on 
the techniques illustrated in Using the SentenceDetectorME class earlier in this chapter:

try (InputStream is = new FileInputStream(
        new File(getModelDir(), "modelFile"))) {
    SentenceModel model = new SentenceModel(is);
    SentenceDetectorME detector = new  
    SentenceDetectorME(model);
    String sentences[] = detector.sentDetect(paragraph);
    for (String sentence : sentences) {
        System.out.println(sentence);
    }
} catch (FileNotFoundException ex) {
    // Handle exception
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} catch (IOException ex) {
    // Handle exception
}

The output is as follows:

When determining the end of sentences we need to consider several 
factors.

Sentences may end with exclamation marks! Or possibly questions marks?

Within sentences we may find numbers like 3.14159,

abbreviations such as found in Mr.

Smith, and possibly ellipses either within a sentence …, or at the end of 
a sentence…

This model did not process the last sentence very well, which reflects a mismatch 
between the sample text and the text the model is used against. Using relevant training 
data is important. Otherwise, downstream tasks based on this output will suffer.

Evaluating the model using the 
SentenceDetectorEvaluator class
We reserved a part of the sample file for evaluation purposes so that we can use 
the SentenceDetectorEvaluator class to evaluate the model. We modified the 
sentence.train file by extracting the last ten sentences and placing them in a file 
called evalSample. Then we used this file to evaluate the model. In the next example, 
we've reused the lineStream and sampleStream variables to create a stream of 
SentenceSample objects based on the file's contents:

lineStream = new PlainTextByLineStream( 
    new FileReader("evalSample"));
sampleStream = new SentenceSampleStream(lineStream);

An instance of the SentenceDetectorEvaluator class is created using the 
previously created SentenceDetectorME class variable detector. The second 
argument of the constructor is a SentenceDetectorEvaluationMonitor object, 
which we will not use here. Then the evaluate method is called:

SentenceDetectorEvaluator sentenceDetectorEvaluator
    = new SentenceDetectorEvaluator(detector, null);
sentenceDetectorEvaluator.evaluate(sampleStream);
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The getFMeasure method will return an instance of the FMeasure class that provides 
measurements of the quality of the model:

System.out.println(sentenceDetectorEvaluator.getFMeasure());

The output follows. Precision is the fraction of correct instances that are included, 
and recall reflects the sensitivity of the model. F-measure is a score that combines 
recall and precision. In essence, it reflects how well the model works. It is best to 
keep the precision above 90 percent for tokenization and SBD tasks:

Precision: 0.8181818181818182

Recall: 0.9

F-Measure: 0.8571428571428572

Summary
We discussed many of the issues that make sentence detection a difficult task.  
These include problems that result from periods being used for numbers and 
abbreviations. The use of ellipses and embedded quotes can also be problematic.

Java does provide a couple of techniques to detect the end of a sentence.  
We saw how regular expressions and the BreakIterator class can be used.  
These techniques are useful for simple sentences, but they do not work that  
well for more complicated sentences.

The use of various NLP APIs was also illustrated. Some of these process the text 
based on rules, while others use models. We also demonstrated how models can  
be trained and evaluated.

In the next chapter, you will learn how to find people and things with text.
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Finding People and Things
The process of finding people and things is referred to as Named Entity Recognition 
(NER). Entities such as people and places are associated with categories that have 
names, which identify what they are. A named category can be as simple as "people". 
Common entity types include:

•	 People
•	 Locations
•	 Organizations
•	 Money
•	 Time
•	 URLs

Finding names, locations, and various things in a document are important and 
useful NLP tasks. They are used in many places such as conducting simple searches, 
processing queries, resolving references, the disambiguation of text, and finding 
the meaning of text. For example, NER is sometimes interested in only finding 
those entities that belong to a single category. Using categories, the search can be 
isolated to those item types. Other NLP tasks use NER such as in POS taggers and in 
performing cross-referencing tasks.

The NER process involves two tasks:

•	 Detection of entities
•	 Classification of entities
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Detection is concerned with finding the position of an entity within text. Once it is 
are located, it is important to determine what type of entity was discovered. After 
these two tasks have been performed, the results can be used to solve other tasks 
such as searching and determining the meaning of the text. For example, identifying 
names from a movie or book review and helping to find other movies or books 
that might be of interest. Extracting location information can assist in providing 
references to nearby services.

Why NER is difficult?
Like many NLP tasks, NER is not always simple. Although the tokenization of 
a text will reveal its components, understanding what they are can be difficult. 
Using proper nouns will not always work because of the ambiguity of language. 
For example, Penny and Faith, while valid names, they may also be used for a 
measurement of currency and a belief, respectively. We can also find words such as 
Georgia are used as a name of a country, a state, and a person.

Some phrases can be challenging. The phrase "Metropolitan Convention and Exhibit 
Hall" may contain words that in themselves are valid entities. When the domain is 
well known, a list of entities can be very useful and easy to implement.

NER is typically applied at the sentence level, otherwise a phrase can easily span  
a sentence leading to incorrect identification of an entity. For example, in the 
following sentence:

"Bob went south. Dakota went west."

If we ignored the sentence boundaries, then we could inadvertently find the location 
entity South Dakota.

Specialized text such as URLs, e-mail addresses, and specialized numbers can be 
difficult to isolate. This identification is made even more difficult if we have to take 
into account variations of the entity form. For example, are parentheses used with 
phone numbers? Are dashes, or periods, or some other character used to separate its 
parts? Do we need to consider international phone numbers?

These factors contribute to the need for good NER techniques.
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Techniques for name recognition
There are a number of NER techniques available. Some use regular expressions 
and others are based on a predefined dictionary. Regular expressions have a lot 
of expressive power and can isolate entities. A dictionary of entity names can be 
compared to tokens of text to find matches.

Another common NER approach uses trained models to detect their presence. 
These models are dependent on the type of entity we are looking for and the target 
language. A model that works well for one domain, such as web pages, may not 
work well for a different domain, such as medical journals.

When a model is trained, it uses an annotated block of text, which identifies  
the entities of interest. To measure how well a model has been trained, several 
measures are used:

•	 Precision: It is the percentage of entities found that match exactly the spans 
found in the evaluation data

•	 Recall: It is the percentage of entities defined in the corpus that were found 
in the same location

•	 Performance measure: It is the harmonic mean of precision and recall given 
by F1 = 2 * Precision * Recall / (Recall + Precision)

We will use these measures when we cover the evaluation of models.

NER is also known as entity identification and entity chunking. Chunking is the 
analysis of text to identify its parts such as nouns, verbs, or other components. As 
humans, we tend to chunk a sentence into distinct parts. These parts form a structure 
that we use to determine its meaning. The NER process will create spans of text such 
as "Queen of England". However, there may be other entities within these spans such 
as "England".

Lists and regular expressions
One technique is to use lists of "standard" entities along with regular expressions 
to identify the named entities. Named entities are sometimes referred to as proper 
nouns. The standard entities list could be a list of states, common names, months, or 
frequently referenced locations. Gazetteers, which are lists that contain geographical 
information used with maps, provide a source of location-related entities. However, 
maintaining such lists can be time consuming. They can also be specific to language 
and locale. Making changes to the list can be tedious. We will demonstrate this 
approach in the Using the ExactDictionaryChunker class section later in this chapter.
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Regular expressions can be useful in identifying entities. Their powerful syntax 
provides enough flexibility in many situations to accurately isolate the entity of 
interest. However, this flexibility can also make it difficult to understand and 
maintain. We will demonstrate several regular expression approaches in this chapter.

Statistical classifiers
Statistical classifiers determine whether a word is a start of an entity, the 
continuation of an entity, or not an entity at all. Sample text is tagged to isolate 
entities. Once a classifier has been developed, it can be trained on different sets of 
data for different problem domains. The disadvantage of this approach is that it 
requires someone to annotate the sample text, which is a time-consuming process.  
In addition, it is domain dependent.

We will examine several approaches to perform NER. First, we will start by 
explaining how regular expressions are used to identify entities.

Using regular expressions for NER
Regular expressions can be used to identify entities in a document. We will 
investigate two general approaches:

•	 The first one uses regular expressions as supported by Java. These can be 
useful in situations where the entities are relatively simple and consistent in 
their form.

•	 The second approach uses classes designed to specifically use regular 
expressions. To demonstrate this, we will use LingPipe's RegExChunker class.

When working with regular expressions, it is advantageous to avoid reinventing 
the wheel. There are many sources for predefined and tested expressions. One such 
library can be found at http://regexlib.com/Default.aspx. We will use several 
of the regular expressions in this library for our examples.

To test how well these approaches work, we will use the following text for most of 
our examples:

private static String regularExpressionText
    = "He left his email address (rgb@colorworks.com) and his "
    + "phone number,800-555-1234. We believe his current address "
    + "is 100 Washington Place, Seattle, CO 12345-1234. I "
    + "understand you can also call at 123-555-1234 between "
    + "8:00 AM and 4:30 most days. His URL is http://example.com "
    + "and he was born on February 25, 1954 or 2/25/1954.";

http://regexlib.com/Default.aspx
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Using Java's regular expressions to  
find entities
To demonstrate how these expressions can be used, we will start with several  
simple examples. The initial example starts with the following declaration. It is a 
simple expression designed to identify certain types of phone numbers:

String phoneNumberRE = "\\d{3}-\\d{3}-\\d{4}";

We will use the following code to test our simple expressions. The Pattern  
class' compile method takes a regular expression and compiles it into a Pattern 
object. Its matcher method can then be executed against the target text, which 
returns a Matcher object. This object allows us to repeatedly identify regular 
expression matches:

Pattern pattern = Pattern.compile(phoneNumberRE);
Matcher matcher = pattern.matcher(regularExpressionText);
while (matcher.find()) {
    System.out.println(matcher.group() + " [" + matcher.start()
        + ":" + matcher.end() + "]");
}

The find method will return true when a match occurs. Its group method returns 
the text that matches the expression. Its start and end methods give us the position 
of the matched text in the target text.

When executed, we will get the following output:

800-555-1234 [68:80]

123-555-1234 [196:208]

A number of other regular expressions can be used in a similar manner. These are 
listed in the following table. The third column is the output produced when the 
corresponding regular expression is used in the previous code sequence:

Entity 
type

Regular expression Output

URL \\b(https?|ftp|file|ldap)://
[-A-Za-z0-9+&@#/%?=~_|!:,.;]*[-A-
Za-z0-9+&@#/%=~_|]

http://example.
com [256:274]

ZIP code [0-9]{5}(\\-?[0-9]{4})? 12345-1234 
[150:160]

E-mail [a-zA-Z0-9'._%+-]+@(?:[a-zA-Z0-9-
]+\\.)+[a-zA-Z]{2,4}

rgb@colorworks.
com [27:45]
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Entity 
type

Regular expression Output

Time (([0-1]?[0-9])|([2][0-3])):([0-
5]?[0-9])(:([0-5]?[0-9]))?

8:00 [217:221]

4:30 [229:233]

Date ((0?[13578]|10|12)(-|\\/)
(([1-9])|(0[1-9])|([12])
([0-9]?)|(3[01]?))(-|\\/)
((19)([2-9])(\\d{1})|(20)
([01])(\\d{1})|([8901])
(\\d{1}))|(0?[2469]|11)(-|\\/)
(([1-9])|(0[1-9])|([12])([0-
9]?)|(3[0]?))(-|\\/)((19)
([2-9])(\\d{1})|(20)([01])
(\\d{1})|([8901])(\\d{1})))

2/25/1954 
[315:324]

There are many other regular expressions that we could have used. However,  
these examples illustrate the basic technique. As demonstrated with the date  
regular expression, some of these can be quite complex.

It is common for regular expressions to miss some entities and to falsely  
report other non-entities as entities. For example, if we replace the text with  
the following expression:

regularExpressionText = 
    "(888)555-1111 888-SEL-HIGH 888-555-2222-J88-W3S";

Executing the code will return this:

888-555-2222 [27:39]

It missed the first two phone numbers and falsely reported the "part number"  
as a phone number.

We can also search for more than one regular expression at a time using  
the | operator. In the following statement, three regular expressions are combined 
using this operator. They are declared using the corresponding entries in the 
previous table:

Pattern pattern = Pattern.compile(phoneNumberRE + "|" 
    + timeRE + "|" + emailRegEx);
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When executed using the original regularExpressionText text defined at the 
beginning of the previous section, we get the following output:

rgb@colorworks.com [27:45]

800-555-1234 [68:80]

123-555-1234 [196:208]

8:00 [217:221]

4:30 [229:233]

Using LingPipe's RegExChunker class
The RegExChunker class uses chunks to find entities in text. The class uses a regular 
expression to represent an entity. Its chunk method returns a Chunking object that 
can be used as we did in our earlier examples.

The RegExChunker class' constructor takes three arguments:

•	 String: This is a regular expression
•	 String: This is a type of entity or category
•	 double: A value for score

We will demonstrate this class using a regular expression representing time as shown 
in the next example. The regular expression is the same as used in Using Java's regular 
expressions to find entities earlier in this chapter. The Chunker instance is then created:

String timeRE = 
   "(([0-1]?[0-9])|([2][0-3])):([0-5]?[0-9])(:([0-5]?[0-9]))?";
       Chunker chunker = new RegExChunker(timeRE,"time",1.0);

The chunk method is used along with the displayChunkSet method, as shown here:

Chunking chunking = chunker.chunk(regularExpressionText);
Set<Chunk> chunkSet = chunking.chunkSet();
displayChunkSet(chunker, regularExpressionText);

The displayChunkSet method is shown in the following code segment.  
The chunkSet method returns a Set collection of Chunk instances. We can use 
various methods to display specific parts of the chunk:

public void displayChunkSet(Chunker chunker, String text) {
    Chunking chunking = chunker.chunk(text);
    Set<Chunk> set = chunking.chunkSet();
    for (Chunk chunk : set) {
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        System.out.println("Type: " + chunk.type() + " Entity: ["
             + text.substring(chunk.start(), chunk.end())
             + "] Score: " + chunk.score());
    }
}

The output is as follows:

Type: time Entity: [8:00] Score: 1.0

Type: time Entity: [4:30] Score: 1.0+95

Alternately, we can declare a simple class to encapsulate the regular expression, 
which lends itself for reuse in other situations. Next, the TimeRegexChunker class is 
declared and it supports the identification of time entities:

public class TimeRegexChunker extends RegExChunker {
    private final static String TIME_RE = 
      "(([0-1]?[0-9])|([2][0-3])):([0-5]?[0-9])(:([0-5]?[0-9]))?";
    private final static String CHUNK_TYPE = "time";
    private final static double CHUNK_SCORE = 1.0;
    
    public TimeRegexChunker() {
        super(TIME_RE,CHUNK_TYPE,CHUNK_SCORE);
    }
}

To use this class, replace this section's initial declaration of chunker with the 
following declaration:

Chunker chunker = new TimeRegexChunker();

The output will be the same as before.

Using NLP APIs
We will demonstrate the NER process using OpenNLP, Stanford API, and LingPipe. 
Each of these provide alternate techniques that can often do a good job of identifying 
entities in the text. The following declaration will serve as the sample text to 
demonstrate the APIs:

String sentences[] = {"Joe was the last person to see Fred. ",
  "He saw him in Boston at McKenzie's pub at 3:00 where he "
  + " paid $2.45 for an ale. ",
  "Joe wanted to go to Vermont for the day to visit a cousin who "
  + "works at IBM, but Sally and he had to look for Fred"};
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Using OpenNLP for NER
We will demonstrate the use of the TokenNameFinderModel class to perform NLP 
using the OpenNLP API. Additionally, we will demonstrate how to determine the 
probability that the entity identified is correct.

The general approach is to convert the text into a series of tokenized sentences,  
create an instance of the TokenNameFinderModel class using an appropriate model, 
and then use the find method to identify the entities in the text.

The following example demonstrates the use of the TokenNameFinderModel  
class. We will use a simple sentence initially and then use multiple sentences.  
The sentence is defined here:

String sentence = "He was the last person to see Fred.";

We will use the models found in the en-token.bin and en-ner-person.bin files 
for the tokenizer and name finder models, respectively. The InputStream object  
for these files is opened using a try-with-resources block, as shown here:

try (InputStream tokenStream = new FileInputStream(
        new File(getModelDir(), "en-token.bin"));
        InputStream modelStream = new FileInputStream(
            new File(getModelDir(), "en-ner-person.bin"));) {
    ...

} catch (Exception ex) {
    // Handle exceptions
}

Within the try block, the TokenizerModel and Tokenizer objects are created:

    TokenizerModel tokenModel = new TokenizerModel(tokenStream);
    Tokenizer tokenizer = new TokenizerME(tokenModel);

Next, an instance of the NameFinderME class is created using the person model:

TokenNameFinderModel entityModel = 
    new TokenNameFinderModel(modelStream);
NameFinderME nameFinder = new NameFinderME(entityModel);

We can now use the tokenize method to tokenize the text and the find method to 
identify the person in the text. The find method will use the tokenized String array 
as input and return an array of Span objects, as shown:

String tokens[] = tokenizer.tokenize(sentence);
Span nameSpans[] = nameFinder.find(tokens);
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We discussed the Span class in Chapter 3, Finding Sentences. As you may remember, 
this class holds positional information about the entities found. The actual string 
entities are still in the tokens array:

The following for statement displays the person found in the sentence. Its positional 
information and the person are displayed on separate lines:

for (int i = 0; i < nameSpans.length; i++) {
    System.out.println("Span: " + nameSpans[i].toString());
    System.out.println("Entity: "
        + tokens[nameSpans[i].getStart()]);
}

The output is as follows:

Span: [7..9) person

Entity: Fred

We will often work with multiple sentences. To demonstrate this, we will use the 
previously defined sentences string array. The previous for statement is replaced 
with the following sequence. The tokenize method is invoked against each sentence 
and then the entity information is displayed as earlier:

for (String sentence : sentences) {
    String tokens[] = tokenizer.tokenize(sentence);
    Span nameSpans[] = nameFinder.find(tokens);
    for (int i = 0; i < nameSpans.length; i++) {
        System.out.println("Span: " + nameSpans[i].toString());
        System.out.println("Entity: " 
            + tokens[nameSpans[i].getStart()]);
    }
    System.out.println();
}

The output is as follows. There is an extra blank line between the two people 
detected because the second sentence did not contain a person:

Span: [0..1) person

Entity: Joe

Span: [7..9) person

Entity: Fred

Span: [0..1) person
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Entity: Joe

Span: [19..20) person

Entity: Sally

Span: [26..27) person

Entity: Fred

Determining the accuracy of the entity
When the TokenNameFinderModel identifies entities in text, it computes a 
probability for that entity. We can access this information using the probs method  
as shown in the following line of code. This method returns an array of doubles, 
which corresponds to the elements of the nameSpans array:

double[] spanProbs = nameFinder.probs(nameSpans);

Add this statement to the previous example immediately after the use of the find 
method. Then add the next statement at the end of the nested for statement:

System.out.println("Probability: " + spanProbs[i]);

When the example is executed, you will get the following output. The probability 
fields reflect the confidence level of the entity assignment. For the first entity,  
the model is 80.529 percent confident that "Joe" is a person:

Span: [0..1) person

Entity: Joe

Probability: 0.8052914774025202

Span: [7..9) person

Entity: Fred

Probability: 0.9042160889302772

Span: [0..1) person

Entity: Joe

Probability: 0.9620970782763985

Span: [19..20) person

Entity: Sally

Probability: 0.964568603518126

Span: [26..27) person

Entity: Fred

Probability: 0.990383039618594
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Using other entity types
OpenNLP supports different libraries as listed in the following table. These models 
can be downloaded from http://opennlp.sourceforge.net/models-1.5/.  
The prefix, en, specifies English as the language and ner indicates that the  
model is for NER.

English finder models Filename
Location name finder model en-ner-location.bin

Money name finder model en-ner-money.bin

Organization name finder model en-ner-organization.bin

Percentage name finder model en-ner-percentage.bin

Person name finder model en-ner-person.bin

Time name finder model en-ner-time.bin

If we modify the statement to use a different model file, we can see how they work 
against the sample sentences:

InputStream modelStream = new FileInputStream(
    new File(getModelDir(), "en-ner-time.bin"));) {

When the en-ner-money.bin model is used, the index in the 
tokens array in the earlier code sequence has to be increased by 
one. Otherwise, all that is returned is the dollar sign.

The various outputs are shown in the following table.

Model Output
en-ner-location.bin Span: [4..5) location

Entity: Boston

Probability: 0.8656908776583051 

Span: [5..6) location

Entity: Vermont

Probability: 0.9732488014011262

en-ner-money.bin Span: [14..16) money

Entity: 2.45

Probability: 0.7200919701507937

http://opennlp.sourceforge.net/models-1.5/


Chapter 4

[ 111 ]

Model Output
en-ner-organization.
bin

Span: [16..17) organization

Entity: IBM

Probability: 0.9256970736336729

en-ner-time.bin The model was not able to detect time in 
this text sequence

The model failed to find the time entities in the sample text. This illustrates that the 
model did not have enough confidence that it found any time entities in the text.

Processing multiple entity types
We can also handle multiple entity types at the same time. This involves creating 
instances of the NameFinderME class based on each model within a loop and applying 
the model against each sentence, keeping track of the entities as they are found.

We will illustrate this process with the following example. It requires rewriting  
the previous try block to create the InputStream instance within the block,  
as shown here:

try {
    InputStream tokenStream = new FileInputStream(
        new File(getModelDir(), "en-token.bin"));
    TokenizerModel tokenModel = new TokenizerModel(tokenStream);
    Tokenizer tokenizer = new TokenizerME(tokenModel);
    ...
} catch (Exception ex) {
    // Handle exceptions
}

Within the try block, we will define a string array to hold the names of the model 
files. As shown here, we will use models for people, locations, and organizations:

String modelNames[] = {"en-ner-person.bin", 
    "en-ner-location.bin", "en-ner-organization.bin"};

An ArrayList instance is created to hold the entities as they are discovered:

ArrayList<String> list = new ArrayList();



Finding People and Things

[ 112 ]

A for-each statement is used to load one model at a time and then to create an 
instance of the NameFinderME class:

for(String name : modelNames) {
    TokenNameFinderModel entityModel = new TokenNameFinderModel(
        new FileInputStream(new File(getModelDir(), name)));
    NameFinderME nameFinder = new NameFinderME(entityModel);
    ...
}

Previously, we did not try to identify which sentences the entities were found in.  
This is not hard to do but we need to use a simple for statement instead of a  
for-each statement to keep track of the sentence indexes. This is shown in the following 
example, where the previous example has been modified to use the integer variable 
index to keep the sentences. Otherwise, the code works the same way as earlier:

for (int index = 0; index < sentences.length; index++) {
    String tokens[] = tokenizer.tokenize(sentences[index]);
    Span nameSpans[] = nameFinder.find(tokens);
    for(Span span : nameSpans) {
        list.add("Sentence: " + index
            + " Span: " + span.toString() + " Entity: "
            + tokens[span.getStart()]);
    }
}

The entities discovered are then displayed:

for(String element : list) {
    System.out.println(element);
}

The output is as follows:

Sentence: 0 Span: [0..1) person Entity: Joe

Sentence: 0 Span: [7..9) person Entity: Fred

Sentence: 2 Span: [0..1) person Entity: Joe

Sentence: 2 Span: [19..20) person Entity: Sally

Sentence: 2 Span: [26..27) person Entity: Fred

Sentence: 1 Span: [4..5) location Entity: Boston

Sentence: 2 Span: [5..6) location Entity: Vermont

Sentence: 2 Span: [16..17) organization Entity: IBM
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Using the Stanford API for NER
We will demonstrate the CRFClassifier class as used to perform NER. This class 
implements what is known as a linear chain Conditional Random Field (CRF) 
sequence model.

To demonstrate the use of the CRFClassifier class, we will start with a declaration 
of the classifier file string, as shown here:

String model = getModelDir() + 
    "\\english.conll.4class.distsim.crf.ser.gz";

The classifier is then created using the model:

CRFClassifier<CoreLabel> classifier =
    CRFClassifier.getClassifierNoExceptions(model);

The classify method takes a single string representing the text to be processed.  
To use the sentences text, we need to convert it to a simple string:

String sentence = "";
for (String element : sentences) {
    sentence += element;
}

The classify method is then applied to the text.

List<List<CoreLabel>> entityList = classifier.classify(sentence);

A List instance of List instances of CoreLabel objects is returned. The object 
returned is a list that contains another list. The contained list is a List instance 
of CoreLabel objects. The CoreLabel class represents a word with additional 
information attached to it. The "internal" list contains a list of these words. In the 
outer for-each statement in the following code sequence, the reference variable, 
internalList, represents one sentence of the text. In the inner for-each statement, 
each word in that inner list is displayed. The word method returns the word and the 
get method returns the type of the word.

The words and their types are then displayed:

for (List<CoreLabel> internalList: entityList) {
    for (CoreLabel coreLabel : internalList) {
        String word = coreLabel.word();
        String category = coreLabel.get(
            CoreAnnotations.AnswerAnnotation.class);
        System.out.println(word + ":" + category);
    }
}
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Part of the output follows. It has been truncated because every word is displayed. 
The O represents the "Other" category:

Joe:PERSON

was:O

the:O

last:O

person:O

to:O

see:O

Fred:PERSON

.:O

He:O

...

look:O

for:O

Fred:PERSON

To filter out the words that are not relevant, replace the println statement with the 
following statements. This will eliminate the other categories:

if (!"O".equals(category)) {
    System.out.println(word + ":" + category);
}

The output is simpler now:

Joe:PERSON

Fred:PERSON

Boston:LOCATION

McKenzie:PERSON

Joe:PERSON

Vermont:LOCATION

IBM:ORGANIZATION

Sally:PERSON

Fred:PERSON
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Using LingPipe for NER
We previously demonstrated the use of LingPipe using regular expressions in 
the Using regular expressions for NER section earlier in this chapter. Here, we will 
demonstrate how name entity models and the ExactDictionaryChunker class are 
used to perform NER analysis.

Using LingPipe's name entity models
LingPipe has a few named entity models that we can use with chunking. These files 
consist of a serialized object that can be read from a file and then applied to text. 
These objects implement the Chunker interface. The chunking process results in a 
series of Chunking objects that identify the entities of interest.

A list of the NER models is found in the following table. These models can be 
downloaded from http://alias-i.com/lingpipe/web/models.html:

Genre Corpus File
English News MUC-6 ne-en-news-muc6.

AbstractCharLmRescoringChunker

English Genes GeneTag ne-en-bio-genetag.HmmChunker

English Genomics GENIA ne-en-bio-genia.TokenShapeChunker

We will use the model found in the ne-en-news-muc6.
AbstractCharLmRescoringChunker file to demonstrate how this class is used.  
We start with a try-catch block to deal with exceptions as shown in the following 
example. The file is opened and used with the AbstractExternalizable class'  
static readObject method to create an instance of a Chunker class. This method  
will read in the serialized model:

try {
    File modelFile = new File(getModelDir(), 
        "ne-en-news-muc6.AbstractCharLmRescoringChunker");
     Chunker chunker = (Chunker) 
        AbstractExternalizable.readObject(modelFile);
    ...
} catch (IOException | ClassNotFoundException ex) {
    // Handle exception
}

http://alias-i.com/lingpipe/web/models.html
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The Chunker and Chunking interfaces provide methods that work with a set of 
chunks of text. Its chunk method returns an object that implements the Chunking 
instance. The following sequence displays the chunks found in each sentence of the 
text, as shown here:

for (int i = 0; i < sentences.length; ++i) {
    Chunking chunking = chunker.chunk(sentences[i]);
    System.out.println("Chunking=" + chunking);
}

The output of this sequence is as follows:

Chunking=Joe was the last person to see Fred.  : [0-3:PERSON@-Infinity, 
31-35:ORGANIZATION@-Infinity]

Chunking=He saw him in Boston at McKenzie's pub at 3:00 where he paid 
$2.45 for an ale.  : [14-20:LOCATION@-Infinity, 24-32:PERSON@-Infinity]

Chunking=Joe wanted to go to Vermont for the day to visit a cousin who 
works at IBM, but Sally and he had to look for Fred : [0-3:PERSON@-
Infinity, 20-27:ORGANIZATION@-Infinity, 71-74:ORGANIZATION@-Infinity, 
109-113:ORGANIZATION@-Infinity]

Instead, we can use methods of the Chunk class to extract specific pieces of 
information as illustrated here. We will replace the previous for statement with the 
following for-each statement. This calls a displayChunkSet method developed in 
the Using LingPipe's RegExChunker class section earlier in this chapter:

for (String sentence : sentences) {
    displayChunkSet(chunker, sentence);
}

The output that follows shows the result. However, it does not always match the 
entity type correctly.

Type: PERSON Entity: [Joe] Score: -Infinity

Type: ORGANIZATION Entity: [Fred] Score: -Infinity

Type: LOCATION Entity: [Boston] Score: -Infinity

Type: PERSON Entity: [McKenzie] Score: -Infinity

Type: PERSON Entity: [Joe] Score: -Infinity

Type: ORGANIZATION Entity: [Vermont] Score: -Infinity

Type: ORGANIZATION Entity: [IBM] Score: -Infinity

Type: ORGANIZATION Entity: [Fred] Score: -Infinity
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Using the ExactDictionaryChunker class
The ExactDictionaryChunker class provides an easy way to create a dictionary 
of entities and their types, which can be used to find them later in text. It uses a 
MapDictionary object to store entries and then the ExactDictionaryChunker class 
is used to extract chunks based on the dictionary.

The AbstractDictionary interface supports basic operations for entities, categories, 
and scores. The score is used in the matching process. The MapDictionary and 
TrieDictionary classes implement the AbstractDictionary interface. The 
TrieDictionary class stores information using a character trie structure. This 
approach uses less memory when it is a concern. We will use the MapDictionary 
class for our example.

To illustrate this approach, we start with a declaration of the MapDictionary class:

private MapDictionary<String> dictionary;

The dictionary will contain the entities that we are interested in finding. We need to 
initialize the model as performed in the following initializeDictionary method. 
The DictionaryEntry constructor used here accepts three arguments:

•	 String: The name of the entity
•	 String: The category of the entity
•	 Double: Represent a score for the entity

The score is used when determining matches. A few entities are declared and added 
to the dictionary.

private static void initializeDictionary() {
    dictionary = new MapDictionary<String>();
    dictionary.addEntry(
        new DictionaryEntry<String>("Joe","PERSON",1.0));
    dictionary.addEntry(
        new DictionaryEntry<String>("Fred","PERSON",1.0));
    dictionary.addEntry(
        new DictionaryEntry<String>("Boston","PLACE",1.0));
    dictionary.addEntry(
        new DictionaryEntry<String>("pub","PLACE",1.0));
    dictionary.addEntry(
        new DictionaryEntry<String>("Vermont","PLACE",1.0));
    dictionary.addEntry(
        new DictionaryEntry<String>("IBM","ORGANIZATION",1.0));
    dictionary.addEntry(
        new DictionaryEntry<String>("Sally","PERSON",1.0));
}
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An ExactDictionaryChunker instance will use this dictionary. The arguments of 
the ExactDictionaryChunker class are detailed here:

•	 Dictionary<String>: It is a dictionary containing the entities
•	 TokenizerFactory: It is a tokenizer used by the chunker
•	 boolean: If it is true, the chunker should return all matches
•	 boolean: If it is true, matches are case sensitive

Matches can be overlapping. For example, in the phrase "The First National Bank", 
the entity "bank" could be used by itself or in conjunction with the rest of the phrase. 
The third parameter determines if all of the matches are returned.

In the following sequence, the dictionary is initialized. We then create an instance of 
the ExactDictionaryChunker class using the Indo-European tokenizer, where we 
return all matches and ignore the case of the tokens:

initializeDictionary();
ExactDictionaryChunker dictionaryChunker
    = new ExactDictionaryChunker(dictionary,
        IndoEuropeanTokenizerFactory.INSTANCE, true, false);

The dictionaryChunker object is used with each sentence, as shown in the 
following code sequence. We will use the displayChunkSet method as developed  
in the Using LingPipe's RegExChunker class section earlier in this chapter:

for (String sentence : sentences) {
    System.out.println("\nTEXT=" + sentence);
    displayChunkSet(dictionaryChunker, sentence);
}

On execution, we get the following output:

TEXT=Joe was the last person to see Fred. 

Type: PERSON Entity: [Joe] Score: 1.0

Type: PERSON Entity: [Fred] Score: 1.0

TEXT=He saw him in Boston at McKenzie's pub at 3:00 where he paid $2.45 
for an ale. 

Type: PLACE Entity: [Boston] Score: 1.0

Type: PLACE Entity: [pub] Score: 1.0
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TEXT=Joe wanted to go to Vermont for the day to visit a cousin who works 
at IBM, but Sally and he had to look for Fred

Type: PERSON Entity: [Joe] Score: 1.0

Type: PLACE Entity: [Vermont] Score: 1.0

Type: ORGANIZATION Entity: [IBM] Score: 1.0

Type: PERSON Entity: [Sally] Score: 1.0

Type: PERSON Entity: [Fred] Score: 1.0

This does a pretty good job but it requires a lot of effort to create the dictionary  
for a large vocabulary.

Training a model
We will use OpenNLP to demonstrate how a model is trained. The training file  
used must:

•	 Contain marks to demarcate the entities
•	 Have one sentence per line

We will use the following model file named en-ner-person.train:

<START:person> Joe <END> was the last person to see <START:person> 
Fred <END>. 
He saw him in Boston at McKenzie's pub at 3:00 where he paid $2.45 for 
an ale. 
<START:person> Joe <END> wanted to go to Vermont for the day to visit 
a cousin who works at IBM, but <START:person> Sally <END> and he had 
to look for <START:person> Fred <END>.

Several methods of this example are capable of throwing exceptions. These 
statements will be placed in a try-with-resource block as shown here, where the 
model's output stream is created:

try (OutputStream modelOutputStream = new BufferedOutputStream(
        new FileOutputStream(new File("modelFile")));) {
    ...
} catch (IOException ex) {
    // Handle exception
}
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Within the block, we create an OutputStream<String> object using the 
PlainTextByLineStream class. This class' constructor takes a FileInputStream 
instance and returns each line as a String object. The en-ner-person.train file 
is used as the input file, as shown here. The UTF-8 string refers to the encoding 
sequence used:

ObjectStream<String> lineStream = new PlainTextByLineStream(
    new FileInputStream("en-ner-person.train"), "UTF-8");

The lineStream object contains streams that are annotated with tags delineating the 
entities in the text. These need to be converted to the NameSample objects so that the 
model can be trained. This conversion is performed by the NameSampleDataStream 
class as shown here. A NameSample object holds the names of the entities found in 
the text:

ObjectStream<NameSample> sampleStream = 
    new NameSampleDataStream(lineStream);

The train method can now be executed as follows:

TokenNameFinderModel model = NameFinderME.train(
    "en", "person",  sampleStream, 
    Collections.<String, Object>emptyMap(), 100, 5);

The arguments of the method are as detailed in the following table:

Parameter Meaning
"en" Language Code
"person" Entity type
sampleStream Sample data
null Resources
100 The number of iterations
5 The cutoff

The model is then serialized to an output file:

model.serialize(modelOutputStream);
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The output of this sequence is as follows. It has been shortened to conserve space. 
Basic information about the model creation is detailed:

Indexing events using cutoff of 5

  Computing event counts...  done. 53 events

  Indexing...  done.

Sorting and merging events... done. Reduced 53 events to 46.

Done indexing.

Incorporating indexed data for training...  

done.

  Number of Event Tokens: 46

      Number of Outcomes: 2

    Number of Predicates: 34

...done.

Computing model parameters ...

Performing 100 iterations.

  1:  ... loglikelihood=-36.73680056967707  0.05660377358490566

  2:  ... loglikelihood=-17.499660626361216  0.9433962264150944

  3:  ... loglikelihood=-13.216835449617108  0.9433962264150944

  4:  ... loglikelihood=-11.461783667999262  0.9433962264150944

  5:  ... loglikelihood=-10.380239416084963  0.9433962264150944

  6:  ... loglikelihood=-9.570622475692486  0.9433962264150944

  7:  ... loglikelihood=-8.919945779143012  0.9433962264150944

...

 99:  ... loglikelihood=-3.513810438211968  0.9622641509433962

100:  ... loglikelihood=-3.507213816708068  0.9622641509433962
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Evaluating a model
The model can be evaluated using the TokenNameFinderEvaluator class.  
The evaluation process uses marked up sample text to perform the evaluation.  
For this simple example, a file called en-ner-person.eval was created that 
contained the following text:

<START:person> Bill <END> went to the farm to see <START:person> Sally 
<END>. 
Unable to find <START:person> Sally <END> he went to town.
There he saw <START:person> Fred <END> who had seen <START:person> 
Sally <END> at the book store with <START:person> Mary <END>.

The following code is used to perform the evaluation. The previous model 
is used as the argument of the TokenNameFinderEvaluator constructor. A 
NameSampleDataStream instance is created based on the evaluation file. The 
TokenNameFinderEvaluator class' evaluate method performs the evaluation:

TokenNameFinderEvaluator evaluator = 
    new TokenNameFinderEvaluator(new NameFinderME(model));    
lineStream = new PlainTextByLineStream(
    new FileInputStream("en-ner-person.eval"), "UTF-8");
sampleStream = new NameSampleDataStream(lineStream);
evaluator.evaluate(sampleStream);

To determine how well the model worked with the evaluation data, the 
getFMeasure method is executed. The results are then displayed:

FMeasure result = evaluator.getFMeasure();
System.out.println(result.toString());

The following output displays the precision, recall, and F-measure. It indicates that 
50 percent of the entities found exactly match the evaluation data. The recall is the 
percentage of entities defined in the corpus that were found in the same location. 
The performance measure is the harmonic mean and is defined as: F1 = 2 * Precision * 
Recall / (Recall + Precision)

Precision: 0.5

Recall: 0.25

F-Measure: 0.3333333333333333

The data and evaluation sets should be much larger to create a better model.  
The intent here was to demonstrate the basic approach used to train and evaluate  
a POS model.
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Summary
NER involves detecting entities and then classifying them. Common categories 
include names, locations, and things. This is an important task that many 
applications use to support searching, resolving references, and finding the  
meaning of the text. The process is frequently used in downstream tasks.

We investigated several techniques for performing NER. Regular expressions is one 
approach that is supported by both core Java classes and NLP APIs. This technique 
is useful for many applications and there are a large number of regular expression 
libraries available.

Dictionary-based approaches are also possible and work well for some applications. 
However, they require considerable effort to populate at times. We used LingPipe's 
MapDictionary class to illustrate this approach.

Trained models can also be used to perform NER. We examined several of these  
and demonstrated how to train a model using the Open NLP NameFinderME class. 
This process was very similar to the earlier training processes.

In the next chapter, we will learn how to detect parts of speech such as nouns, 
adjectives, and prepositions.
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Detecting Part of Speech
Previously, we identified parts of text such as people, places, and things. In this 
chapter, we will investigate the process of finding POS. These are the parts that we 
recognize in English as the grammatical elements, such as nouns and verbs. We will 
find that the context of the word is an important aspect of determining what type of 
word it is.

We will examine the tagging process, which essentially assigns a POS to a tag.  
This process is at the heart of detecting POS. We will briefly discuss why tagging is 
important and then examine the various factors that makes detecting POS difficult. 
Various NLP APIs are then used to illustrate the tagging process. We will also 
demonstrate how to train a model to address specialized text.

The tagging process
Tagging is the process of assigning a description to a token or a portion of text.  
This description is called a tag. POS tagging is the process of assigning a POS  
tag to a token. These tags are normally tags such as noun, verb, and adjective.

For example, consider the following sentence:

"The cow jumped over the moon."

For many of these initial examples, we will illustrate the result of a POS tagger using 
the OpenNLP tagger to be discussed in Using OpenNLP POS taggers, later in this 
chapter. If we use that tagger with the previous example, we will get the following 
results. Notice that the words are followed by a forward slash and then their POS 
tag. These tags will be explained shortly:

The/DT cow/NN jumped/VBD over/IN the/DT moon./NN
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Words can potentially have more than one tag associated with them depending 
on their context. For example, the word "saw" could be a noun or a verb. When a 
word can be classified into different categories, information such as its position, 
words in its vicinity, or similar information are used to probabilistically determine 
the appropriate category. For example, if a word is preceded by a determiner and 
followed by a noun, then tag the word as an adjective.

The general tagging process consists of tokenizing the text, determining possible 
tags, and resolving ambiguous tags. Algorithms are used to perform POS 
identification (tagging). There are two general approaches:

•	 Rule-based: Rule-based taggers uses a set of rules and a dictionary of  
words and possible tags. The rules are used when a word has multiple tags. 
Rules often use the previous and/or following words to select a tag.

•	 Stochastic: Stochastic taggers use is either based on the Markov model or are 
cue-based, which uses either decision trees or maximum entropy. Markov 
models are finite state machines where each state has two probability 
distributions. Its objective is to find the optimal sequence of tags for a 
sentence. Hidden Markov Models (HMM) are also used. In these models, 
the state transitions are not visible.

A maximum entropy tagger uses statistics to determine the POS for a word and often 
uses a corpus to train a model. A corpus is a collection of words marked up with POS 
tags. Corpora exist for a number of languages. These take a lot of effort to develop. 
Frequently used corpora include the Penn Treebank (http://www.cis.upenn.
edu/~treebank/) or Brown Corpus (http://www.essex.ac.uk/linguistics/
external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/
brown.html).

A sample from the Penn Treebank corpus, which illustrates POS markup,  
is as follows:

Well/UH what/WP do/VBP you/PRP think/VB about/IN

the/DT idea/NN of/IN ,/, uh/UH ,/, kids/NNS having/VBG

to/TO do/VB public/JJ service/NN work/NN for/IN a/DT

year/NN ?/.

There are traditionally nine parts of speech in English: noun, verb, article, adjective, 
preposition, pronoun, adverb, conjunction, and interjection. However, a more 
complete analysis often requires additional categories and subcategories. There have 
been as many as 150 different parts of speech identified. In some situations, it may be 
necessary to create new tags. A short list is shown in the following table. 

http://www.cis.upenn.edu/~treebank/
http://www.cis.upenn.edu/~treebank/
http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/brown.html
http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/brown.html
http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/brown.html
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These are the tags we use frequently in this chapter:

Part Meaning
NN Noun, singular or mass
DT Determiner
VB Verb, base form
VBD Verb, past tense
VBZ Verb, third person singular present
IN Preposition or subordinating conjunction
NNP Proper noun, singular
TO to
JJ Adjective

A more comprehensive list is shown in the following table. This list is adapted from 
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_
pos.html. The complete list of The University of Pennsylvania (Penn) Treebank Tag-
set can be found at http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html. 
A set of tags is referred to as a tag set.

Tag Description Tag Description
CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinating 

conjunction
SYM Symbol

JJ Adjective TO to
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNS Noun, plural VBP Verb, non-third person singular 

present

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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Tag Description Tag Description
NNP Proper noun, singular VBZ Verb, third person singular present
NNPS Proper noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

The development of a manual corpus is labor intensive. However, some statistical 
techniques have been developed to create corpora. A number of corpora are 
available. One of the first ones was the Brown Corpus (http://clu.uni.no/icame/
manuals/BROWN/INDEX.HTM). Newer ones include the British National Corpus 
(http://www.natcorp.ox.ac.uk/corpus/index.xml), with over 100 million words, 
and the American National Corpus (http://www.anc.org/). A list of corpora can be 
found at http://en.wikipedia.org/wiki/List_of_text_corpora.

Importance of POS taggers
Proper tagging of a sentence can enhance the quality of downstream processing 
tasks. If we know that "sue" is a verb and not a noun, then this can assist in the 
correct relationship among tokens. Determining the POS, phrases, clauses, and any 
relationship between them is called parsing. This is in contrast to tokenization where 
we are only interested in identifying "word" elements and we are not concerned 
about their meaning.

POS tagging is used for many downstream processes such as question analysis  
and analyzing the sentiment of text. Some social media sites are frequently interested 
in assessing the sentiment of their clients' communication. Text indexing will 
frequently use POS data. Speech processing can use tags to help decide how to 
pronounce words.

What makes POS difficult?
There are many aspects of a language that can make POS tagging difficult. Most 
English words will have two or more tags associated with them. A dictionary is 
not always sufficient to determine a word's POS. For example, the meaning of 
words like "bill" and "force" are dependent on their context. The following sentence 
demonstrates how they can both be used in the same sentence as nouns and verbs.

"Bill used the force to force the manger to tear the bill in two."

http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
http://www.natcorp.ox.ac.uk/corpus/index.xml
http://www.anc.org/
http://en.wikipedia.org/wiki/List_of_text_corpora
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Using the OpenNLP tagger with this sentence produces the following output:

Bill/NNP used/VBD the/DT force/NN to/TO force/VB the/DT manger/NN to/TO 
tear/VB the/DT bill/NN in/IN two./PRP$

The use of textese, a combination of different forms of text including abbreviations, 
hashtags, emoticons, and slang, in communications mediums such as tweets and 
text makes it more difficult to tag sentences. For example, the following message is 
difficult to tag:

"AFAIK she H8 cth! BTW had a GR8 tym at the party BBIAM."

Its equivalent is:

"As far as I know, she hates cleaning the house! By the way, had a great time at the 
party. Be back in a minute."

Using the OpenNLP tagger, we will get the following output:

AFAIK/NNS she/PRP H8/CD cth!/.

BTW/NNP had/VBD a/DT GR8/CD tym/NN at/IN the/DT party/NN BBIAM./.

In the Using the MaxentTagger class to tag textese section later in this chapter, we will 
provide a demonstration of how LingPipe can handle textese. A short list of textese is 
given in the following table:

Phrase Textese Phrase Textese
As far as I know AFAIK By the way BTW
Away from keyboard AFK You're on your own YOYO
Thanks THNX or THX As soon as possible ASAP
Today 2day What do you mean by that WDYMBT
Before B4 Be back in a minute BBIAM
See you C U Can't CNT
Haha hh Later l8R
Laughing out loud LOL On the other hand OTOH
Rolling on the floor 
laughing 

ROFL or 
ROTFL

I don't know IDK

Great GR8 Cleaning the house CTH
At the moment ATM In my humble opinion IMHO
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Although there are several list of textese, a large list can be found at  
http://www.ukrainecalling.com/textspeak.aspx.

Tokenization is an important step in the POS tagging process. If the tokens are 
not split properly, we can get erroneous results. There are several other potential 
problems including:

•	 If we use lowercase, then words such as "sam" can be confused with the 
person or for the System for Award Management (www.sam.gov)

•	 We have to take into account contractions such as "can't" and recognize  
that different characters may be used for the apostrophe

•	 Although phrases such as "vice versa" can be treated as a unit, it has been 
used for a band in England, the title of a novel, and as the title of a magazine

•	 We can't ignore hyphenated words such as "first-cut" and "prime-cut" that 
have meanings different from their individual use

•	 Some words have embedded numbers such as iPhone 5S
•	 Special character sequences such as a URL or e-mail address also need  

to be handled

Some words are found embedded in quotes or parentheses, which can make  
their meaning confusing. Consider the following example:

"Whether "Blue" was correct or not (it's not) is debatable."

"Blue" could refer to the color blue or conceivably the nickname of a person.  
The output of the tagger for this sentence is as follows:

Whether/IN "Blue"/NNP was/VBD correct/JJ or/CC not/RB (it's/JJ not)/NN 
is/VBZ debatable/VBG

Using the NLP APIs
We will demonstrate POS tagging using OpenNLP, Stanford API, and LingPipe. 
Each of the examples will use the following sentence. It is the first sentence of  
Chapter 5, At A Venture of Twenty Thousands Leagues Under the Sea by Jules Verne:

private String[] sentence = {"The", "voyage", "of", "the", 
    "Abraham", "Lincoln", "was", "for", "a", "long", "time", "marked", 
    "by", "no", "special", "incident."};

http://www.ukrainecalling.com/textspeak.aspx
www.sam.gov
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The text to be processed may not always be defined in this fashion. Sometimes the 
sentence will be available as a single string:

String theSentence = "The voyage of the Abraham Lincoln was for a " 
    + "long time marked by no special incident.";

We might need to convert a string to an array of strings. There are numerous 
techniques for converting this string to an array of words. The following 
tokenizeSentence method performs this operation:

public String[] tokenizeSentence(String sentence) {
    String words[] = sentence.split("S+");
    return words;
}

The following code demonstrates the use of this method:

String words[] = tokenizeSentence(theSentence);
for(String word : words) {
    System.out.print(word + " "); 
}
System.out.println();

The output is as follows:

The voyage of the Abraham Lincoln was for a long time marked by no 
special incident.

Alternately, we could use a tokenizer such as OpenNLP's WhitespaceTokenizer 
class, as shown here:

String words[] =  
    WhitespaceTokenizer.INSTANCE.tokenize(sentence);

Using OpenNLP POS taggers
OpenNLP provides several classes in support of POS tagging. We will demonstrate 
how to use the POSTaggerME class to perform basic tagging and the ChunkerME class 
to perform chunking. Chunking involves grouping related words according to their 
types. This can provide additional insight into the structure of a sentence. We will 
also examine the creation and use of a POSDictionary instance.
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Using the OpenNLP POSTaggerME class for POS 
taggers
The OpenNLP POSTaggerME class uses maximum entropy to process the tags.  
The tagger determines the type of tag based on the word itself and the word's 
context. Any given word may have multiple tags associated with it. The tagger  
uses a probability model to determine the specific tag to be assigned.

POS models are loaded from a file. The en-pos-maxent.bin model is used 
frequently and is based on the Penn TreeBank tag set. Various pretrained POS 
models for OpenNLP can be found at http://opennlp.sourceforge.net/
models-1.5/.

We start with a try-catch block to handle any IOException that might be generated 
when loading a model, as shown here.

We use the en-pos-maxent.bin file for the model:

try (InputStream modelIn = new FileInputStream(
    new File(getModelDir(), "en-pos-maxent.bin"));) {
    …
}
catch (IOException e) {
    // Handle exceptions
}

Next, create the POSModel and POSTaggerME instances as shown here:

POSModel model = new POSModel(modelIn);
POSTaggerME tagger = new POSTaggerME(model);

The tag method can now be applied to the tagger using the text to be processed  
as its argument:

String tags[] = tagger.tag(sentence);

The words and their tags are then displayed as shown here:

for (int i = 0; i<sentence.length; i++) {
    System.out.print(sentence[i] + "/" + tags[i] + " ");
}

The output is as follows. Each word is followed by its type:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT 
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident./NN

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
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With any sentence, there may be more than one possible assignment of tags to 
words. The topKSequences method will return a set of sequences based on their 
probability of being correct. In the next code sequence, the topKSequences method  
is executed using the sentence variable and then displayed:

Sequence topSequences[] = tagger.topKSequences(sentence);
for (inti = 0; i<topSequences.length; i++) {
    System.out.println(topSequences[i]);
}

Its output follows in which the first number represents a weighted score and the  
tags within the brackets are the sequence of tags scored:

-0.5563571615737618 [DT, NN, IN, DT, NNP, NNP, VBD, IN, DT, JJ, NN, VBN, 
IN, DT, JJ, NN]

-2.9886144610050907 [DT, NN, IN, DT, NNP, NNP, VBD, IN, DT, JJ, NN, VBN, 
IN, DT, JJ, .]

-3.771930515521527 [DT, NN, IN, DT, NNP, NNP, VBD, IN, DT, JJ, NN, VBN, 
IN, DT, NN, NN]

Ensure that you include the correct Sequence class. For this example,  
use import opennlp.tools.util.Sequence;

The Sequence class has several methods, as detailed in the following table:

Method Meaning
getOutcomes Returns a list of strings representing the tags for the sentence
getProbs Returns an array of double variables representing the probability 

for each tag in the sequence
getScore Returns a weighted value for the sequence

In the following sequence, we use several of these methods to demonstrate what they 
do. For each sequence, the tags and their probability are displayed, separated by a 
forward slash:

for (int i = 0; i<topSequences.length; i++) {
    List<String> outcomes = topSequences[i].getOutcomes();
    double probabilities[] = topSequences[i].getProbs();
    for (int j = 0; j <outcomes.size(); j++) { 
        System.out.printf("%s/%5.3f ",outcomes.get(j),
        probabilities[j]);
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    }
    System.out.println();
}
System.out.println();

The output is as follows. Each pair of lines represents one sequence where the output 
has been wrapped:

DT/0.992 NN/0.990 IN/0.989 DT/0.990 NNP/0.996 NNP/0.991 VBD/0.994 
IN/0.996 DT/0.996 JJ/0.991 NN/0.994 VBN/0.860 IN/0.985 DT/0.960 JJ/0.919 
NN/0.832 

DT/0.992 NN/0.990 IN/0.989 DT/0.990 NNP/0.996 NNP/0.991 VBD/0.994 
IN/0.996 DT/0.996 JJ/0.991 NN/0.994 VBN/0.860 IN/0.985 DT/0.960 JJ/0.919 
./0.073 

DT/0.992 NN/0.990 IN/0.989 DT/0.990 NNP/0.996 NNP/0.991 VBD/0.994 
IN/0.996 DT/0.996 JJ/0.991 NN/0.994 VBN/0.860 IN/0.985 DT/0.960 NN/0.073 
NN/0.419

Using OpenNLP chunking
The process of chunking involves breaking a sentence into parts or chunks. These 
chunks can then be annotated with tags. We will use the ChunkerME class to illustrate 
how this is accomplished. This class uses a model loaded into a ChunkerModel 
instance. The ChunkerME class' chunk method performs the actual chunking process. 
We will also examine the use of the chunkAsSpans method to return information 
about the span of these chunks. This allows us to see how long a chunk is and what 
elements make up the chunk.

We will use the en-pos-maxent.bin file to create a model for the POSTaggerME 
instance. We need to use this instance to tag the text as we did in the Using OpenNLP 
POSTaggerME class for POS taggers section earlier in this chapter. We will also use 
the en-chunker.bin file to create a ChunkerModel instance to be used with the 
ChunkerME instance.

These models are created using input streams, as shown in the following example.

We use a try-with-resources block to open and close files and to deal with any 
exceptions that may be thrown:

try (
        InputStream posModelStream = new FileInputStream(
            getModelDir() + "\\en-pos-maxent.bin");
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        InputStream chunkerStream = new FileInputStream(
            getModelDir() + "\\en-chunker.bin");) {
    …
} catch (IOException ex) {
    // Handle exceptions
}

The following code sequence creates and uses a tagger to find the POS of the 
sentence. The sentence and its tags are then displayed:

POSModel model = new POSModel(posModelStream);
POSTaggerME tagger = new POSTaggerME(model);

String tags[] = tagger.tag(sentence);
for(int i=0; i<tags.length; i++) {
    System.out.print(sentence[i] + "/" + tags[i] + " ");
}
System.out.println();

The output is as follows. We have shown this output so that it will be clear how the 
chunker works:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT 
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident./NN

A ChunkerModel instance is created using the input stream. From this, the 
ChunkerME instance is created followed by the use of the chunk method as shown 
here. The chunk method will use the sentence's token and its tags to create an array 
of strings. Each string will hold information about the token and its chunk:

ChunkerModel chunkerModel = new  
    ChunkerModel(chunkerStream);
ChunkerME chunkerME = new ChunkerME(chunkerModel);
String result[] = chunkerME.chunk(sentence, tags);

Each token in the results array and its chunk tag are displayed as shown here:

for (int i = 0; i < result.length; i++) {
    System.out.println("[" + sentence[i] + "] " + result[i]);
}
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The output is as follows. The token is enclosed in brackets followed by the chunk tag. 
These tags are explained in the following table:

First Part
B Beginning of a tag
I Continuation of a tag
E End of a tag (will not appear if tag is one word long)
Second Part
NP Noun chunk
VB Verb chunk

Multiple words are grouped together such as "The voyage" and  
"the Abraham Lincoln".

[The] B-NP

[voyage] I-NP

[of] B-PP

[the] B-NP

[Abraham] I-NP

[Lincoln] I-NP

[was] B-VP

[for] B-PP

[a] B-NP

[long] I-NP

[time] I-NP

[marked] B-VP

[by] B-PP

[no] B-NP

[special] I-NP

[incident.] I-NP

If we are interested in getting more detailed information about the chunks, we can 
use the ChunkerME class' chunkAsSpans method. This method returns an array of 
Span objects. Each object represents one span found in the text.
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There are several other ChunkerME class methods available. Here, we will illustrate 
the use of the getType, getStart, and getEnd methods. The getType method 
returns the second part of the chunk tag, and the getStart and getEnd methods 
return the beginning and ending index of the tokens, respectively, in the original 
sentence array. The length method returns the length of the span in number  
of tokens.

In the following sequence, the chunkAsSpans method is executed using the 
sentence and tags arrays. The spans array is then displayed. The outer for  
loop processes one Span object at a time displaying the basic span information.  
The inner for loop displays the spanned text enclosed within brackets:

Span[] spans = chunkerME.chunkAsSpans(sentence, tags);
for (Span span : spans) {
    System.out.print("Type: " + span.getType() + " - " 
        + " Begin: " + span.getStart() 
        + " End:" + span.getEnd()
        + " Length: " + span.length() + "  [");
    for (int j = span.getStart(); j < span.getEnd(); j++) {
        System.out.print(sentence[j] + " ");
    }
    System.out.println("]");
}

The following output clearly shows the span type, its position in the sentence array, 
its length, and then the actual spanned text:

Type: NP -  Begin: 0 End:2 Length: 2  [The voyage ]

Type: PP -  Begin: 2 End:3 Length: 1  [of ]

Type: NP -  Begin: 3 End:6 Length: 3  [the Abraham Lincoln ]

Type: VP -  Begin: 6 End:7 Length: 1  [was ]

Type: PP -  Begin: 7 End:8 Length: 1  [for ]

Type: NP -  Begin: 8 End:11 Length: 3  [a long time ]

Type: VP -  Begin: 11 End:12 Length: 1  [marked ]

Type: PP -  Begin: 12 End:13 Length: 1  [by ]

Type: NP -  Begin: 13 End:16 Length: 3  [no special incident. ]
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Using the POSDictionary class
A tag dictionary specifies what are the valid tags for a word. This can prevent a tag 
from being applied inappropriately to a word. In addition, some search algorithms 
execute faster since they do not have to consider other less probable tags.

In this section, we will demonstrate how to:

•	 Obtain the tag dictionary for a tagger
•	 Determine what tags a word has
•	 Show how to change the tags for a word
•	 Add a new tag dictionary to a new tagger factory

As with the previous example, we will use a try-with-resources block to open our 
input streams for the POS model and then create our model and tagger factory,  
as shown here:

try (InputStream modelIn = new FileInputStream(
        new File(getModelDir(), "en-pos-maxent.bin"));) {
    POSModel model = new POSModel(modelIn);
    POSTaggerFactory posTaggerFactory = model.getFactory();
    …
} catch (IOException e) {
    //Handle exceptions
}

Obtaining the tag dictionary for a tagger
We used the POSModel class' getFactory method to get a POSTaggerFactory 
instance. We will use its getTagDictionary method to obtain its TagDictionary 
instance. This is illustrated here:

MutableTagDictionary tagDictionary = 
  (MutableTagDictionary)posTaggerFactory.getTagDictionary();

The MutableTagDictionary interface extends the TagDictionary interface. 
The TagDictionary interface possesses a getTags method, and the 
MutableTagDictionary interface adds a put method that allows tags to be added to 
the dictionary. These interfaces are implemented by the POSDictionary class.
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Determining a word's tags
To obtain the tags for a given word, use the getTags method. This returns an array 
of tags represented by strings. The tags are then displayed as shown here:

String tags[] = tagDictionary.getTags("force");
for (String tag : tags) {
    System.out.print("/" + tag);
}
System.out.println();

The output is as follows:

/NN/VBP/VB

This means that the word "force" can be interpreted in three different ways.

Changing a word's tags
The MutableTagDictionary interface's put method allows us to add tags to a word. 
The method has two arguments: the word, and its new tags. The method returns an 
array containing the previous tags.

In the following example, we replace the old tags with a new tag. The old tags are 
then displayed.

String oldTags[] = tagDictionary.put("force", "newTag");
for (String tag : oldTags) {
    System.out.print("/" + tag);
}
System.out.println();

The following output lists the old tags for the word.

/NN/VBP/VB

These tags have been replaced by the new tag as demonstrated here where the 
current tags are displayed:

tags = tagDictionary.getTags("force");
for (String tag : tags) {
    System.out.print("/" + tag);
}
System.out.println();
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All we get is the following:

/newTag

To retain the old tags we will need to create an array of strings to hold the old  
and the new tags and then use the array as the second argument of the put  
method as shown here:

String newTags[] = new String[tags.length+1];
for (int i=0; i<tags.length; i++) {
    newTags[i] = tags[i];
}
newTags[tags.length] = "newTag";
oldTags = tagDictionary.put("force", newTags);

If we redisplay the current tags as shown here, we can see that the old tags have  
been retained and the new one added:

/NN/VBP/VB/newTag

When adding tags, be careful and assign the tags in the proper 
order as it will influence which tag is assigned.

Adding a new tag dictionary
A new tag dictionary can be added to a POSTaggerFactory instance. We will 
illustrate this process by creating a new POSTaggerFactory and then adding the 
tagDictionary we developed earlier. First, we create a new factory using the 
default constructor as shown next. This is followed by calling the setTagDictionary 
method against the new factory.

POSTaggerFactory newFactory = new POSTaggerFactory();
newFactory.setTagDictionary(tagDictionary);

To confirm that the tag dictionary has been added, we display the tags for the word 
"force" as shown here:

tags = newFactory.getTagDictionary().getTags("force");
for (String tag : tags) {
    System.out.print("/" + tag);
}
System.out.println();

The tags are the same as shown here:

/NN/VBP/VB/newTag
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Creating a dictionary from a file
If we need to create a new dictionary, then one approach is to create an XML  
file containing all of the words and their tags, and then create the dictionary  
from the file. OpenNLP supports this approach with the POSDictionary class' 
create method.

The XML file consists of the dictionary root element followed by a series of entry 
elements. The entry element uses the tags attribute to specify the tags for the 
word. The word is contained within the entry element as a token element. A 
simple example using two words stored in the file dictionary.txt is as follows:

<dictionary case_sensitive="false">
    <entry tags="JJ VB">
        <token>strong</token>
    </entry>
    <entry tags="NN VBP VB">
        <token>force</token>
    </entry>
</dictionary>

To create the dictionary, we use the create method based on an input stream as 
shown here:

try (InputStream dictionaryIn = 
      new FileInputStream(new File("dictionary.txt"));) {
    POSDictionary dictionary =  
    POSDictionary.create(dictionaryIn);
    …
} catch (IOException e) {
    // Handle exceptions
}

The POSDictionary class has an iterator method that returns an iterator object. 
Its next method returns a string for each word in the dictionary. We can use these 
methods to display the contents of the dictionary, as shown here:

Iterator<String> iterator = dictionary.iterator();
while (iterator.hasNext()) {
    String entry = iterator.next();
    String tags[] = dictionary.getTags(entry);
    System.out.print(entry + " ");
    for (String tag : tags) {
        System.out.print("/" + tag);
    }
    System.out.println();
}
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The output that follows displays what we can expect:

strong /JJ/VB

force /NN/VBP/VB

Using Stanford POS taggers
In this section, we will examine two different approaches supported by the Stanford 
API to perform tagging. The first technique uses the MaxentTagger class. As its 
name implies, it uses maximum entropy to find the POS. We will also use this class 
to demonstrate a model designed to handle textese-type text. The second approach 
will use the pipeline approach with annotators. The English taggers use the Penn 
Treebank English POS tag set.

Using Stanford MaxentTagger
The MaxentTagger class uses a model to perform the tagging task. There are a 
number of models that come bundled with the API, all with the file extension  
.tagger. They include English, Chinese, Arabic, French, and German models.  
The English models are listed here. The prefix, wsj, refers to models based on the 
Wall Street Journal. The other terms refer to techniques used to train the model. 
These concepts are not covered here:

•	 wsj-0-18-bidirectional-distsim.tagger

•	 wsj-0-18-bidirectional-nodistsim.tagger

•	 wsj-0-18-caseless-left3words-distsim.tagger

•	 wsj-0-18-left3words-distsim.tagger

•	 wsj-0-18-left3words-nodistsim.tagger

•	 english-bidirectional-distsim.tagger

•	 english-caseless-left3words-distsim.tagger

•	 english-left3words-distsim.tagger

The example reads in a series of sentences from a file. Each sentence is then 
processed and various ways of accessing and displaying the words and tags  
are illustrated.

We start with a try-with-resources block to deal with IO exceptions as shown here. 
The wsj-0-18-bidirectional-distsim.tagger file is used to create an instance  
of the MaxentTagger class.



Chapter 5

[ 143 ]

A List instance of List instances of HasWord objects is created using the 
MaxentTagger class' tokenizeText method. The sentences are read in from the file 
sentences.txt.The HasWord interface represents words and contains two methods: 
a setWord and a word method. The latter method returns a word as a string. Each 
sentence is represented by a List instance of HasWord objects:

try {
    MaxentTagger tagger = new MaxentTagger(getModelDir() + 
        "//wsj-0-18-bidirectional-distsim.tagger");
    List<List<HasWord>> sentences = MaxentTagger.tokenizeText(
        new BufferedReader(new FileReader("sentences.txt")));
    …
} catch (FileNotFoundException ex) {
    // Handle exceptions
}

The sentences.txt file contains the first four sentences of Chapter 5, At A Venture of 
the book Twenty Thousands Leagues Under the Sea:

The voyage of the Abraham Lincoln was for a long time marked by no 
special incident.
But one circumstance happened which showed the wonderful dexterity of 
Ned Land, and proved what confidence we might place in him.
The 30th of June, the frigate spoke some American whalers, from whom 
we learned that they knew nothing about the narwhal.
But one of them, the captain of the Monroe, knowing that Ned Land had 
shipped on board the Abraham Lincoln, begged for his help in chasing a 
whale they had in sight.

A loop is added to process each sentence of the sentences list. The tagSentence 
method returns a List instance of TaggedWord objects as shown next. The 
TaggedWord class implements the HasWord interface and adds a tag method that 
returns the tag associated with the word. As shown here, the toString method is 
used to display each sentence:

List<TaggedWord> taggedSentence =  
    tagger.tagSentence(sentence);
for (List<HasWord> sentence : sentences) {
    List<TaggedWord> taggedSentence=  
        tagger.tagSentence(sentence);
    System.out.println(taggedSentence);
}
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The output is as follows:

[The/DT, voyage/NN, of/IN, the/DT, Abraham/NNP, Lincoln/NNP, was/VBD, 
for/IN, a/DT, long/JJ, --- time/NN, marked/VBN, by/IN, no/DT, special/JJ, 
incident/NN, ./.]

 [But/CC, one/CD, circumstance/NN, happened/VBD, which/WDT, showed/VBD, 
the/DT, wonderful/JJ, dexterity/NN, of/IN, Ned/NNP, Land/NNP, ,/,, and/
CC, proved/VBD, what/WP, confidence/NN, we/PRP, might/MD, place/VB, in/
IN, him/PRP, ./.]

[The/DT, 30th/JJ, of/IN, June/NNP, ,/,, the/DT, frigate/NN, spoke/
VBD, some/DT, American/JJ, whalers/NNS, ,/,, from/IN, whom/WP, we/PRP, 
learned/VBD, that/IN, they/PRP, knew/VBD, nothing/NN, about/IN, the/DT, 
narwhal/NN, ./.]

[But/CC, one/CD, of/IN, them/PRP, ,/,, the/DT, captain/NN, of/IN, the/
DT, Monroe/NNP, ,/,, knowing/VBG, that/IN, Ned/NNP, Land/NNP, had/VBD, 
shipped/VBN, on/IN, board/NN, the/DT, Abraham/NNP, Lincoln/NNP, ,/,, 
begged/VBN, for/IN, his/PRP$, help/NN, in/IN, chasing/VBG, a/DT, whale/
NN, they/PRP, had/VBD, in/IN, sight/NN, ./.]

Alternately, we can use the Sentence class' listToString method to convert the 
tagged sentence to a simple String object.

A value of false for its second parameter is used by the toString method of the 
HasWord to create the resulting string, as shown here:

List<TaggedWord> taggedSentence =  
    tagger.tagSentence(sentence);
for (List<HasWord> sentence : sentences) {
    List<TaggedWord> taggedSentence=  
        tagger.tagSentence(sentence);
    System.out.println(Sentence.listToString(taggedSentence, false));
}

This produces a more aesthetically pleasing output:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT 
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident/NN ./.

But/CC one/CD circumstance/NN happened/VBD which/WDT showed/VBD the/DT 
wonderful/JJ dexterity/NN of/IN Ned/NNP Land/NNP ,/, and/CC proved/VBD 
what/WP confidence/NN we/PRP might/MD place/VB in/IN him/PRP ./.

The/DT 30th/JJ of/IN June/NNP ,/, the/DT frigate/NN spoke/VBD some/DT 
American/JJ whalers/NNS ,/, from/IN whom/WP we/PRP learned/VBD that/IN 
they/PRP knew/VBD nothing/NN about/IN the/DT narwhal/NN ./.

But/CC one/CD of/IN them/PRP ,/, the/DT captain/NN of/IN the/DT Monroe/
NNP ,/, knowing/VBG that/IN Ned/NNP Land/NNP had/VBD shipped/VBN on/IN 
board/NN the/DT Abraham/NNP Lincoln/NNP ,/, begged/VBN for/IN his/PRP$ 
help/NN in/IN chasing/VBG a/DT whale/NN they/PRP had/VBD in/IN sight/NN 
./. 



Chapter 5

[ 145 ]

We can use the following code sequence to produce the same results. The word and 
tag methods extract the words and their tags:

List<TaggedWord> taggedSentence =  
    tagger.tagSentence(sentence);
for (TaggedWord taggedWord : taggedSentence) {
    System.out.print(taggedWord.word() + "/" +  
        taggedWord.tag() + " ");
}
System.out.println();

If we are only interested in finding specific occurrences of a given tag, we can use a 
sequence such as the following, which will list only the singular nouns (NN):

List<TaggedWord> taggedSentence =  
    tagger.tagSentence(sentence);
for (TaggedWord taggedWord : taggedSentence) {
    if (taggedWord.tag().startsWith("NN")) {
        System.out.print(taggedWord.word() + " ");
    }
}
System.out.println();

The singular nouns are displayed for each sentence as shown here:

NN Tagged: voyage Abraham Lincoln time incident 

NN Tagged: circumstance dexterity Ned Land confidence 

NN Tagged: June frigate whalers nothing narwhal 

NN Tagged: captain Monroe Ned Land board Abraham Lincoln help whale sight

Using the MaxentTagger class to tag textese
We can use a different model to handle twitter text that may include textese.  
The GATE (https://gate.ac.uk/wiki/twitter-postagger.html) has  
developed a model for twitter text. The model is used here to process textese:

MaxentTagger tagger = new MaxentTagger(getModelDir() 
    + "//gate-EN-twitter.model");

Here, we use the MaxentTagger class' tagString method from the What makes  
POS difficult? section earlier in this chapter to process the textese:

System.out.println(tagger.tagString("AFAIK she H8 cth!"));
System.out.println(tagger.tagString(
    "BTW had a GR8 tym at the party BBIAM."));

https://gate.ac.uk/wiki/twitter-postagger.html
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The output will be as follows:

AFAIK_NNP she_PRP H8_VBP cth!_NN 

BTW_UH had_VBD a_DT GR8_NNP tym_NNP at_IN the_DT party_NN BBIAM._NNP  

Using Stanford pipeline to perform tagging
We have used the Stanford pipeline in several previous examples. In this example, 
we will use the Stanford pipeline to extract POS tags. As with our previous Stanford 
examples, we create a pipeline based on a set of annotators: tokenize, ssplit,  
and pos.

These will tokenize, split the text into sentences, and then find the POS tags:

Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

To process the text, we will use the theSentence variable as input to Annotator.  
The pipeline's annotate method is then invoked as shown here:

Annotation document = new Annotation(theSentence);
pipeline.annotate(document);

Since the pipeline can perform different types of processing, a list of CoreMap objects 
is used to access the words and tags. The Annotation class' get method returns the 
list of sentences, as shown here.

List<CoreMap> sentences =  
    document.get(SentencesAnnotation.class);

The contents of the CoreMap objects can be accessed using its get method.  
The method's argument is the class for the information needed. As shown in the 
following code example, tokens are accessed using the TextAnnotation class,  
and the POS tags can be retrieved using the PartOfSpeechAnnotation class.  
Each word of each sentence and its tags is displayed:

for (CoreMap sentence : sentences) {
    for (CoreLabel token : sentence.get(TokensAnnotation.class)) {
        String word = token.get(TextAnnotation.class);
        String pos = token.get(PartOfSpeechAnnotation.class);
        System.out.print(word + "/" + pos + " ");
    }
    System.out.println();
}
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The output will be as follows:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT 
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident/NN ./.

The pipeline can use additional options to control how the tagger works. For 
example, by default the english-left3words-distsim.tagger tagger model is 
used. We can specify a different model using the pos.model property, as shown 
here. There is also a pos.maxlen property to control the maximum sentence size:

props.put("pos.model",
"C:/.../Models/english-caseless-left3words-distsim.tagger");

Sometimes it is useful to have a tagged document that is XML formatted. The 
StanfordCoreNLP class' xmlPrint method will write out such a document. The 
method's first argument is the annotator to be displayed. Its second argument is 
the OutputStream object to write to. In the following code sequence, the previous 
tagging results are written to standard output. It is enclosed in a try-catch block to 
handle IO exceptions:

try {
    pipeline.xmlPrint(document, System.out);
} catch (IOException ex) {
    // Handle exceptions
}

A partial listing of the results is as follows. Only the first two words and the last 
word are displayed. Each token tag contains the word, its position, and its POS tag:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>

<root>

<document>

<sentences>

<sentence id="1">

<tokens>

<token id="1">

<word>The</word>

<CharacterOffsetBegin>0</CharacterOffsetBegin>

<CharacterOffsetEnd>3</CharacterOffsetEnd>

<POS>DT</POS>

</token>
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<token id="2">

<word>voyage</word>

<CharacterOffsetBegin>4</CharacterOffsetBegin>

<CharacterOffsetEnd>10</CharacterOffsetEnd>

<POS>NN</POS>

</token>

         …

<token id="17">

<word>.</word>

<CharacterOffsetBegin>83</CharacterOffsetBegin>

<CharacterOffsetEnd>84</CharacterOffsetEnd>

<POS>.</POS>

</token>

</tokens>

</sentence>

</sentences>

</document>

</root>

The prettyPrint method works in a similar manner:

pipeline.prettyPrint(document, System.out);

However, the output is not really that pretty, as shown here. The original sentence 
is displayed followed by each word, its position, and its tag. The output has been 
formatted to make it more readable:

The voyage of the Abraham Lincoln was for a long time marked by no 
special incident.

[Text=The CharacterOffsetBegin=0 CharacterOffsetEnd=3 PartOfSpeech=DT] 

[Text=voyage CharacterOffsetBegin=4 CharacterOffsetEnd=10 
PartOfSpeech=NN] 

[Text=of CharacterOffsetBegin=11 CharacterOffsetEnd=13 PartOfSpeech=IN] 

[Text=the CharacterOffsetBegin=14 CharacterOffsetEnd=17 PartOfSpeech=DT] 

[Text=Abraham CharacterOffsetBegin=18 CharacterOffsetEnd=25 
PartOfSpeech=NNP]

 [Text=Lincoln CharacterOffsetBegin=26 CharacterOffsetEnd=33 
PartOfSpeech=NNP]

 [Text=was CharacterOffsetBegin=34 CharacterOffsetEnd=37 
PartOfSpeech=VBD]
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 [Text=for CharacterOffsetBegin=38 CharacterOffsetEnd=41 PartOfSpeech=IN]

 [Text=a CharacterOffsetBegin=42 CharacterOffsetEnd=43 PartOfSpeech=DT]

 [Text=long CharacterOffsetBegin=44 CharacterOffsetEnd=48 
PartOfSpeech=JJ]

 [Text=time CharacterOffsetBegin=49 CharacterOffsetEnd=53 
PartOfSpeech=NN]

 [Text=marked CharacterOffsetBegin=54 CharacterOffsetEnd=60 
PartOfSpeech=VBN]

 [Text=by CharacterOffsetBegin=61 CharacterOffsetEnd=63 PartOfSpeech=IN] 

[Text=no CharacterOffsetBegin=64 CharacterOffsetEnd=66 PartOfSpeech=DT]

 [Text=special CharacterOffsetBegin=67 CharacterOffsetEnd=74 
PartOfSpeech=JJ]

 [Text=incident CharacterOffsetBegin=75 CharacterOffsetEnd=83 
PartOfSpeech=NN]

 [Text=. CharacterOffsetBegin=83 CharacterOffsetEnd=84 PartOfSpeech=.]

Using LingPipe POS taggers
LingPipe uses the Tagger interface to support POS tagging. This interface has a 
single method: tag. It returns a List instance of the Tagging objects. These objects 
are the words and their tags. The interface is implemented by the ChainCrf and 
HmmDecoder classes.

The ChainCrf class uses linear-chain conditional random field decoding and 
estimation for determining tags. The HmmDecoder class uses an HMM to perform 
tagging. We will illustrate this class next.

The HmmDecoder class uses the tag method to determine the most likely (first best) 
tags. It also has a tagNBest method that scores the possible tagging and returns 
an iterator of these scored tagging. There are three POS models that come with the 
LingPipe, which can be downloaded from http://alias-i.com/lingpipe/web/
models.html. These are listed in the following table. For our demonstration, we will 
use the Brown Corpus model:

Model File
English General Text: Brown Corpus pos-en-general-brown.

HiddenMarkovModel

English Biomedical Text: MedPost Corpus pos-en-bio-medpost.
HiddenMarkovModel

English Biomedical Text: GENIA Corpus pos-en-bio-genia.HiddenMarkovModel

http://alias-i.com/lingpipe/web/models.html
http://alias-i.com/lingpipe/web/models.html
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Using the HmmDecoder class with Best_First tags
We start with a try-with-resources block to handle exceptions and the code to  
create the HmmDecoder instance, as shown next.

The model is read from the file and then used as the argument of the  
HmmDecoder constructor:

try (
        FileInputStream inputStream = 
            new FileInputStream(getModelDir()
            + "//pos-en-general-brown.HiddenMarkovModel");
        ObjectInputStream objectStream =
            new ObjectInputStream(inputStream);) {
    HiddenMarkovModel hmm = (HiddenMarkovModel)
        objectStream.readObject();
    HmmDecoder decoder = new HmmDecoder(hmm);
    …
} catch (IOException ex) {
 // Handle exceptions
} catch (ClassNotFoundException ex) {
 // Handle exceptions
};

We will perform tagging on theSentence variable. First, it needs to be tokenized. 
We will use an Indo-European tokenizer as shown here. The tokenizer method 
requires that the text string be converted to an array of chars. The tokenize  
method then returns an array of tokens as strings:

TokenizerFactory TOKENIZER_FACTORY = 
    IndoEuropeanTokenizerFactory.INSTANCE;
char[] charArray = theSentence.toCharArray();
Tokenizer tokenizer = 
    TOKENIZER_FACTORY.tokenizer(
      charArray, 0, charArray.length);
String[] tokens = tokenizer.tokenize();

The actual tagging is performed by the HmmDecoder class' tag method. However, this 
method requires a List instance of String tokens. This list is created using the Arrays 
class' asList method. The Tagging class holds a sequence of tokens and tags:

List<String> tokenList = Arrays.asList(tokens);
Tagging<String> tagString = decoder.tag(tokenList);
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We are now ready to display the tokens and their tags. The following loop uses the 
token and tag methods to access the tokens and tags, respectively, in the Tagging 
object. They are then displayed:

for (int i = 0; i < tagString.size(); ++i) {
    System.out.print(tagString.token(i) + "/" 
    + tagString.tag(i) + " ");
}

The output is as follows:

The/at voyage/nn of/in the/at Abraham/np Lincoln/np was/bedz for/in a/at 
long/jj time/nn marked/vbn by/in no/at special/jj incident/nn ./. 

Using the HmmDecoder class with NBest tags
The tagging process considers multiple combinations of tags. The HmmDecoder class' 
tagNBest method returns an iterator of the ScoredTagging objects that reflect 
the confidence of different orders. This method takes a token list and a number 
specifying the maximum number of results desired.

The previous sentence is not ambiguous enough to demonstrate the combination of 
tags. Instead, we will use the following sentence:

String[] sentence = {"Bill", "used", "the", "force",  
    "to", "force", "the", "manager", "to", 
    "tear", "the", "bill","in", "to."};
List<String> tokenList = Arrays.asList(sentence);

The example using this method is shown here starting with declarations for the 
number of results:

int maxResults = 5;

Using the decoder object created in the previous section, we apply the tagNBest 
method to it as follows:

Iterator<ScoredTagging<String>> iterator = 
    decoder.tagNBest(tokenList, maxResults);

The iterator will allows us to access each of the five different scores.  
The ScoredTagging class possesses a score method that returns a value  
reflecting how well it believes it performs. In the following code sequence,  
a printf statement displays this score. This is followed by a loop where the  
token and its tag are displayed. 
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The result is a score followed by the word sequence with the tag attached:

while (iterator.hasNext()) {
    ScoredTagging<String> scoredTagging = iterator.next();
    System.out.printf("Score: %7.3f   Sequence: ",  
       scoredTagging.score());
    for (int i = 0; i < tokenList.size(); ++i) {
        System.out.print(scoredTagging.token(i) + "/" 
            + scoredTagging.tag(i) + " ");
    }
    System.out.println();
}

The output is as follows. Notice that the word "force" can have a tag of  
nn, jj, or vb:

Score: -148.796   Sequence: Bill/np used/vbd the/at force/nn to/to force/
vb the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn 

Score: -154.434   Sequence: Bill/np used/vbn the/at force/nn to/to force/
vb the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn 

Score: -154.781   Sequence: Bill/np used/vbd the/at force/nn to/in force/
nn the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn 

Score: -157.126   Sequence: Bill/np used/vbd the/at force/nn to/to force/
vb the/at manager/jj to/to tear/vb the/at bill/nn in/in two./nn 

Score: -157.340   Sequence: Bill/np used/vbd the/at force/jj to/to force/
vb the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn

Determining tag confidence with the  
HmmDecoder class
Statistical analysis can be performed using a lattice structure, which is useful for 
analyzing alternative word orderings. This structure represents forward/backward 
scores. The HmmDecoder class' tagMarginal method returns an instance of a 
TagLattice class, which represents a lattice.

We can examine each token of the lattice using an instance of the 
ConditionalClassification class. In the following example, the tagMarginal 
method returns a TagLattice instance. A loop is used to obtain the 
ConditionalClassification instance for each token in the lattice.
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We are using the same tokenList instance developed in the previous section:

TagLattice<String> lattice = decoder.tagMarginal(tokenList);
for (int index = 0; index < tokenList.size(); index++) {
    ConditionalClassification classification = 
        lattice.tokenClassification(index);
    …
}

The ConditionalClassification class has a score and a category method.  
The score method returns a relative score for a given category. The category 
method returns this category, which is the tag. The token, its score, and category  
are displayed as shown here:

System.out.printf("%-8s",tokenList.get(index));
for (int i = 0; i < 4; ++i) {
    double score = classification.score(i);
    String tag = classification.category(i);
    System.out.printf("%7.3f/%-3s ",score,tag);
}
System.out.println();

The output is shown as follows:

Bill      0.974/np    0.018/nn    0.006/rb    0.001/nps 

used      0.935/vbd   0.065/vbn   0.000/jj    0.000/rb  

the       1.000/at    0.000/jj    0.000/pps   0.000/pp$$ 

force     0.977/nn    0.016/jj    0.006/vb    0.001/rb  

to        0.944/to    0.055/in    0.000/rb    0.000/nn  

force     0.945/vb    0.053/nn    0.002/rb    0.001/jj  

the       1.000/at    0.000/jj    0.000/vb    0.000/nn  

manager   0.982/nn    0.018/jj    0.000/nn$   0.000/vb  

to        0.988/to    0.012/in    0.000/rb    0.000/nn  

tear      0.991/vb    0.007/nn    0.001/rb    0.001/jj  

the       1.000/at    0.000/jj    0.000/vb    0.000/nn  

bill      0.994/nn    0.003/jj    0.002/rb    0.001/nns 

in        0.990/in    0.004/rp    0.002/nn    0.001/jj  

two.      0.960/nn    0.013/np    0.011/nns   0.008/rb  
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Training the OpenNLP POSModel
Training an OpenNLP POSModel is similar to the previous training examples.  
A training file is needed and should be large enough to provide a good sample set. 
Each sentence of the training file must be on a line by itself. Each line consists of a 
token followed by the underscore character and then the tag.

The following training data was created using the first five sentences of Chapter 5, 
At A Venture of Twenty Thousands Leagues Under the Sea. Although this is not a large 
sample set, it is easy to create and adequate for illustration purposes.

It is saved in a file named sample.train:

The_DT voyage_NN of_IN the_DT Abraham_NNP Lincoln_NNP was_VBD for_IN a_DT 
long_JJ time_NN marked_VBN by_IN no_DT special_JJ incident._NN

But_CC one_CD circumstance_NN happened_VBD which_WDT showed_VBD the_DT 
wonderful_JJ dexterity_NN of_IN Ned_NNP Land,_NNP and_CC proved_VBD what_
WP confidence_NN we_PRP might_MD place_VB in_IN him._PRP$ 

The_DT 30th_JJ of_IN June,_NNP the_DT frigate_NN spoke_VBD some_DT 
American_NNP whalers,_, from_IN whom_WP we_PRP learned_VBD that_IN they_
PRP knew_VBD nothing_NN about_IN the_DT narwhal._NN 

But_CC one_CD of_IN them,_PRP$ the_DT captain_NN of_IN the_DT Monroe,_NNP 
knowing_VBG that_IN Ned_NNP Land_NNP had_VBD shipped_VBN on_IN board_NN 
the_DT Abraham_NNP Lincoln,_NNP begged_VBD for_IN his_PRP$ help_NN in_IN 
chasing_VBG a_DT whale_NN they_PRP had_VBD in_IN sight._NN

We will demonstrate the creation of the model using the POSModel class' train 
method and how the model can be saved to a file. We start with the declaration of 
the POSModel instance variable:

POSModel model = null;

A try-with-resources block opens the sample file:

try (InputStream dataIn = new FileInputStream("sample.train");) {
    …
} catch (IOException e) {
    // Handle excpetions
}
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An instance of the PlainTextByLineStream class is created and used with the 
WordTagSampleStream class to create an ObjectStream<POSSample> instance.  
This puts the sample data into the format required by the train method:

ObjectStream<String> lineStream = 
    new PlainTextByLineStream(dataIn, "UTF-8");
ObjectStream<POSSample> sampleStream = 
    new WordTagSampleStream(lineStream);

The train method uses its parameters to specify the language, the sample stream, 
training parameters, and any dictionaries (none) needed, as shown here:

model = POSTaggerME.train("en", sampleStream,
    TrainingParameters.defaultParams(), null, null);

The output of this process is lengthy. The following output has been shortened to 
conserve space:

Indexing events using cutoff of 5

  Computing event counts...  done. 90 events

  Indexing...  done.

Sorting and merging events... done. Reduced 90 events to 82.

Done indexing.

Incorporating indexed data for training...  

done.

  Number of Event Tokens: 82

      Number of Outcomes: 17

    Number of Predicates: 45

...done.

Computing model parameters ...

Performing 100 iterations.

  1:  ... loglikelihood=-254.98920096505964  0.14444444444444443

  2:  ... loglikelihood=-201.19283975630537  0.6

  3:  ... loglikelihood=-174.8849213436524  0.6111111111111112

  4:  ... loglikelihood=-157.58164262220754  0.6333333333333333

  5:  ... loglikelihood=-144.69272379986646  0.6555555555555556

...

 99:  ... loglikelihood=-33.461128002846024  0.9333333333333333

100:  ... loglikelihood=-33.29073273669207  0.9333333333333333
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To save the model to a file, we use the following code. The output stream is  
created and the POSModel class' serialize method saves the model to the  
en_pos_verne.bin file:

try (OutputStream modelOut = new BufferedOutputStream(
        new FileOutputStream(new File("en_pos_verne.bin")));) {
    model.serialize(modelOut);
} catch (IOException e) {
    // Handle exceptions
}

Summary
POS tagging is a powerful technique for identifying the grammatical parts of a 
sentence. It provides useful processing for downstream tasks such as question 
analysis and analyzing the sentiment of text. We will return to this subject when  
we address parsing in Chapter 7, Using a Parser to Extract Relationships.

Tagging is not an easy process due to the ambiguities found in most languages.  
The increasing use of textese only makes the process more difficult. Fortunately, 
there are models that can do a good job of identifying this type of text. However,  
as new terms and slang are introduced, these models need to be kept up to date.

We investigated the use of OpenNLP, the Stanford API, and LingPipe in support 
of tagging. These libraries used several different types of approaches to tag words 
including both rule-based and model-based approaches. We saw how dictionaries 
can be used to enhance the tagging process.

We briefly touched on the model training process. Pretagged sample texts are  
used as input to the process and a model emerges as output. Although we did not 
address validation of the model, this can be accomplished in a similar manner  
as accomplished in earlier chapters.

The various POS tagger approaches can be compared based on a number of factors 
such as their accuracy and how fast they run. Although we did not cover these issues 
here, there are numerous web resources available. One comparison that examines 
how fast they run can be found at http://mattwilkens.com/2008/11/08/
evaluating-pos-taggers-speed/.

In the next chapter, we will examine techniques to classify documents based on  
their content.

http://mattwilkens.com/2008/11/08/evaluating-pos-taggers-speed/
http://mattwilkens.com/2008/11/08/evaluating-pos-taggers-speed/
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Classifying Texts and 
Documents

In this chapter, we will demonstrate how to use various NLP APIs to perform text 
classification. This is not to be confused with text clustering. Clustering is concerned 
with the identification of text without the use of predefined categories. Classification, 
in contrast, uses predefined categories. We will focus on text classification where tags 
are assigned to text to specify its type.

The general approach used to perform text classification starts with the training of a 
model. The model is validated and then used to classify documents. We will focus on 
the training and usage steps.

Documents can be classified according to any number of attributes such as its subject, 
document type, time of publication, author, language used, and reading level. Some 
classification approaches require humans to label sample data.

Sentiment analysis is a type of classification. It is concerned with determining what 
text is trying to convey to a reader, usually in the form of a positive and negative 
attitude. We will investigate several techniques to perform this type of analysis.

How classification is used
Classifying text is used for a number of purposes:

•	 Spam detection
•	 Authorship attribution
•	 Sentiment analysis
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•	 Age and gender identification
•	 Determining the subject of a document
•	 Language identification

Spamming is an unfortunate reality for most e-mail users. If an e-mail can be 
classified as spam, then it can be moved to a spam folder. A text message can be 
analyzed and certain attributes can be used to designate the e-mail as spam. These 
attributes can include misspellings, lack of an appropriate e-mail address for 
recipients, and a non-standard URL.

Classification has been used to determine the authorship of documents. This has 
been performed for historical documents such as for The Federalist Papers and for  
the book Primary Colors where the authors have been identified.

Sentiment analysis is a technique that determines the attitude of text.  
Movie reviews have been a popular domain but it can be used for almost any 
product review. This helps companies better assess how their product is perceived. 
Often, a negative or positive attribute is assigned to text. Sentiment analysis is also 
called opinion extraction/mining and subjectivity analysis. Consumer confidence 
and the performance of a stock market can be predicted from Twitter feeds and  
other sources.

Classification can be used to determine the age and gender of a text's author and 
to provide more insight into its author. Frequently, the number of pronouns, 
determiners, and noun phrases are used to identify the gender of a writer. Females 
tend to use more pronouns and males tend to use more determiners.

Determining the subject of text is useful when we need to organize a large number 
of documents. Search engines are very much concerned with this activity but it 
has also been used simply to place documents in different categories such as used 
with tag clouds. A tag cloud is a group of words reflecting the relative frequency of 
occurrence of each word.

The following image is an example of a tag cloud generated by IBM Word Cloud 
Generator (http://www.softpedia.com/get/Office-tools/Other-Office-
Tools/IBM-Word-Cloud-Generator.shtml) and can be found at http://upload.
wikimedia.org/wikipedia/commons/9/9e/Foundation-l_word_cloud_without_
headers_and_quotes.png:

http://www.softpedia.com/get/Office-tools/Other-Office-Tools/IBM-Word-Cloud-Generator.shtml
http://www.softpedia.com/get/Office-tools/Other-Office-Tools/IBM-Word-Cloud-Generator.shtml
http://upload.wikimedia.org/wikipedia/commons/9/9e/Foundation-l_word_cloud_without_headers_and_quotes.png
http://upload.wikimedia.org/wikipedia/commons/9/9e/Foundation-l_word_cloud_without_headers_and_quotes.png
http://upload.wikimedia.org/wikipedia/commons/9/9e/Foundation-l_word_cloud_without_headers_and_quotes.png
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The identification of the language used by a document is supported using 
classification techniques. This analysis is useful for many NLP problems where  
we need to apply specific language models to the problem.

Understanding sentiment analysis
With sentiment analysis, we are concerned with who holds what type of feeling 
about a specific product or topic. This can tell us that citizens of a particular city hold 
positive or negative feelings about the performance of a sports team. They may hold 
a different sentiment about the team's performance versus its management.

It can be useful to automatically determine the sentiment for aspects, or attributes, of 
a product and then display the results in some meaningful manner. This is illustrated 
using a review of the 2014 Camry from Kelly Blue Book (http://www.kbb.com/
toyota/camry/2014-toyota-camry/?r=471659652516861060), as shown in the 
following figure.

The attributes, such as Overall Rating and Value, are depicted both as a bar graph and 
as a numeric value. The calculation of these values can be performed automatically 
using sentiment analysis.

Sentiment analysis can be applied to a sentence, a clause, or an entire document. 
Sentiment analysis may be either positive or negative or it could be a rating using 
numeric values such as 1 through 10. More complex attitude types are possible. 

http://www.kbb.com/toyota/camry/2014-toyota-camry/?r=471659652516861060
http://www.kbb.com/toyota/camry/2014-toyota-camry/?r=471659652516861060
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Further complicating the process, within a single sentence or document, different 
sentiments could be expressed against different topics.

How do we know which words have which types of sentiment? This question  
can be answered using sentiment lexicons. In this context, lexicons are dictionaries  
that contain the sentiment meanings of different words. The General Inquirer  
(http://www.wjh.harvard.edu/~inquirer/) is one such lexicon. It contains 1,915 
words that are considered to be positive. It also contains a list for words denoting other 
attributes such as pain, pleasure, strong, and motivation. There are other lexicons such 
as the MPQA Subjectivity Cues Lexicon (http://mpqa.cs.pitt.edu/).

At times it may be desirable to build a lexicon. This is typically done using semi-
supervised learning where a few labelled examples or rules are used to bootstrap the 
lexicon building process. This is useful when the domain of the  
lexicon being used does not match the domain of the problem area we are  
working on very well.

http://www.wjh.harvard.edu/~inquirer/
http://mpqa.cs.pitt.edu/
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Not only are we interested in obtaining a positive or negative sentiment, we 
are interested in determining the attributes, sometimes called the target, of the 
sentiment. Consider the following example:

"The ride was very rough but the attendants did an excellent job of making us 
comfortable."

The sentence contains two sentiments: roughness and comfortable. The first was 
negative and the second was positive. The target, or attribute, of the positive 
sentiment was the job and the target of the negative sentiment was the ride.

Text classifying techniques
Classification is concerned with taking a specific document and determining if it 
fits into one of several other document groups. There are two basic techniques for 
classifying text:

•	 Rule-based
•	 Supervised Machine Learning

Rule-based classification uses a combination of words and other attributes  
organized around expert crafted rules. These can be very effective but creating  
them is a time-consuming process.

Supervised Machine Learning (SML) takes a collection of annotated training 
documents to create a model. The model is normally called the classifier. There are 
many different machine learning techniques including Naive Bayes, Support-Vector 
Machine (SVM), and k-nearest neighbor.

We are not concerned with how these approaches work but the interested reader  
will find innumerable sources that expand upon these and other techniques.

Using APIs to classify text
We will use OpenNLP, Stanford API, and LingPipe to demonstrate various 
classification approaches. We will spend more time with LingPipe as it offers  
several different classification approaches.
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Using OpenNLP
The DocumentCategorizer interface specifies methods to support the classification 
process. The interface is implemented by the DocumentCategorizerME class. 
This class will classify text into predefined categories using a maximum entropy 
framework. We will:

•	 Demonstrate how to train the model
•	 Illustrate how the model can be used

Training an OpenNLP classification model
First, we have to train our model because OpenNLP does not have prebuilt 
models. This process consists of creating a file of training data and then using the 
DocumentCategorizerME model to perform the actual training. The model created  
is typically saved in a file for later use.

The training file format consists of a series of lines where each line represents a 
document. The first word of the line is the category. The category is followed by  
text separated by whitespace. Here is an example for the dog category:

dog The most interesting feature of a dog is its ...

To demonstrate the training process, we created the en-animals.train file, where 
we created two categories: cats and dogs. For the training text, we used sections of 
Wikipedia. For dogs (http://en.wikipedia.org/wiki/Dog), we used the As Pets 
section. For cats (http://en.wikipedia.org/wiki/Cats_and_humans), we used 
the Pet section plus the first paragraph of the Domesticated varieties section. We also 
removed the numeric references from the sections.

The first part of each line is shown here:

dog The most widespread form of interspecies bonding occurs ...
dog There have been two major trends in the changing status of  ...
dog There are a vast range of commodity forms available to  ...
dog An Australian Cattle Dog in reindeer antlers sits on Santa's lap 
...
dog A pet dog taking part in Christmas traditions ...
dog The majority of contemporary people with dogs describe their  ...
dog Another study of dogs' roles in families showed many dogs have  
...
dog According to statistics published by the American Pet Products  
...

http://en.wikipedia.org/wiki/Dog
http://en.wikipedia.org/wiki/Cats_and_humans
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dog The latest study using Magnetic resonance imaging (MRI) ...
cat Cats are common pets in Europe and North America, and their  ...
cat Although cat ownership has commonly been associated  ...
cat The concept of a cat breed appeared in Britain during ...
cat Cats come in a variety of colors and patterns. These are physical  
...
cat A natural behavior in cats is to hook their front claws 
periodically  ...
cat Although scratching can serve cats to keep their claws from 
growing  ...

When creating training data, it is important to use a large enough sample size.  
The data we used is not sufficient for some analysis. However, as we will see,  
it does a pretty good job of identifying the categories correctly.

The DoccatModel class supports categorization and classification of text. A model 
is trained using the train method based on annotated text. The train method uses 
a string denoting the language and an ObjectStream<DocumentSample> instance 
holding the training data. The DocumentSample instance holds the annotated text 
and its category.

In the following example, the en-animal.train file is used to train the model.  
Its input stream is used to create a PlainTextByLineStream instance, which is  
then converted to an ObjectStream<DocumentSample> instance. The train 
method is then applied. The code is enclosed in a try-with-resources block to handle 
exceptions. We also created an output stream that we will use to persist the model:

DoccatModel model = null;
try (InputStream dataIn = 
            new FileInputStream("en-animal.train");
        OutputStream dataOut = 
            new FileOutputStream("en-animal.model");) {
    ObjectStream<String> lineStream
        = new PlainTextByLineStream(dataIn, "UTF-8");
    ObjectStream<DocumentSample> sampleStream = 
        new DocumentSampleStream(lineStream);            
    model = DocumentCategorizerME.train("en", sampleStream);
    ...
} catch (IOException e) {
// Handle exceptions  
}
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The output is as follows and has been shortened to conserve space:

Indexing events using cutoff of 5

  Computing event counts...  done. 12 events

  Indexing...  done.

Sorting and merging events... done. Reduced 12 events to 12.

Done indexing.

Incorporating indexed data for training...  

done.

  Number of Event Tokens: 12

      Number of Outcomes: 2

    Number of Predicates: 30

...done.

Computing model parameters ...

Performing 100 iterations.

  1:  ... loglikelihood=-8.317766166719343  0.75

  2:  ... loglikelihood=-7.1439957443937265  0.75

  3:  ... loglikelihood=-6.560690872956419  0.75

  4:  ... loglikelihood=-6.106743124066829  0.75

  5:  ... loglikelihood=-5.721805583104927  0.8333333333333334

  6:  ... loglikelihood=-5.3891508904777785  0.8333333333333334

  7:  ... loglikelihood=-5.098768040466029  0.8333333333333334

...

 98:  ... loglikelihood=-1.4117372921765519  1.0

 99:  ... loglikelihood=-1.4052738190352423  1.0

100:  ... loglikelihood=-1.398916120150312  1.0

The model is saved as shown here using the serialize method. The model is saved 
to the en-animal.model file as opened in the previous try-with-resources block:

OutputStream modelOut = null;
modelOut = new BufferedOutputStream(dataOut);
model.serialize(modelOut);



Chapter 6

[ 165 ]

Using DocumentCategorizerME to classify text
Once a model has been created, we can use the DocumentCategorizerME 
class to classify text. We need to read the model, create an instance of the 
DocumentCategorizerME class, and then invoke the categorize method to  
return an array of probabilities that will tell us which category the text best fits in.

Since we are reading from a file, exceptions need to be dealt with, as shown here:

try (InputStream modelIn = 
        new FileInputStream(new File("en-animal.model"));) {
    ...
} catch (IOException ex) {
    // Handle exceptions
}

With the input stream, we create instances of the DoccatModel and 
DocumentCategorizerME classes as illustrated here:

DoccatModel model = new DoccatModel(modelIn);
DocumentCategorizerME categorizer = 
    new DocumentCategorizerME(model);

The categorize method is called using a string as an argument. This returns an array 
of double values with each element containing the likelihood that the text belongs to 
a category. The DocumentCategorizerME class' getNumberOfCategories method 
returns the number of categories handled by the model. The DocumentCategorizerME 
class' getCategory method returns the category given an index.

We used these methods in the following code to display each category and its 
corresponding likelihood:

double[] outcomes = categorizer.categorize(inputText);
for (int i = 0; i<categorizer.getNumberOfCategories(); i++) {
    String category = categorizer.getCategory(i);
    System.out.println(category + " - " + outcomes[i]);
}

For testing, we used part of the Wikipedia article (http://en.wikipedia.org/
wiki/Toto_%28Oz%29) for Toto, Dorothy's dog. We used the first sentence of  
The classic books section as declared here:

String toto = "Toto belongs to Dorothy Gale, the heroine of " 
        + "the first and many subsequent books. In the first "

http://en.wikipedia.org/wiki/Toto_%28Oz%29
http://en.wikipedia.org/wiki/Toto_%28Oz%29
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        + "book, he never spoke, although other animals, native "
        + "to Oz, did. In subsequent books, other animals "
        + "gained the ability to speak upon reaching Oz or "
        + "similar lands, but Toto remained speechless.";

To test for a cat, we used the first sentence of the Tortoiseshell and Calico section  
of the Wikipedia article (http://en.wikipedia.org/wiki/Cats_and_humans)  
as declared here:

String calico = "This cat is also known as a calimanco cat or "
        + "clouded tiger cat, and by the abbreviation 'tortie'. "
        + "In the cat fancy, a tortoiseshell cat is patched "
        + "over with red (or its dilute form, cream) and black "
        + "(or its dilute blue) mottled throughout the coat."; 

Using the text for toto, we get the following output. This suggests that the text 
should be placed in the dog category:

dog - 0.5870711529777994

cat - 0.41292884702220056

Using calico instead yields these results:

dog - 0.28960436044424276

cat - 0.7103956395557574

We could have used the getBestCategory method to return only the best category. 
This method uses the array of outcomes and returns a string. The getAllResults 
method will return all of the results as a string. These two methods are illustrated here:

System.out.println(categorizer.getBestCategory(outcomes));
System.out.println(categorizer.getAllResults(outcomes));

The output will be as follows:

cat

dog[0.2896]  cat[0.7104]

http://en.wikipedia.org/wiki/Cats_and_humans
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Using Stanford API
The Stanford API supports several classifiers. We will examine the use of the 
ColumnDataClassifier class for general classification and the StanfordCoreNLP 
pipeline to perform sentiment analysis. The classifiers supported by the Stanford 
API can be difficult to use at times. With the ColumnDataClassifier class, we 
will demonstrate how to classify the size of boxes. With the pipeline, we will 
illustrate how to determine the positive or negative sentiment of short text phrases. 
The classifier can be downloaded from http://www-nlp.stanford.edu/wiki/
Software/Classifier.

Using the ColumnDataClassifier class for 
classification
This classifier uses data with multiple values to describe the data. In this 
demonstration, we will use a training file to create a classifier. We will then use a 
test file to assess the performance of the classifier. The class uses a property file to 
configure the creation process.

We will be creating a classifier that attempts to classify a box based on its 
dimensions. Three categories will be possible: small, medium, and large. The height, 
width, and length dimensions of a box will be expressed as floating point numbers. 
They are used to characterize a box.

The properties file specifies parameter information and supplies data about the 
training and test files. There are many possible properties that can be specified.  
For this example, we will use only a few of the more relevant properties.

We will use the following properties file saved as box.prop. The first set of 
properties deal with the number of features that are contained in the training and 
test files. Since we used three values, three realValued columns are specified.  
The trainFile and testFile properties specify the location and names of the 
respective files:

useClassFeature=true
1.realValued=true
2.realValued=true
3.realValued=true
trainFile=.box.train
testFile=.box.test

http://www-nlp.stanford.edu/wiki/Software/Classifier
http://www-nlp.stanford.edu/wiki/Software/Classifier
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The training and test files use the same format. Each line consists of a category 
followed by the defining values, each separated by a tab. The box.train training  
file consist of 60 entries and the box.test file consists of 30 entries. These files  
can be downloaded from www.packtpub.com. The first line of the box.train file 
follows here. The category is small; its height, width, and length are 2.34, 1.60,  
and 1.50, respectively:

small  2.34  1.60  1.50

The code to create the classifier is shown here. An instance of the 
ColumnDataClassifier class is created using the properties file as the  
constructor's argument. An instance of the Classifier interface is returned by  
the makeClassifier method. This interface supports three methods, two of which 
we will demonstrate. The readTrainingExamples method reads the training data 
from the training file:

ColumnDataClassifier cdc = 
    new ColumnDataClassifier("box.prop");
Classifier<String, String> classifier = 
    cdc.makeClassifier(cdc.readTrainingExamples("box.train"));

When executed, we get extensive output. We will discuss the more relevant parts 
here. The first part of the output repeats parts of the property file:

3.realValued = true

testFile = .box.test

...

trainFile = .box.train

The next part displays the number of datasets read along with various features' 
information, as shown here:

Reading dataset from box.train ... done [0.1s, 60 items].

numDatums: 60

numLabels: 3 [small, medium, large]

...

AVEIMPROVE     The average improvement / current value

EVALSCORE      The last available eval score

Iter ## evals ## <SCALING> [LINESEARCH] VALUE TIME |GNORM| {RELNORM} 
AVEIMPROVE EVALSCORE

www.packtpub.com
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The classifier then iterates over the data to create the classifier:

Iter 1 evals 1 <D> [113M 3.107E-4] 5.985E1 0.00s |3.829E1| {1.959E-1} 
0.000E0 - 

Iter 2 evals 5 <D> [M 1.000E0] 5.949E1 0.01s |1.862E1| {9.525E-2} 3.058E-
3 - 

Iter 3 evals 6 <D> [M 1.000E0] 5.923E1 0.01s |1.741E1| {8.904E-2} 3.485E-
3 - 

...

Iter 21 evals 24 <D> [1M 2.850E-1] 3.306E1 0.02s |4.149E-1| {2.122E-3} 
1.775E-4 - 

Iter 22 evals 26 <D> [M 1.000E0] 3.306E1 0.02s

QNMinimizer terminated due to average improvement: | newest_val - 
previous_val | / |newestVal| < TOL 

Total time spent in optimization: 0.07s

At this point, the classifier is ready to use. Next, we use the test file to verify the 
classifier. We start by getting a line from the text file using the ObjectBank class' 
getLineIterator method. This class supports the conversion of data read into a 
more standardized form. The getLineIterator method returns one line at a time in 
a format that can be used by the classifier. The loop for this process is shown here:

for (String line : 
        ObjectBank.getLineIterator("box.test", "utf-8")) {
    ...
}

Within the for-each statement, a Datum instance is created from the line and then its 
classOf method is used to return the predicted category as shown here. The Datum 
interface supports objects that contain features. When used as the argument of the 
classOf method, the category determined by the classifier is returned:

Datum<String, String> datum = cdc.makeDatumFromLine(line);
System.out.println("Datum: {" 
    + line + "]\tPredicted Category: " 
    + classifier.classOf(datum));

When this sequence is executed, each line of the test file is processed and the 
predicted category is displayed, as follows. Only the first two and last two lines  
are shown here. The classifier was able to correctly classify all of the test data:

Datum: {small  1.33  3.50  5.43]  Predicted Category: medium

Datum: {small  1.18  1.73  3.14]  Predicted Category: small
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...

Datum: {large  6.01  9.35  16.64]  Predicted Category: large

Datum: {large  6.76  9.66  15.44]  Predicted Category: large

To test an individual entry, we can use the makeDatumFromStrings method to create 
a Datum instance. In the next code sequence, a one-dimensional array of strings is 
created where each element represents data values for a box. The first entry, the 
category, is left null. The Datum instance is then used as the argument of the classOf 
method to predict its category:

String sample[] = {"", "6.90", "9.8", "15.69"};
Datum<String, String> datum = 
    cdc.makeDatumFromStrings(sample);
System.out.println("Category: " + classifier.classOf(datum));

The output for this sequence is shown here, which correctly classifies the box:

Category: large

Using the Stanford pipeline to perform sentiment 
analysis
In this section, we will illustrate how the Stanford API can be used to perform 
sentiment analysis. We will use the StanfordCoreNLP pipeline to perform this 
analysis on different texts.

We will use three different texts as defined here. The review string is a movie review 
from Rotten Tomatoes (http://www.rottentomatoes.com/m/forrest_gump/) 
about the movie Forrest Gump:

String review = "An overly sentimental film with a somewhat "
    + "problematic message, but its sweetness and charm "
    + "are occasionally enough to approximate true depth "
    + "and grace. ";

String sam = "Sam was an odd sort of fellow. Not prone "
    + "to angry and not prone to merriment. Overall, "
    + "an odd fellow.";
    
String mary = "Mary thought that custard pie was the "
    + "best pie in the world. However, she loathed "
    + "chocolate pie.";

http://www.rottentomatoes.com/m/forrest_gump/
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To perform this analysis, we need to use a sentiment annotator as shown here.  
This also requires the use of the tokenize, ssplit and parse annotators. The  
parse annotator provides more structural information about the text, which will  
be discussed in more detail in Chapter 7, Using a Parser to Extract Relationships:

Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, parse, sentiment");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

The text is used to create an Annotation instance, which is then used as the 
argument to the annotate method that performs the actual work, as shown here:

Annotation annotation = new Annotation(review);
pipeline.annotate(annotation);

The following array holds the strings for the different sentiments possible:

String[] sentimentText = {"Very Negative", "Negative", 
    "Neutral", "Positive", "Very Positive"};

The Annotation class' get method returns an object that implements the CoreMap 
interface. In this case, these objects represent the results of splitting the input text 
into sentences, as shown in the following code. For each sentence, an instance of 
a Tree object is obtained that represents a tree structure containing a parse of the 
text for the sentiment. The getPredictedClass method returns an index into the 
sentimentText array reflecting the sentiment of the test:

for (CoreMap sentence : annotation.get(
        CoreAnnotations.SentencesAnnotation.class)) {
    Tree tree = sentence.get(
        SentimentCoreAnnotations.AnnotatedTree.class);
    int score = RNNCoreAnnotations.getPredictedClass(tree);
    System.out.println(sentimentText[score]);
}

When the code is executed using the review string, we get the following output:

Positive

The text, sam, consists of three sentences. The output for each is as follows, showing 
the sentiment for each sentence:

Neutral

Negative

Neutral
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The text, mary, consists of two sentences. The output for each is as follows:

Positive

Neutral

Using LingPipe to classify text
We will use LingPipe to demonstrate a number of classification tasks including 
general text classification using trained models, sentiment analysis, and language 
identification. We will cover the following classification topics:

•	 Training text using the Classified class
•	 Training models using other training categories
•	 How to classify text using LingPipe
•	 Performing sentiment analysis using LingPipe
•	 Identifying the language used

Several of the tasks described in this section will use the following declarations. 
LingPipe comes with training data for several categories. The categories array 
contains the names of the categories packaged with LingPipe:

String[] categories = {"soc.religion.christian",
    "talk.religion.misc","alt.atheism","misc.forsale"};

The DynamicLMClassifier class is used to perform the actual classification.  
It is created using the categories array giving it the names of the categories to use. 
The nGramSize value specifies the number of contiguous items in a sequence used in 
the model for classification purposes:

int nGramSize = 6;
DynamicLMClassifier<NGramProcessLM> classifier = 
    DynamicLMClassifier.createNGramProcess(
        categories, nGramSize);

Training text using the Classified class
General text classification using LingPipe involves training the DynamicLMClassifier 
class using training files and then using the class to perform the actual classification. 
LingPipe comes with several training datasets as found in the LingPipe directory, 
demos/data/fourNewsGroups/4news-train. We will use these to illustrate the 
training process. This example is a simplified version of the process found at  
http://alias-i.com/lingpipe/demos/tutorial/classify/read-me.html.

http://alias-i.com/lingpipe/demos/tutorial/classify/read-me.html
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We start by declaring the training directory:

String directory = ".../demos";
File trainingDirectory = new File(directory 
    + "/data/fourNewsGroups/4news-train");

In the training directory, there are four subdirectories whose names are listed in  
the categories array. In each subdirectory is a series of files with numeric names. 
These files contain newsgroups (http://qwone.com/~jason/20Newsgroups/) data 
that deal with that directories, names.

The process of training the model involves using each file and category with the 
DynamicLMClassifier class' handle method. The method will use the file to create 
a training instance for the category and then augment the model with this instance. 
The process uses nested for-loops.

The outer for-loop creates a File object using the directory's name and then  
applies the list method against it. The list method returns a list of the files in  
the directory. The names of these files are stored in the trainingFiles array,  
which will be used in the inner loop:

for (int i = 0; i < categories.length; ++i) {
    File classDir = 
        new File(trainingDirectory, categories[i]);
    String[] trainingFiles = classDir.list();
    // Inner for-loop
}

The inner for-loop, as shown next, will open each file and read the text from the file. 
The Classification class represents a classification with a specified category. It is 
used with the text to create a Classified instance. The DynamicLMClassifier class' 
handle method updates the model with the new information:

for (int j = 0; j < trainingFiles.length; ++j) {
    try {
        File file = new File(classDir, trainingFiles[j]);
        String text = Files.readFromFile(file, "ISO-8859-1");
        Classification classification = 
            new Classification(categories[i]);
        Classified<CharSequence> classified = 
            new Classified<>(text, classification);
        classifier.handle(classified);
    } catch (IOException ex) {
        // Handle exceptions
    }
}

http://qwone.com/~jason/20Newsgroups/
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You can alternately use the com.aliasi.util.Files class 
instead in java.io.File, otherwise the readFromFile 
method will not be available.

The classifier can be serialized for later use as shown here. The 
AbstractExternalizable class is a utility class that supports the serialization of 
objects. It has a static compileTo method that accepts a Compilable instance and a 
File object. It writes the object to the file, as follows:

try {
    AbstractExternalizable.compileTo( (Compilable) classifier,
        new File("classifier.model"));
} catch (IOException ex) {
    // Handle exceptions
}

The loading of the classifier will be illustrated in the Classifying text using LingPipe 
section later in this chapter.

Using other training categories
Other newsgroups data can be found at http://qwone.com/~jason/20Newsgroups/. 
These collections of data can be used to train other models as listed in the following 
table. Although there are only 20 categories, they can be useful training models. 
Three different downloads are available where some have been sorted and in others, 
duplicate data has been removed:

Newsgroups
comp.graphics sci.crypt

comp.os.ms-windows.misc sci.electronics

comp.sys.ibm.pc.hardware sci.med

comp.sys.mac.hardware sci.space

comp.windows.x misc.forsale

rec.autos talk.politics.misc

rec.motorcycles talk.politics.guns

rec.sport.baseball talk.politics.mideast

rec.sport.hockey talk.religion.misc

alt.atheism

http://qwone.com/~jason/20Newsgroups/
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Classifying text using LingPipe
To classify text, we will use the DynamicLMClassifier class' classify method.  
We will demonstrate its use with two different text sequences:

•	 forSale: The first is from http://www.homes.com/for-sale/ where we use 
the first complete sentence

•	 martinLuther: The second is from http://en.wikipedia.org/wiki/
Martin_Luther where we use the first sentence of the second paragraph

These strings are declared here:

String forSale = 
    "Finding a home for sale has never been "
    + "easier. With Homes.com, you can search new "
    + "homes, foreclosures, multi-family homes, "
    + "as well as condos and townhouses for sale. "
    + "You can even search our real estate agent "
    + "directory to work with a professional "
    + "Realtor and find your perfect home.";
String martinLuther = 
    "Luther taught that salvation and subsequently "
    + "eternity in heaven is not earned by good deeds "
    + "but is received only as a free gift of God's "
    + "grace through faith in Jesus Christ as redeemer "
    + "from sin and subsequently eternity in Hell.";

To reuse the classifier serialized in the previous section, use the 
AbstractExternalizable class' readObject method as shown here. We will use the 
LMClassifier class instead of the DynamicLMClassifier class. They both support the 
classify method but the DynamicLMClassifier class is not readily serializable:

LMClassifier classifier = null;
try {
    classifier = (LMClassifier) 
        AbstractExternalizable.readObject(
            new File("classifier.model"));
} catch (IOException | ClassNotFoundException ex) {
    // Handle exceptions
}

http://www.homes.com/for-sale/
http://en.wikipedia.org/wiki/Martin_Luther
http://en.wikipedia.org/wiki/Martin_Luther
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In the next code sequence, we apply the LMClassifier class' classify method.  
This returns a JointClassification instance, which we use to determine the  
best match:

JointClassification classification = 
    classifier.classify(text);
System.out.println("Text: " + text);
String bestCategory = classification.bestCategory();
System.out.println("Best Category: " + bestCategory);

For the forSale text, we get the following output:

Text: Finding a home for sale has never been easier. With Homes.com, 
you can search new homes, foreclosures, multi-family homes, as well as 
condos and townhouses for sale. You can even search our real estate agent 
directory to work with a professional Realtor and find your perfect home.

Best Category: misc.forsale

For the martinLuther text, we get the following output:

Text: Luther taught that salvation and subsequently eternity in heaven 
is not earned by good deeds but is received only as a free gift of God's 
grace through faith in Jesus Christ as redeemer from sin and subsequently 
eternity in Hell.

Best Category: soc.religion.christian

They both correctly classified the text.

Sentiment analysis using LingPipe
Sentiment analysis is performed in a very similar manner to that of general text 
classification. One difference is the use of only two categories: positive and negative.

We need to use data files to train our model. We will use a simplified version of 
the sentiment analysis performed at http://alias-i.com/lingpipe/demos/
tutorial/sentiment/read-me.html using sentiment data found developed 
for movies (http://www.cs.cornell.edu/people/pabo/movie-review-data/
review_polarity.tar.gz). This data was developed from 1,000 positive and 1,000 
negative reviews of movies found in IMDb's movie archives.

These reviews need to be downloaded and extracted. A txt_sentoken directory 
will be extracted along with its two subdirectories: neg and pos. Both of these 
subdirectories contain movie reviews. Although some of these files can be held  
in reserve to evaluate the model created, we will use all of them to simplify  
the explanation.

http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
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We will start with re-initialization of variables declared in the Using LingPipe to 
classify text section. The categories array is set to a two-element array to hold the 
two categories. The classifier variable is assigned a new DynamicLMClassifier 
instance using the new category array and nGramSize of size 8:

categories = new String[2];
categories[0] = "neg";
categories[1] = "pos";
nGramSize = 8;
classifier = DynamicLMClassifier.createNGramProcess(
    categories, nGramSize);

As we did earlier, we will create a series of instances based on the contents found 
in the training files. We will not detail the following code as it is very similar to that 
found in the Training text using the Classified class section. The main difference is there 
are only two categories to process:

String directory = "...";
File trainingDirectory = new File(directory, "txt_sentoken");
for (int i = 0; i < categories.length; ++i) {
    Classification classification = 
        new Classification(categories[i]);
    File file = new File(trainingDirectory, categories[i]);
    File[] trainingFiles = file.listFiles();
    for (int j = 0; j < trainingFiles.length; ++j) {
        try {
            String review = Files.readFromFile(
                trainingFiles[j], "ISO-8859-1");
            Classified<CharSequence> classified = 
                new Classified<>(review, classification);
            classifier.handle(classified);
        } catch (IOException ex) {
            ex.printStackTrace();
        }
    }
}

The model is now ready to be used. We will use the review for the movie  
Forrest Gump:

String review = "An overly sentimental film with a somewhat "
    + "problematic message, but its sweetness and charm "
    + "are occasionally enough to approximate true depth "
    + "and grace. ";
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We use the classify method to perform the actual work. It returns a 
Classification instance whose bestCategory method returns the best category,  
as shown here:

Classification classification = classifier.classify(review);
String bestCategory = classification.bestCategory();
System.out.println("Best Category: " + bestCategory);

When executed, we get the following output:

Best Category: pos

This approach will also work well for other categories of text.

Language identification using LingPipe
LingPipe comes with a model, langid-leipzig.classifier, trained for several 
languages and is found in the demos/models directory. A list of supported languages 
is found in the following table. This model was developed using training data derived 
from the Leipzig Corpora Collection (http://corpora.uni-leipzig.de/). Another 
good tool can be found at http://code.google.com/p/language-detection/.

Language Abbreviation Language Abbreviation
Catalan cat Italian it
Danish dk Japanese jp
English en Korean kr
Estonian ee Norwegian no
Finnish fi Sorbian sorb
French fr Swedish se
German de Turkish tr

To use this model, we use essentially the same code we used in the Classifying text 
using LingPipe section earlier in this chapter. We start with the same movie review  
of Forrest Gump:

String text = "An overly sentimental film with a somewhat "
    + "problematic message, but its sweetness and charm "
    + "are occasionally enough to approximate true depth "
    + "and grace. ";
System.out.println("Text: " + text);

http://corpora.uni-leipzig.de/
http://code.google.com/p/language-detection/
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The LMClassifier instance is created using the langid-leipzig.classifier file:

LMClassifier classifier = null;
try {
    classifier = (LMClassifier) 
        AbstractExternalizable.readObject(
            new File(".../langid-leipzig.classifier"));
} catch (IOException | ClassNotFoundException ex) {
    // Handle exceptions
}

The classify method is used followed by the application of the bestCategory 
method to obtain the best language fit, as shown here:

Classification classification = classifier.classify(text);
String bestCategory = classification.bestCategory();
System.out.println("Best Language: " + bestCategory);

The output is as follows with English being chosen:

Text: An overly sentimental film with a somewhat problematic message, but 
its sweetness and charm are occasionally enough to approximate true depth 
and grace. 

Best Language: en

The following code example uses the first sentence of the Swedish Wikipedia entry 
in Swedish (http://sv.wikipedia.org/wiki/Svenska) for the text:

text = "Svenska är ett östnordiskt språk som talas av cirka "
    + "tio miljoner personer[1], främst i Finland "
    + "och Sverige.";

The output, as shown here, correctly selects the Swedish language:

Text: Svenska är ett östnordiskt språk som talas av cirka tio miljoner 
personer[1], främst i Finland och Sverige.

Best Language: se

Training can be conducted in the same way as done for the previous LingPipe 
models. Another consideration when performing language identification is that 
the text may be written in multiple languages. This can complicate the language 
detection process.

http://sv.wikipedia.org/wiki/Svenska
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Summary
In this chapter, we discussed the issues surrounding the classification of text and 
examined several approaches to perform this process. The classification of text is 
useful for many activities such as detecting e-mail spamming, determining who 
the author of a document may be, performing gender identification, and language 
identification.

We also demonstrated how sentiment analysis is performed. This analysis is 
concerned with determining whether a piece of text is positive or negative in nature. 
It is also possible to assess other sentiment attributes.

Most of the approaches we used required us to first create a model based on training 
data. Normally, this model needs to be validated using a set of test data. Once the 
model has been created, it is usually easy to use.

In the next chapter, we will investigate the parsing process and how it contributes to 
extracting relationships from text.
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Using Parser to Extract 
Relationships

Parsing is the process of creating a parse tree for a textual unit. This unit may be for 
a line of code or a sentence. It is easy to do for computer languages, since they were 
designed to make the task easy. However, this has made it harder to write code. 
Natural language parsing is considerably more difficult. This is due to the ambiguity 
found in natural languages. This ambiguity makes a language difficult to learn but 
offers great flexibility and expressive power. Here, we are not interested in parsing 
computer languages, but rather natural languages.

A parse tree is a hierarchical data structure that represents the syntactic structure  
of a sentence. Often, this is presented as a tree graph with a root as we will illustrate 
shortly. We will use the parse tree to help identify relationships between entities in 
the tree.

Parsing is used for many tasks, including:

•	 Machine translation of languages
•	 Synthesizing speech from text
•	 Speech recognition
•	 Grammar checking
•	 Information extraction

Coreference resolution is the condition where two or more expressions in text refer 
to the same individual or thing. For example, in this sentence:

"Ted went to the party where he made an utter fool of himself."
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The words "Ted", "he", and "himself" refer to the same entity, "Ted". This is important 
in determining the correct interpretation of text and in determining the relative 
importance of text sections. We will demonstrate how the Stanford API addresses 
this problem.

Extracting relationships and information from text is an important NLP task. 
Relationships may exist between entities, such as the subject of a sentence and  
either its object, other entities, or perhaps its behavior. We may also want to  
identify relationships and present them in a structured form. We can use this 
information either to present the results for immediate use by people or to format  
the relationships so that they can be better utilized for a downstream task.

In this chapter, we will examine the parsing process and see how the parse tree 
is used. We will examine the relationship extraction process and investigate 
relationship types, use extracted relationships, and learn to use NLP APIs.

Relationship types
There are many possible relationship types. A few categories and examples of 
relationships are found in the following table. An interesting site that contains 
a multitude of relationships is Freebase (https://www.freebase.com/). It is a 
database of people, places, and things organized by categories. The WordNet 
thesaurus (http://wordnet.princeton.edu/) contains a number of relationships.

Relationship Example
Personal father-of, sister-of, girlfriend-of
Organizational subsidiary-of, subcommittee–of
Spatial near-to, northeast-of, under
Physical part-of, composed-of
Interactions bonds-with, associates-with, reacts-with

Name Entity Recognition is a low level type of NLP classification that was covered in 
Chapter 4, Finding People and Things. However, many applications need to go beyond 
this and identify different types of relationships. For example, when NER is applied 
to identify individuals, then knowing that we are dealing with a person can further 
refine the relationships present.

Once these entities have been identified, then links can be created to their containing 
documents or used as indexes. For question answering applications, named entities 
are often used for answers. When a sentiment of text is determined, it needs to be 
attributed to some entity.

https://www.freebase.com/
http://wordnet.princeton.edu/
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For example, consider the following input:

He was the last person to see Fred.

Using OpenNLP NER as input with the preceding sentence, as we did in  
Chapter 4, Finding People and Things, we get the following output:

Span: [7..9) person

Entity: Fred

Using the OpenNLP parser, we get a lot more information about the sentence:

(TOP (S (NP (PRP He)) (VP (VBD was) (NP (NP (DT the) (JJ last) (NN 
person)) (SBAR (S (VP (TO to) (VP (VB see))))))) (. Fred.)))

Consider the following input:

The cow jumped over the moon.

For the preceding sentence, the parser returns this:

(TOP (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT 
the) (NN moon))))))

There are two types of parsing:

•	 Dependency: This focuses on the relationship between words
•	 Phrase structure: This deals with phrases and their recursive structure

Dependencies can use labels such as subject, determiner, and prepositions to find 
relationships. Parsing techniques include shift-reduce, spanning tree, and cascaded 
chunking. We are not concerned about these differences here, but will focus on the 
use and outcome of various parsers.

Understanding parse trees
Parse trees represent hierarchical relationships between elements of text. For 
example, a dependency tree shows the relationship between the grammatical 
elements of a sentence. Let's reconsider the following sentence:

The cow jumped over the moon.

A parse tree for the sentence is shown here. It was generated using the techniques 
found in Using the LexicalizedParser class later in this chapter:

(ROOT

  (S

    (NP (DT The) (NN cow))
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    (VP (VBD jumped)

      (PP (IN over)

        (NP (DT the) (NN moon))))

    (. .)))

The sentence can be graphically depicted as shown in the following figure. It was 
generated using the application found at http://nlpviz.bpodgursky.com/
home. Another editor that allows you to examine text in a graphical manner is 
GrammarScope (http://grammarscope.sourceforge.net/). This is a Stanford 
supported tool that uses a Swing-based GUI to generate a parse tree, a grammatical 
structure, typed dependencies, and a semantic graph of text.

However, there may be more than one way of parsing a sentence. Parsing is difficult 
because it is necessary to handle a wide range of text where many ambiguities 
may exist. The following output illustrates other possible dependency trees for the 
previous example sentence. The tree was generated using OpenNLP, as will be 
demonstrated in the Using OpenNLP section later in the chapter:

(TOP (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT 
the) (NN moon))))))

(TOP (S (NP (DT The) (NN cow)) (VP (VP (VBD jumped) (PRT (RP over))) (NP 
(DT the) (NN moon)))))

(TOP (S (NP (DT The) (NNS cow)) (VP (VBD jumped) (PP (IN over) (NP (DT 
the) (NN moon)))))) 

Each of these represents a slightly different parse of the same sentence. The most 
likely parse is shown first.

http://nlpviz.bpodgursky.com/home
http://nlpviz.bpodgursky.com/home
http://grammarscope.sourceforge.net/
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Using extracted relationships
Relationships extracted can be used for a number of purposes including:

•	 Building knowledge bases
•	 Creating directories
•	 Product searches
•	 Patent analysis
•	 Stock analysis
•	 Intelligence analysis

An example of how relationships can be presented is illustrated by Wikipedia's 
Infobox, as shown in the following figure. This Infobox is for the entry Oklahoma and 
contains relationships types such as official language, capital, and details about its area.
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There are many databases built using Wikipedia that extract relationships and 
information such as:

•	 Resource Description Framework (RDF): This uses triples such as  
Yosemite-location-California, where the location is the relation.  
This can be found at http://www.w3.org/RDF/.

•	 DBPedia: This holds over one billion triples and is an example of  
a knowledge base created from Wikipedia. This can be found at  
http://dbpedia.org/About.

Another simple, but interesting example, is the Infobox that is presented when a 
Google search of "planet mercury" is made. As shown in the following screenshot, 
not only do we get a list of links for the query but we also see a list of relations and 
images for Mercury displayed on the right-hand side of the page:

http://www.w3.org/RDF/
http://dbpedia.org/About
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Information extraction is also used to create Web indexes. These indexes are 
developed for a site to allow a user to navigate through the site. An example of a 
web index for the U.S. Census Bureau (http://www.census.gov/main/www/a2z) is 
shown in the following screenshot:

Extracting relationships
There are a number of techniques available to extract relationships. These can be 
grouped as follows:

•	 Hand-built patterns 
•	 Supervised methods
•	 Semi-supervised or unsupervised methods

°° Bootstrapping methods
°° Distant supervision methods
°° Unsupervised methods

Hand-built models are used when we have no training data. This can occur with new 
business domains or entirely new types of projects. These often require the use of 
rules. A rule might be:

"If the word "actor" or "actress" is used and not the word "movie" or "commercial", 
then the text should be classified as a play."

http://www.census.gov/main/www/a2z
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However, this approach takes a lot of effort and needs to be adjusted for the actual 
text in-hand.

If only a little training data is amiable, then the Naive Bayes classifier is a good 
choice. When more data is available, then techniques such as SVM, Regularized 
Logistic Regression, and Random forest can be used.

Although it is useful to understand these techniques in more detail, we will not cover 
them here as our focus is on the use of these techniques.

Using NLP APIs
We will use the OpenNLP and Stanford APIs to demonstrate parsing and the 
extraction of relation information. LingPipe can also be used but will not be 
discussed here. An example of how LingPipe is used to parse biomedical literature 
can be found at http://alias-i.com/lingpipe-3.9.3/demos/tutorial/
medline/read-me.html.

Using OpenNLP
Parsing text is simple using the ParserTool class. Its static parseLine method 
accepts three arguments and returns a Parser instance. These arguments are:

•	 A string containing the text to be parsed
•	 A Parser instance
•	 An integer specifying how many parses are to be returned

The Parser instance holds the elements of the parse. The parses are returned 
in order of their probability. To create a Parser instance, we will use the 
ParserFactory class' create method. This method uses a ParserModel instance 
that we will create using the en-parser-chunking.bin file.

This process is shown here, where an input stream for the model file is created using 
a try-with-resources block. The ParserModel instance is created followed  
by a Parser instance:

String fileLocation = getModelDir() + 
    "/en-parser-chunking.bin";
try (InputStream modelInputStream = 
            new FileInputStream(fileLocation);) {
     ParserModel model = new ParserModel(modelInputStream);
    Parser parser = ParserFactory.create(model);
    ...

http://alias-i.com/lingpipe-3.9.3/demos/tutorial/medline/read-me.html
http://alias-i.com/lingpipe-3.9.3/demos/tutorial/medline/read-me.html
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} catch (IOException ex) {
    // Handle exceptions
}

We will use a simple sentence to demonstrate the parsing process. In the following 
code sequence, the parseLine method is invoked using a value of 3 for the third 
argument. This will return the top three parses:

String sentence = "The cow jumped over the moon";
Parse parses[] = ParserTool.parseLine(sentence, parser, 3);

Next, the parses are displayed along with their probabilities, as shown here:

for(Parse parse : parses) {
    parse.show();
    System.out.println("Probability: " + parse.getProb());
}

The output is as follows:

(TOP (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT 
the) (NN moon))))))

Probability: -1.043506016751117

(TOP (S (NP (DT The) (NN cow)) (VP (VP (VBD jumped) (PRT (RP over))) (NP 
(DT the) (NN moon)))))

Probability: -4.248553665013661

(TOP (S (NP (DT The) (NNS cow)) (VP (VBD jumped) (PP (IN over) (NP (DT 
the) (NN moon))))))

Probability: -4.761071294573854

Notice that each parse produces a slightly different order and assignment of tags. 
The following output shows the first parse formatted to make it easier to read:

(TOP 

      (S 

          (NP 

               (DT The) 

               (NN cow)

          )

          (VP 

               (VBD jumped) 

               (PP 

                    (IN over)

                    (NP 
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                         (DT the)

                         (NN moon)

                     )

               )

           )

     )

)

The showCodeTree method can be used instead to display parent-child relationships:

parse.showCodeTree();

The output for the first parse is shown here. The first part of each line shows the 
element levels enclosed in brackets. The tag is displayed next followed by two hash 
values separated by ->. The first number is for the element and the second number 
is its parent. For example, in the third line, it shows the proper noun, The, to have a 
parent of the noun phrase, The cow:

[0] S -929208263 -> -929208263 TOP The cow jumped over the moon

[0.0] NP -929237012 -> -929208263 S The cow

[0.0.0] DT -929242488 -> -929237012 NP The

[0.0.0.0] TK -929242488 -> -929242488 DT The

[0.0.1] NN -929034400 -> -929237012 NP cow

[0.0.1.0] TK -929034400 -> -929034400 NN cow

[0.1] VP -928803039 -> -929208263 S jumped over the moon

[0.1.0] VBD -928822205 -> -928803039 VP jumped

[0.1.0.0] TK -928822205 -> -928822205 VBD jumped

[0.1.1] PP -928448468 -> -928803039 VP over the moon

[0.1.1.0] IN -928460789 -> -928448468 PP over

[0.1.1.0.0] TK -928460789 -> -928460789 IN over

[0.1.1.1] NP -928195203 -> -928448468 PP the moon

[0.1.1.1.0] DT -928202048 -> -928195203 NP the

[0.1.1.1.0.0] TK -928202048 -> -928202048 DT the

[0.1.1.1.1] NN -927992591 -> -928195203 NP moon

[0.1.1.1.1.0] TK -927992591 -> -927992591 NN moon
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Another way of accessing the elements of the parse is through the getChildren 
method. This method returns an array of the Parse objects each representing an 
element of the parse. Using various Parse methods, we can get each element's text, 
tag, and labels. This is illustrated here:

Parse children[] = parse.getChildren();
for (Parse parseElement : children) {
    System.out.println(parseElement.getText());
    System.out.println(parseElement.getType());
    Parse tags[] = parseElement.getTagNodes();
    System.out.println("Tags");
    for (Parse tag : tags) {
        System.out.println("[" + tag + "]" 
            + " type: " + tag.getType() 
            + "  Probability: " + tag.getProb() 
            + "  Label: " + tag.getLabel());
    }
}

The output of this sequence is as follows:

The cow jumped over the moon

S

Tags

[The] type: DT  Probability: 0.9380626549164167  Label: null

[cow] type: NN  Probability: 0.9574993337971017  Label: null

[jumped] type: VBD  Probability: 0.9652983971550483  Label: S-VP

[over] type: IN  Probability: 0.7990638213315913  Label: S-PP

[the] type: DT  Probability: 0.9848023215770413  Label: null

[moon] type: NN  Probability: 0.9942338356992393  Label: null

Using the Stanford API
There are several approaches to parsing available in the Stanford NLP API. First, 
we will demonstrate a general purposes parser, the LexicalizedParser class. 
Then, we will illustrate how the result of the parser can be displayed using the 
TreePrint class. This will be followed by a demonstration of how to determine 
word dependencies using the GrammaticalStructure class.



Using Parser to Extract Relationships

[ 192 ]

Using the LexicalizedParser class
The LexicalizedParser class is a lexicalized PCFG parser. It can use various 
models to perform the parsing process. The apply method is used with a List 
instance of the CoreLabel objects to create a parse tree. 

In the following code sequence, the parser is instantiated using the englishPCFG.
ser.gz model:

String parserModel = ".../models/lexparser/englishPCFG.ser.gz";
LexicalizedParser lexicalizedParser = 
   LexicalizedParser.loadModel(parserModel);

The list instance of the CoreLabel objects is created using the Sentence class' 
toCoreLabelList method. The CoreLabel objects contain a word and other 
information. There are no tags or labels for these words. The words in the array  
have been effectively tokenized.

String[] senetenceArray = {"The", "cow", "jumped", "over", 
    "the", "moon", "."};
List<CoreLabel> words = 
    Sentence.toCoreLabelList(senetenceArray);

The apply method can now be invoked:

Tree parseTree = lexicalizedParser.apply(words);

One simple approach to display the result of the parse is to use the pennPrint 
method, which displays the parse tree in the same way as the Penn TreeBank does 
(http://www.sfs.uni-tuebingen.de/~dm/07/autumn/795.10/ptb-annotation-
guide/root.html):

parseTree.pennPrint();

The output is as follows:

(ROOT

  (S

    (NP (DT The) (NN cow))

    (VP (VBD jumped)

      (PP (IN over)

        (NP (DT the) (NN moon))))

    (. .)))

The Tree class provides numerous methods for working with parse trees.

http://www.sfs.uni-tuebingen.de/~dm/07/autumn/795.10/ptb-annotation-guide/root.html
http://www.sfs.uni-tuebingen.de/~dm/07/autumn/795.10/ptb-annotation-guide/root.html
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Using the TreePrint class
The TreePrint class provides a simple way to display the tree. An instance of the 
class is created using a string describing the display format to be used. An array of 
valid output formats can be obtained using the static outputTreeFormats variable 
and are listed in the following table:

Tree Format Strings
penn dependencies collocations
oneline typedDependencies semanticGraph
rootSymbolOnly typedDependenciesCollapsed conllStyleDependencies
words latexTree conll2007
wordsAndTags xmlTree

Stanford uses type dependencies to describe the grammatical relationships that exist 
within a sentence. These are detailed in the Stanford Typed Dependencies Manual 
(http://nlp.stanford.edu/software/dependencies_manual.pdf).

The following code example illustrates how the TreePrint class can be used.  
The printTree method performs the actual display operation.

In this case, the TreePrint object is created showing the type dependencies 
"collapsed".

TreePrint treePrint = 
    new TreePrint("typedDependenciesCollapsed");
treePrint.printTree(parseTree);

The output of this sequence is as follows where the number reflects its position 
within the sentence:

det(cow-2, The-1)

nsubj(jumped-3, cow-2)

root(ROOT-0, jumped-3)

det(moon-6, the-5)

prep_over(jumped-3, moon-6)

http://nlp.stanford.edu/software/dependencies_manual.pdf
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Using the "penn" string to create the object results in the following output:

(ROOT

  (S

    (NP (DT The) (NN cow))

    (VP (VBD jumped)

      (PP (IN over)

        (NP (DT the) (NN moon))))

    (. .)))

The "dependencies" string produces a simple list of dependencies:

dep(cow-2,The-1)

dep(jumped-3,cow-2)

dep(null-0,jumped-3,root)

dep(jumped-3,over-4)

dep(moon-6,the-5)

dep(over-4,moon-6)

The formats can be combined using commas. The following example will result in 
both the penn style and the typedDependenciesCollapsed formats being used for 
the display:

"penn,typedDependenciesCollapsed"

Finding word dependencies using the 
GrammaticalStructure class
Another approach to parse text is to use the LexicalizedParser object created 
in the previous section in conjunction with the TreebankLanguagePack interface. 
A Treebank is a text corpus that has been annotated with syntactic or semantic 
information, providing information about a sentence's structure. The first major 
Treebank was the Penn TreeBank (http://www.cis.upenn.edu/~treebank/). 
Treebanks can be created manually or semiautomatically.

The next example illustrates how a simple string can be formatted using the parser. 
A tokenizer factory creates a tokenizer.

http://www.cis.upenn.edu/~treebank/)
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The CoreLabel class that we discussed in the Using the LexicalizedParser class section 
is used here:

String sentence = "The cow jumped over the moon.";
TokenizerFactory<CoreLabel> tokenizerFactory = 
    PTBTokenizer.factory(new CoreLabelTokenFactory(), "");
Tokenizer<CoreLabel> tokenizer = 
    tokenizerFactory.getTokenizer(new StringReader(sentence));
List<CoreLabel> wordList = tokenizer.tokenize();
parseTree = lexicalizedParser.apply(wordList);

The TreebankLanguagePack interface specifies methods for working with a 
Treebank. In the following code, a series of objects are created that culminate 
with the creation of a TypedDependency instance, which is used to obtain 
dependency information about elements of a sentence. An instance of a 
GrammaticalStructureFactory object is created and used to create an instance  
of a GrammaticalStructure class.

As this class' name implies, it stores grammatical information between elements in 
the tree:

TreebankLanguagePack tlp = 
    lexicalizedParser.treebankLanguagePack;
GrammaticalStructureFactory gsf = 
    tlp.grammaticalStructureFactory();
GrammaticalStructure gs = 
    gsf.newGrammaticalStructure(parseTree);
List<TypedDependency> tdl = gs.typedDependenciesCCprocessed();

We can simply display the list as shown here:

System.out.println(tdl);

The output is as follows:

[det(cow-2, The-1), nsubj(jumped-3, cow-2), root(ROOT-0, jumped-3), 
det(moon-6, the-5), prep_over(jumped-3, moon-6)]

This information can also be extracted using the gov, reln, and dep methods,  
which return the governor word, the relationship, and the dependent element, 
respectively, as illustrated here:

for(TypedDependency dependency : tdl) {
    System.out.println("Governor Word: [" + dependency.gov() 
        + "] Relation: [" + dependency.reln().getLongName()
        + "] Dependent Word: [" + dependency.dep() + "]");
}
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The output is as follows:

Governor Word: [cow/NN] Relation: [determiner] Dependent Word: [The/DT]

Governor Word: [jumped/VBD] Relation: [nominal subject] Dependent Word: 
[cow/NN]

Governor Word: [ROOT] Relation: [root] Dependent Word: [jumped/VBD]

Governor Word: [moon/NN] Relation: [determiner] Dependent Word: [the/DT]

Governor Word: [jumped/VBD] Relation: [prep_collapsed] Dependent Word: 
[moon/NN]

From this, we can gleam the relationships within a sentence and the elements  
of the relationship.

Finding coreference resolution entities
Coreference resolution refers to the occurrence of two or more expressions in text 
that refer to the same person or entity. Consider the following sentence:

"He took his cash and she took her change and together they bought their lunch."

There are several coreferences in this sentence. The word "his" refers to "He" and the 
word "her" refers to "she". In addition, "they" refers to both "He" and "she".

An endophora is a coreference of an expression that either precedes it or follows it. 
Endophora can be classified as anaphors or cataphors. In the following sentence,  
the word "It", is the anaphor that refers to its antecedent, "the earthquake":

"Mary felt the earthquake. It shook the entire building."

In the next sentence, "she" is a cataphor as it points to the postcedent, "Mary":

"As she sat there, Mary felt the earthquake."

The Stanford API supports coreference resolution with the StanfordCoreNLP  
class using a dcoref annotation. We will demonstrate the use of this class with  
the previous sentence.

We start with the creation of the pipeline and the use of the annotate method,  
as shown here:

String sentence = "He took his cash and she took her change " 
    + "and together they bought their lunch.";
Properties props = new Properties();
props.put("annotators", 
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    "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
Annotation annotation = new Annotation(sentence);
pipeline.annotate(annotation);

The Annotation class' get method, when used with an argument of 
CorefChainAnnotation.class, will return a Map instance of the CorefChain 
objects, as shown here. These objects contain information about the coreferences 
found in the sentence:

Map<Integer, CorefChain> corefChainMap = 
    annotation.get(CorefChainAnnotation.class);

The set of the CorefChain objects is indexed using integers. We can iterate over  
these objects as shown here. The key set is obtained and then each CorefChain  
object is displayed:

Set<Integer> set = corefChainMap.keySet();
Iterator<Integer> setIterator = set.iterator();
while(setIterator.hasNext()) {
    CorefChain corefChain = 
        corefChainMap.get(setIterator.next());
    System.out.println("CorefChain: " + corefChain);
}

The following output is generated:

CorefChain: CHAIN1-["He" in sentence 1, "his" in sentence 1]

CorefChain: CHAIN2-["his cash" in sentence 1]

CorefChain: CHAIN4-["she" in sentence 1, "her" in sentence 1]

CorefChain: CHAIN5-["her change" in sentence 1]

CorefChain: CHAIN7-["they" in sentence 1, "their" in sentence 1]

CorefChain: CHAIN8-["their lunch" in sentence 1]

We get more detailed information using methods of the CorefChain and 
CorefMention classes. The latter class contains information about a specific 
coreference found in the sentence.

Add the following code sequence to the body of the previous while loop to obtain 
and display this information. The startIndex and endIndex fields of the class refer 
to the position of the words in the sentence:

System.out.print("ClusterId: " + corefChain.getChainID());
CorefMention mention = corefChain.getRepresentativeMention();
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System.out.println(" CorefMention: " + mention 
    + " Span: [" + mention.mentionSpan + "]");

List<CorefMention> mentionList = 
    corefChain.getMentionsInTextualOrder();
Iterator<CorefMention> mentionIterator = 
    mentionList.iterator();
while(mentionIterator.hasNext()) {
    CorefMention cfm = mentionIterator.next();
    System.out.println("\tMention: " + cfm 
        + " Span: [" + mention.mentionSpan + "]");
    System.out.print("\tMention Mention Type: " 
        + cfm.mentionType + " Gender: " + cfm.gender);
    System.out.println(" Start: " + cfm.startIndex 
        + " End: " + cfm.endIndex);
}
System.out.println();

The output is as follows. Only the first and last mentions are displayed to  
conserve space:

CorefChain: CHAIN1-["He" in sentence 1, "his" in sentence 1]

ClusterId: 1 CorefMention: "He" in sentence 1 Span: [He]

  Mention: "He" in sentence 1 Span: [He]

  Mention Type: PRONOMINAL Gender: MALE Start: 1 End: 2

  Mention: "his" in sentence 1 Span: [He]

  Mention Type: PRONOMINAL Gender: MALE Start: 3 End: 4

…

CorefChain: CHAIN8-["their lunch" in sentence 1]

ClusterId: 8 CorefMention: "their lunch" in sentence 1 Span: [their 
lunch]

  Mention: "their lunch" in sentence 1 Span: [their lunch]

  Mention Type: NOMINAL Gender: UNKNOWN Start: 14 End: 16
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Extracting relationships for a  
question-answer system
In this section, we will examine an approach for extracting relationships that can be 
useful for answering queries. Possible/candidate queries include:

•	 Who is/was the 14th president of the United States?

•	 What is the 1st president's home town?

•	 When was Herbert Hoover president?

The process of answering these types of questions is not easy. We will demonstrate 
one approach to answer certain types of questions, but we will simplify many 
aspects of the process. Even with these restrictions, we will find that the system 
responds well to the queries.

This process consists of several steps:

1.	 Finding word dependencies
2.	 Identifying the type of questions
3.	 Extracting its relevant components
4.	 Searching the answer
5.	 Presenting the answer

We will show the general framework to identify whether a question is of the types 
who, what, when, or where. Next, we will investigate some of the issues required to 
answer the "who" type questions.

To keep the example simple, we will restrict the questions to those relating to 
presidents of the U.S.. A simple database of presidential facts will be used to look  
up the answer to a question.

Finding the word dependencies
The question is stored as a simple string:

String question = 
    "Who is the 32nd president of the United States?";
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We will use the LexicalizedParser class as developed in the Finding word 
dependencies using the GrammaticalStructure class section. The relevant code is 
duplicated here for your convenience:

String parserModel = ".../englishPCFG.ser.gz";
LexicalizedParser lexicalizedParser = 
    LexicalizedParser.loadModel(parserModel);

TokenizerFactory<CoreLabel> tokenizerFactory = 
    PTBTokenizer.factory(new CoreLabelTokenFactory(), "");
Tokenizer<CoreLabel> tokenizer = 
    tokenizerFactory.getTokenizer(new StringReader(question));
List<CoreLabel> wordList = tokenizer.tokenize();
Tree parseTree = lexicalizedParser.apply(wordList);

TreebankLanguagePack tlp = 
    lexicalizedParser.treebankLanguagePack();
GrammaticalStructureFactory gsf = 
    tlp.grammaticalStructureFactory();
GrammaticalStructure gs = 
    gsf.newGrammaticalStructure(parseTree);
List<TypedDependency> tdl = gs.typedDependenciesCCprocessed();
System.out.println(tdl);
for (TypedDependency dependency : tdl) {
    System.out.println("Governor Word: [" + dependency.gov() 
        + "] Relation: [" + dependency.reln().getLongName()
        + "] Dependent Word: [" + dependency.dep() + "]");
}

When executed with the question, we get the following output:

[root(ROOT-0, Who-1), cop(Who-1, is-2), det(president-5, the-3), 
amod(president-5, 32nd-4), nsubj(Who-1, president-5), det(States-9, the-
7), nn(States-9, United-8), prep_of(president-5, States-9)]

Governor Word: [ROOT] Relation: [root] Dependent Word: [Who/WP]

Governor Word: [Who/WP] Relation: [copula] Dependent Word: [is/VBZ]

Governor Word: [president/NN] Relation: [determiner] Dependent Word: 
[the/DT]

Governor Word: [president/NN] Relation: [adjectival modifier] Dependent 
Word: [32nd/JJ]

Governor Word: [Who/WP] Relation: [nominal subject] Dependent Word: 
[president/NN]
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Governor Word: [States/NNPS] Relation: [determiner] Dependent Word: [the/
DT]

Governor Word: [States/NNPS] Relation: [nn modifier] Dependent Word: 
[United/NNP]

Governor Word: [president/NN] Relation: [prep_collapsed] Dependent Word: 
[States/NNPS]

This information provides the foundation to determine the type of question.

Determining the question type
The relationships detected suggest ways to detect different types of questions.  
For example, to determine whether it is a "who" type question, we can check whether 
the relationship is nominal subject and the governor is who.

In the following code, we iterate over the question type dependencies to determine 
whether it matches this combination, and if so, call the processWhoQuestion method 
to process the question:

for (TypedDependency dependency : tdl) {
    if ("nominal subject".equals( dependency.reln().getLongName())
        && "who".equalsIgnoreCase( dependency.gov().originalText())) {
        processWhoQuestion(tdl);
    }
}

This simple distinction worked reasonably well. It will correctly identify all of the 
following variations to the same question:

Who is the 32nd president of the United States?

Who was the 32nd president of the United States?

The 32nd president of the United States was who?

The 32nd president is who of the United States?

We can also determine other question types using different selection criteria.  
The following questions typify other question types:

What was the 3rd President's party?

When was the 12th president inaugurated?

Where is the 30th president's home town?
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We can determine the question type using the relations as suggested in the  
following table:

Question type Relation Governor Dependent
What nominal subject what NA
When adverbial modifier NA when
Where adverbial modifier NA where

This approach does require hardcoding the relationships.

Searching for the answer
Once we know the type of question, we can use the relations found in the 
text to answer the question. To illustrate this process, we will develop the 
processWhoQuestion method. This method uses the TypedDependency list to 
garner the information needed to answer a "who" type question about presidents. 
Specifically, we need to know which president they are interested in, based on the 
president's ordinal rank.

We will also need a list of presidents to search for relevant information.  
The createPresidentList method was developed to perform this task. It reads  
a file, PresidentList, containing the president's name, inauguration year, and  
last year in office. The file uses the following format and can be downloaded from 
www.packtpub.com:

George Washington   (1789-1797)

The following createPresidentList method demonstrates the use of OpenNLP's 
SimpleTokenizer class to tokenize each line. A variable number of tokens make up 
a president's name. Once that is determined, the dates are easily extracted:

public List<President> createPresidentList() {
    ArrayList<President> list = new ArrayList<>();
    String line = null;
    try (FileReader reader = new FileReader("PresidentList");
            BufferedReader br = new BufferedReader(reader)) {
        while ((line = br.readLine()) != null) {
            SimpleTokenizer simpleTokenizer = 
                SimpleTokenizer.INSTANCE;

www.packtpub.com
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            String tokens[] = simpleTokenizer.tokenize(line);
            String name = "";
            String start = "";
            String end = "";
            int i = 0;
            while (!"(".equals(tokens[i])) {
                name += tokens[i] + " ";
                i++;
            }
            start = tokens[i + 1];
            end = tokens[i + 3];
            if (end.equalsIgnoreCase("present")) {
                end = start;
            }
            list.add(new President(name, 
                Integer.parseInt(start),
                Integer.parseInt(end)));
        }
     } catch (IOException ex) {
        // Handle exceptions
    }
    return list;
}

A President class holds presidential information, as shown here. The getter 
methods have been left out:

public class President {
    private String name;
    private int start;
    private int end;

    public President(String name, int start, int end) {
        this.name = name;
        this.start = start;
        this.end = end;
    }
    ...
}
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The processWhoQuestion method follows. We use type dependencies again to 
extract the ordinal value of the question. If the governor is president and the 
adjectival modifier is the relation, then the dependent word is the ordinal.  
This string is passed to the getOrder method, which returns the ordinal as an 
integer. We add 1 to it since the list of presidents also started at one:

public void processWhoQuestion(List<TypedDependency> tdl) {
    List<President> list = createPresidentList();
    for (TypedDependency dependency : tdl) {
        if ("president".equalsIgnoreCase(
                dependency.gov().originalText())
                && "adjectival modifier".equals(
                  dependency.reln().getLongName())) {
            String positionText = 
                dependency.dep().originalText();
            int position = getOrder(positionText)-1;
            System.out.println("The president is " 
                + list.get(position).getName());
        }
    }
}

The getOrder method is as follows and simply takes the first numeric characters 
and converts them to an integer. A more sophisticated version would look at other 
variations including words such as "first" and "sixteenth":

private static int getOrder(String position) {
    String tmp = "";
    int i = 0;
    while (Character.isDigit(position.charAt(i))) {
        tmp += position.charAt(i++);
    }
    return Integer.parseInt(tmp);
}

When executed, we get the following output:

The president is Franklin D . Roosevelt

This implementation is a simple example of how information can be extracted 
from a sentence and used to answer questions. The other types of questions can be 
implemented in a similar fashion and are left as an exercise for the reader. 
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Summary
We have discussed the parsing process and how it can be used to extract 
relationships from text. It can be used for a number of purposes including grammar 
checking and machine translation of text. There are numerous text relations possible. 
These include such relationships as father of, near to, and under. They are concerned 
with how elements of text are related to each other. 

Parsing the text will return relationships that exist within the text. These 
relationships can be used to extract information of interest. We demonstrated a 
number of techniques using the OpenNLP and Stanford APIs to parse text.

We also explained how the Stanford API can be used to find coreference resolutions 
within text. This occurs when two or more expressions, such as "he" or "they", refer 
to the same person.

We concluded with an example of how a parser is used to extract relations from a 
sentence. These relations were used to extract information to answer simple "who" 
type queries about U.S. presidents.

In the next chapter, we will investigate how the techniques developed in this and the 
previous chapters can be used to solve more complicated problems.
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Combined Approaches
In this chapter, we will address several issues surrounding the use of combinations 
of techniques to solve NLP problems. We start with a brief introduction to the 
process of preparing data. This is followed by a discussion on pipelines and their 
construction. A pipeline is nothing more than a sequence of tasks integrated to solve 
some problems. The chief advantage of a pipeline is the ability to insert and remove 
various elements of the pipeline to solve a problem in a slightly different manner.

The Stanford API supports a good pipeline architecture, which we have used 
repeatedly in this book. We will expand upon the details of this approach and then 
show how OpenNLP can be used to construct a pipeline.

Preparing data for processing is an important first step in solving many NLP 
problems. We introduced the data preparation process in Chapter 1, Introduction to 
NLP, and then discussed the normalization process in Chapter 2, Finding Parts of Text. 
In this chapter, we will focus on extracting text from different data sources, such as 
HTML, Word, and PDF documents, to be precise.

The Stanford StanfordCoreNLP class is a good example of a pipeline that is easily 
used. In a sense, it is preconstructed. The actual tasks performed are dependent on 
the annotations added. This works well for many types of problems.

However, other NLP APIs do not support pipeline architecture as directly as Stanford 
APIs; while more difficult to construct, these approaches can be more flexible for many 
applications. We demonstrate this construction process using OpenNLP.
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Preparing data
Text extraction is an early step in most NLP tasks. Here, we will quickly cover how 
text extraction can be performed for HTML, Word, and PDF documents. Although 
there are several APIs that support these tasks, we will use:

•	 Boilerpipe (https://code.google.com/p/boilerpipe/) for HTML
•	 POI (http://poi.apache.org/index.html) for Word
•	 PDFBox (http://pdfbox.apache.org/) for PDF

Some APIs support the use of XML for input and output. For example, the Stanford 
XMLUtils class provides support for reading XML files and manipulating XML data. 
The LingPipe's XMLParser class will parse XML text.

Organizations store their data in many forms and frequently it is not in simple text 
files. Presentations are stored in PowerPoint slides, specifications are created using 
Word documents, and companies provide marketing and other materials in PDF 
documents. Most organizations have an Internet presence, which means that much 
useful information is found in HTML documents. Due to the widespread nature of 
these data sources, we need to use tools to extract their text for processing.

Using Boilerpipe to extract text from HTML
There are several libraries available for extracting text from HTML documents. 
We will demonstrate how to use Boilerpipe (https://code.google.com/p/
boilerpipe/) to perform this operation. This is a flexible API that not only extracts 
the entire text of an HTML document but can also extract selected parts of an HTML 
document such as its title and individual text blocks.

We will use the HTML page at http://en.wikipedia.org/wiki/Berlin to 
illustrate the use of Boilerpipe. Part of this page is shown in the following screenshot. 
In order to use Boilerpipe, you will need to download the binary for the Xerces 
Parser found at http://xerces.apache.org/index.html.

https://code.google.com/p/boilerpipe/
http://poi.apache.org/index.html
http://pdfbox.apache.org/
https://code.google.com/p/boilerpipe/
https://code.google.com/p/boilerpipe/
http://en.wikipedia.org/wiki/Berlin
http://xerces.apache.org/index.html
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We start by creating a URL object that represents this page as shown here.  
The try-catch block handles exceptions:

try {
    URL url = new  
    URL("http://en.wikipedia.org/wiki/Berlin");
    …
    } catch (MalformedURLException ex) {
        // Handle exceptions
    } catch (BoilerpipeProcessingException | SAXException 
            | IOException ex) {
        // Handle exceptions
}
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We will use two classes to extract text. The first is the HTMLDocument class that 
represents the HTML document. The second is the TextDocument class that 
represents the text within an HTML document. It consists of one or more TextBlock 
objects that can be accessed individually if needed.

In the following sequence, a HTMLDocument instance is created for the Berlin page. 
The BoilerpipeSAXInput class uses this input source to create a TextDocument 
instance. It then uses the TextDocument class' getText method to retrieve the text. 
This method uses two arguments. The first argument specifies whether to include 
the TextBlock instances marked as content. The second argument specifies whether 
noncontent TextBlock instances should be included. In this example, both types of 
TextBlock instances are included:

HTMLDocument htmlDoc = HTMLFetcher.fetch(url);
InputSource is = htmlDoc.toInputSource();
TextDocument document = 
    new BoilerpipeSAXInput(is).getTextDocument();
System.out.println(document.getText(true, true));

The output of this sequence is quite large since the page is large. A partial listing of 
the output is as follows:

Berlin

From Wikipedia, the free encyclopedia

Jump to: navigation , search

This article is about the capital of Germany.  For other uses, see Berlin 
(disambiguation) .

...

Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Developers

Mobile view

The getTextBlocks method will return a list of TextBlock objects for the document. 
Various methods allow you to access the text and information about the text such as 
the number of words in a block.
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Using POI to extract text from Word 
documents
The Apache POI Project (http://poi.apache.org/index.html) is an API used  
to extract information from Microsoft Office products. It is an extensive library  
that allows information extraction from Word documents and other office products, 
such as Excel and Outlook.

When downloading the API for POI, you will also need to use XMLBeans 
(http://xmlbeans.apache.org/), which supports POI. The binaries for 
XMLBeans can be downloaded from http://www.java2s.com/Code/Jar/x/
Downloadxmlbeans230jar.htm.

Our interest is in demonstrating how to use POI to extract text from Word 
documents. To demonstrate this use, we will use a file called TestDocument.docx,  
as shown in the following screenshot:

http://poi.apache.org/index.html
http://xmlbeans.apache.org/
http://www.java2s.com/Code/Jar/x/Downloadxmlbeans230jar.htm
http://www.java2s.com/Code/Jar/x/Downloadxmlbeans230jar.htm
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There are several different file formats used by different versions of Word. 
To simplify the selection of which text extraction class to use, we will use the 
ExtractorFactory factory class.

Although the POI's capabilities are considerable, the process of extracting text 
is simple. As shown here, a FileInputStream object representing the file, 
TestDocument.docx, is used by the ExtractorFactory class' createExtractor 
method to select the appropriate POITextExtractor instance. This is the base class 
for several different extractors. The getText method is applied to the extractor to  
get the text:

try {
    FileInputStream fis = 
        new FileInputStream("TestDocument.docx");
    POITextExtractor textExtractor = 
        ExtractorFactory.createExtractor(fis);
    System.out.println(textExtractor.getText());
} catch (IOException ex) {
    // Handle exceptions
} catch (OpenXML4JException | XmlException ex) {
    // Handle exceptions
}

A part of the output is as follows:

Pirates

Pirates are people who use ships to rob other ships. At least this is a 
common definition. They have also been known as buccaneers, corsairs, and 
privateers. In

...

Our list includes:

Gan Ning

Awilda

...

Get caught

Walk the plank

This is not a recommended occupation.
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It can be useful to know more about a Word document. POI supports a 
POIXMLPropertiesTextExtractor class that gives us access to core, extended,  
and custom properties of a document. There are two ways of readily getting a  
string containing many of these properties.

•	 The first approach uses the getMetadataTextExtractor method and then 
the getText method, as shown here:
POITextExtractor metaExtractor = 
    textExtractor.getMetadataTextExtractor();
System.out.println(metaExtractor.getText());

•	 The second approach creates an instance of the 
POIXMLPropertiesTextExtractor class using XWPFDocument  
representing the Word document, as illustrated here:

fis = new FileInputStream("TestDocument.docx");
POIXMLPropertiesTextExtractor properties = 
    new POIXMLPropertiesTextExtractor(new  
    XWPFDocument(fis));
System.out.println(properties.getText());

The output of either approach is shown here:

Created = Sat Jan 03 18:27:00 CST 2015

CreatedString = 2015-01-04T00:27:00Z

Creator = Richard

LastModifiedBy = Richard

LastPrinted = Sat Jan 03 18:27:00 CST 2015

LastPrintedString = 2015-01-04T00:27:00Z

Modified = Mon Jan 05 14:01:00 CST 2015

ModifiedString = 2015-01-05T20:01:00Z

Revision = 3

Application = Microsoft Office Word

AppVersion = 12.0000

Characters = 762

CharactersWithSpaces = 894

Company = 

HyperlinksChanged = false

Lines = 6
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LinksUpToDate = false

Pages = 1

Paragraphs = 1

Template = Normal.dotm

TotalTime = 20

There is a CoreProperties class that holds a core set of properties for the document. 
The getCoreProperties method provides access to these properties:

CoreProperties coreProperties = properties.getCoreProperties();
System.out.println(properties.getCorePropertiesText());

These properties are listed here:

Created = Sat Jan 03 18:27:00 CST 2015

CreatedString = 2015-01-04T00:27:00Z

Creator = Richard

LastModifiedBy = Richard

LastPrinted = Sat Jan 03 18:27:00 CST 2015

LastPrintedString = 2015-01-04T00:27:00Z

Modified = Mon Jan 05 14:01:00 CST 2015

ModifiedString = 2015-01-05T20:01:00Z

Revision = 3

There are individual methods with access to specific properties such as the 
getCreator, getCreated, and getModified methods. Extended properties, 
represented by the ExtendedProperties class, are available through the 
getExtendedProperties method, as shown here:

ExtendedProperties extendedProperties = 
    properties.getExtendedProperties();
System.out.println(properties.getExtendedPropertiesText());

The output is as follows:

Application = Microsoft Office Word

AppVersion = 12.0000

Characters = 762

CharactersWithSpaces = 894

Company = 
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HyperlinksChanged = false

Lines = 6

LinksUpToDate = false

Pages = 1

Paragraphs = 1

Template = Normal.dotm

TotalTime = 20

Methods such as getApplication, getAppVersion, and getPages give access to 
specific extended properties.

Using PDFBox to extract text from PDF 
documents
The Apache PDFBox (http://pdfbox.apache.org/) project is an API for  
processing PDF documents. It supports the extraction of text and other tasks  
such as document merging, form filling, and PDF creation. We will only illustrate  
the text extraction process.

To demonstrate the use of POI, we will use a file called TestDocument.pdf.  
This file was saved as a PDF document using the TestDocument.docx file as  
shown in the Using POI to extract text from Word documents section.

The process is straightforward. A File object is created for the PDF document.  
The PDDocument class represents the document and the PDFTextStripper class 
performs the actual text extraction using the getText method, as shown here:

try {
    File file = new File("TestDocument.pdf");
    PDDocument pdDocument = PDDocument.load(file);
    PDFTextStripper stripper = new PDFTextStripper();
    String text = stripper.getText(pdDocument);
    System.out.println(text);
    pdDocument.close();
} catch (IOException ex) {
    // Handle exceptions
}

http://pdfbox.apache.org/
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Due to its length, only part of the output is shown here:

Pirates 

Pirates are people who use ships to rob other ships. At least this is a 
common definition. They have also been known as buccaneers, corsairs, and 
privateers. In

...

Our list includes: 

 Gan Ning 

 Awilda 

...

4. Get caught 

5. Walk the plank 

This is not a recommended occupation.

The extraction includes special characters for the bullets and numbers for the 
numbered sequences.

Pipelines
A pipeline is nothing more than a sequence of operations where the output of  
one operation is used as the input to another operation. We have seen it used 
in several examples in previous chapters but they have been relatively short. 
In particular, we saw how the Stanford StanfordCoreNLP class, with its use of 
annotators objects, supports the concept of pipelines nicely. We will discuss this 
approach in the next section.

One of the advantages of a pipeline, if structured properly, is that it allows the  
easy addition and removal of processing elements. For example, if one step of  
the pipeline converts token to lowercase, then it can be easy to simply remove  
this step with the remaining elements of the pipeline left untouched.

However, some pipelines are not always this flexible. One step may require a 
previous step in order to work properly. In a pipeline, such as the one supported  
by the StanfordCoreNLP class, the following set of annotators is needed to support  
POS processing:

props.put("annotators", "tokenize, ssplit, pos");
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If we leave out the ssplit annotator, the following exception is generated:

java.lang.IllegalArgumentException: annotator "pos" requires  
annotator "ssplit"

Although the Stanford pipeline does not require a lot of effort to set up, other 
pipelines may. We will demonstrate the latter approach in the Creating a pipeline  
to search text section.

Using the Stanford pipeline
In this section, we will discuss the Stanford pipeline in more detail. Although 
we have used it in several examples in this book, we have not fully explored its 
capabilities. Having used this pipeline before, you are now in a better position to 
understand how it can be used. Upon reading this section, you will be able to better 
assess its capabilities and applicability to your needs.

The edu.stanford.nlp.pipeline package holds the StanfordCoreNLP and 
annotator classes. The general approach uses the following code sequence  
where the text string is processed. The Properties class holds the annotation 
names as shown here:

String text = "The robber took the cash and ran.";
Properties props = new Properties();
props.put("annotators", 
    "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

The Annotation class represents the text to be processed. The constructor, 
used in the next code segment, takes the string and adds a CoreAnnotations.
TextAnnotation instance to the Annotation object. The StanfordCoreNLP class' 
annotate method will apply the annotations specified in the property list to the 
Annotation object:

Annotation annotation = new Annotation(text);
pipeline.annotate(annotation);

CoreMap interface is the base interface for all annotable objects. It uses class  
objects for keys. The TextAnnotation annotation type is a CoreMap key for the text. 
A CoreMap key is intended to be used with various types of annotations such as 
those defined in the properties list. The value depends on the key type.
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The hierarchy of classes and interfaces is depicted in the following diagram. It is a 
simplified version of the relationship between classes and interfaces as they relate 
to the the pipeline. The horizontal lines represent interface implementations and the 
vertical lines represent inheritance between classes.

To verify the effect of the annotate method, we will use the following code 
sequence. The keyset method returns a set of all of the annotation keys currently 
held by the Annotation object. These keys are displayed before and after the 
annotate method is applied:

System.out.println("Before annotate method executed ");
Set<Class<?>> annotationSet = annotation.keySet();
for(Class c : annotationSet) {
    System.out.println("\tClass: " + c.getName());
}

pipeline.annotate(annotation);

System.out.println("After annotate method executed ");
annotationSet = annotation.keySet();
for(Class c : annotationSet) {
    System.out.println("\tClass: " + c.getName());
}

The following output shows that the creation of the Annotation object resulted in 
the TextAnnotation extension being added to the annotation. After the annotate 
method is executed, several additional annotations have been applied:

Before annotate method executed 

  Class: edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation
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After annotate method executed 

  Class: edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation

  Class: edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation

  Class: edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation

  Class: edu.stanford.nlp.dcoref.CorefCoreAnnotations.
CorefChainAnnotation

The CoreLabel class implements the CoreMap interface. It represents a single word 
with annotation information attached to it. The information attached depends on the 
properties set when the pipeline is created. However, there will always be positional 
information available such as its beginning and ending position or the whitespace 
before and after the entity.

The get method for either CoreMap or CoreLabel returns information specific to its 
argument. The get method is overloaded and returns a value dependent on the type 
of its argument. For example, here is the declaration of the SentencesAnnotation 
class. It implements CoreAnnotation<List<CoreMap>>:

public static class CoreAnnotations.SentencesAnnotation
    extends Object
    implements CoreAnnotation<List<CoreMap>>

When used in the following statement, the SentencesAnnotation class returns a 
List<CoreMap> instance:

List<CoreMap> sentences =
    annotation.get(SentencesAnnotation.class);

In a similar manner, the TokensAnnotation class implements 
CoreAnnotation<List<CoreLabel>> as shown here:

public static class CoreAnnotations.TokensAnnotation
    extends Object
    implements CoreAnnotation<List<CoreLabel>>

Its get method returns a list of CoreLabel objects that are used within a for-each 
statement:

for (CoreLabel token : sentence.get(TokensAnnotation.class)) {

In previous chapters, we have used the SentencesAnnotation class to access the 
sentences in an annotation, as shown here:

List<CoreMap> sentences = 
    annotation.get(SentencesAnnotation.class);
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The CoreLabel class has been used to access individual words in a sentence as 
demonstrated here:

for (CoreMap sentence : sentences) {
    for (CoreLabel token: 
            sentence.get(TokensAnnotation.class)) {
        String word = token.get(TextAnnotation.class); 
        String pos = token.get(PartOfSpeechAnnotation.class); 
    }
}

Annotator options can be found at http://nlp.stanford.edu/software/corenlp.
shtml. The following code example illustrates how to use an annotator to specify the 
POS model. The pos.model property is set to the model desired using the Property 
class' put method:

props.put("pos.model",
  "C:/.../Models/english-caseless-left3words-distsim.tagger");

A summary of the annotators is found in the following table. The first column is the 
string used in the properties' list. The second column lists only the basic annotation 
class, and the third column specifies how it is typically used:

Property 
name

Basic annotation class Usage

tokenize TokensAnnotation Tokenization
cleanxml XmlContextAnnotation Remove XML tokens 
ssplit SentencesAnnotation Splits tokens into sentences
pos PartOfSpeechAnnotation Creates POS tags
lemma LemmaAnnotation Generates lemmas
ner NamedEntityTagAnnotation Creates NER tags
regexner NamedEntityTagAnnotation Creates NER tags based on regular 

expressions
sentiment SentimentCoreAnnotations Sentiment analysis
truecase TrueCaseAnnotation True case analysis
parse TreeAnnotation Generates a parse tree
depparse BasicDependenciesAnnotation Syntactic dependency parser
dcoref CorefChainAnnotation Performs coreference resolution
relation MachineReadingAnnotations Relation extractor

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
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Consider the following sequence to create a pipeline:

String text = "The robber took the cash and ran.";
Properties props = new Properties();
props.put("annotators", 
    "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props); 

We get the following output for the annotation process. We can see each annotator as 
it is applied:

Adding annotator tokenize

TokenizerAnnotator: No tokenizer type provided. Defaulting to 
PTBTokenizer.

Adding annotator ssplit

edu.stanford.nlp.pipeline.AnnotatorImplementations:

Adding annotator pos

Reading POS tagger model from edu/stanford/nlp/models/pos-tagger/english-
left3words/english-left3words-distsim.tagger ... done [2.5 sec].

Adding annotator lemma

Adding annotator ner

Loading classifier from edu/stanford/nlp/models/ner/english.all.3class.
distsim.crf.ser.gz ... done [6.7 sec].

Loading classifier from edu/stanford/nlp/models/ner/english.muc.7class.
distsim.crf.ser.gz ... done [5.0 sec].

Loading classifier from edu/stanford/nlp/models/ner/english.conll.4class.
distsim.crf.ser.gz ... done [5.5 sec].

Adding annotator parse

Loading parser from serialized file edu/stanford/nlp/models/lexparser/
englishPCFG.ser.gz ...done [0.9 sec].

Adding annotator dcoref

When the annotate method is applied, we can use the timingInformation method 
to see how long each step of the process took, as shown here:

System.out.println("Total time: " + pipeline.timingInformation());
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The output of the previous pipeline is as follows:

Total time: Annotation pipeline timing information:

TokenizerAnnotator: 0.0 sec.

WordsToSentencesAnnotator: 0.0 sec.

POSTaggerAnnotator: 0.0 sec.

MorphaAnnotator: 0.1 sec.

NERCombinerAnnotator: 0.0 sec.

ParserAnnotator: 2.5 sec.

DeterministicCorefAnnotator: 0.1 sec.

TOTAL: 2.8 sec. for 8 tokens at 2.9 tokens/sec.

Using multiple cores with the Stanford 
pipeline
The annotate method can also take advantage of multiple cores. It is an overloaded 
method where one version uses an instance of an Iterable<Annotation> as its 
parameter. It will process each Annotation instance using the processors available.

We will use the previously defined pipeline object to demonstrate this version of 
the annotate method.

First, we create four Annotation objects based on four short sentences, as shown 
here. To take full advantage of the technique, it would be better to use a larger set  
of data:

Annotation annotation1 = new Annotation(
    "The robber took the cash and ran.");
Annotation annotation2 = new Annotation(
    "The policeman chased him down the street.");
Annotation annotation3 = new Annotation(
    "A passerby, watching the action, tripped the thief "
    + "as he passed by.");
Annotation annotation4 = new Annotation(
    "They all lived happily ever after, except for the thief "
    + "of course.");
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The ArrayList class implements the Iterable interface. We create an instance of 
this class and then add the four Annotation objects to it. The list is then assigned to 
an Iterable variable:

    ArrayList<Annotation> list = new ArrayList();
    list.add(annotation1);
    list.add(annotation2);
    list.add(annotation3);
    list.add(annotation4);
    Iterable<Annotation> iterable = list;

The annotate method is then executed:

pipeline.annotate(iterable);

We will use annotation2 to show the results by displaying the word and it's POS,  
as shown here:

List<CoreMap> sentences = 
    annotation2.get(SentencesAnnotation.class);

for (CoreMap sentence : sentences) {
    for (CoreLabel token : 
            sentence.get(TokensAnnotation.class)) {
        String word = token.get(TextAnnotation.class);
        String pos = token.get(PartOfSpeechAnnotation.class);
        System.out.println("Word: " + word + " POS Tag: " + pos);
    }
}

The output is as follows:

Word: The POS Tag: DT

Word: policeman POS Tag: NN

Word: chased POS Tag: VBD

Word: him POS Tag: PRP

Word: down POS Tag: RP

Word: the POS Tag: DT

Word: street POS Tag: NN

Word: . POS Tag: .

As demonstrated, this is an easy way of achieving concurrent behavior using the 
Stanford pipeline.
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Creating a pipeline to search text
Searching is a rich and complex topic. There are many different types of searches  
and approaches to perform a search. The intent here is to demonstrate how various 
NLP techniques can be applied to support this effort.

A single text document can be processed at one time in a reasonable time period  
on most machines. However, when multiple large documents need to be searched, 
then creating an index is a common approach to support searches. This results in a 
search process that completes in a reasonable period of time.

We will demonstrate one approach to create an index and then search using  
the index. Although the text we will use is not that large, it is sufficient to 
demonstrate the process.

We need to:

1.	 Read the text from the file
2.	 Tokenize and find sentence boundaries
3.	 Remove stop words
4.	 Accumulate the index statistics
5.	 Write out the index file

There are several factors that influence the contents of an index file:

•	 Removal of stop words
•	 Case-sensitive searches
•	 Finding synonyms
•	 Using stemming and lemmatization
•	 Allowing searches across sentence boundaries

We will use OpenNLP to demonstrate the process. The intent of this example is 
to demonstrate how to combine NLP techniques in a pipeline process to solve a 
search type problem. This is not a comprehensive solution and we will ignore some 
techniques such as stemming. In addition, the actual creation of an index file will not 
be presented but rather left as an exercise for the reader. Here, we will focus on how 
NLP techniques can be used.
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Specifically, we will:

•	 Split the book into sentences
•	 Convert the sentences to lowercase
•	 Remove stop words
•	 Create an internal index data structure

We will develop two classes to support the index data structure: Word and Positions. 
We will also augment the StopWords class, developed in Chapter 2, Finding Parts of 
Text, to support an overloaded version of the removeStopWords method. The new 
version will provide a more convenient method for removing stop words.

We start with a try-with-resources block to open streams for the sentence model,  
en-sent.bin, and a file containing the contents of Twenty Thousand Leagues Under the 
Sea by Jules Verne. The book was downloaded from http://www.gutenberg.org/
ebooks/164 and modified slightly to remove leading and trailing Gutenberg text to 
make it more readable:

try (InputStream is = new FileInputStream(new File(
    "C:/Current Books/NLP and Java/Models/en-sent.bin"));
    FileReader fr = new FileReader("Twenty Thousands.txt");
    BufferedReader br = new BufferedReader(fr)) {
        …
} catch (IOException ex) {
    // Handle exceptions
}

The sentence model is used to create an instance of the SentenceDetectorME class as 
shown here:

SentenceModel model = new SentenceModel(is);
SentenceDetectorME detector = new SentenceDetectorME(model);

Next, we will create a string using a StringBuilder instance to support the 
detection of sentence boundaries. The book's file is read and added to the 
StringBuilder instance. The sentDetect method is then applied to create  
an array of sentences, as shown here:

String line;
StringBuilder sb = new StringBuilder();
while ((line = br.readLine()) != null) {
    sb.append(line + " ");
}
String sentences[] = detector.sentDetect(sb.toString());

http://www.gutenberg.org/ebooks/164
http://www.gutenberg.org/ebooks/164
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For the modified version of the book file, this method created an array with  
14,859 sentences.

Next, we used the toLowerCase method to convert the text to lowercase. This was 
done to ensure that when stop words are removed, the method will catch all of them.

for (int i = 0; i < sentences.length; i++) {
    sentences[i] = sentences[i].toLowerCase();
}

Converting to lowercase and removing stop words restricts searches. However,  
this is considered to be a feature of this implementation and can be adjusted for  
other implementations.

Next, the stop words are removed. As mentioned earlier, an overloaded version  
of the removeStopWords method has been added to make it easier to use with  
this example. The new method is shown here:

public String removeStopWords(String words) {
    String arr[] = 
        WhitespaceTokenizer.INSTANCE.tokenize(words);
    StringBuilder sb = new StringBuilder();
    for (int i = 0; i < arr.length; i++) {
        if (stopWords.contains(arr[i])) {
            // Do nothing
        } else {
            sb.append(arr[i]+" ");
        }
    }
    return sb.toString();
}

We created a StopWords instance using the stop-words_english_2_en.txt file 
as shown in the following code sequence. This is one of several lists that can be 
downloaded from https://code.google.com/p/stop-words/. We chose this file 
simply because it contains stop words that we felt were appropriate for the book.

StopWords stopWords = new StopWords("stop-words_english_2_en.txt");
for (int i = 0; i < sentences.length; i++) {
    sentences[i] = stopWords.removeStopWords(sentences[i]);
}

https://code.google.com/p/stop-words/
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The text has now been processed. The next step will be to create an index-like 
data structure based on the processed text. This structure will use the Word and 
Positions class. The Word class consists of fields for the word and an ArrayList  
of Positions objects. Since a word may appear more than once in a document, the 
list is used to maintain its position within the document. This class is defined as 
shown here:

public class Word {
    private String word;
    private final ArrayList<Positions> positions;

    public Word() {
        this.positions = new ArrayList();
    }

    public void addWord(String word, int sentence, 
            int position) {
        this.word = word;
        Positions counts = new Positions(sentence, position);
        positions.add(counts);
    }

    public ArrayList<Positions> getPositions() {
        return positions;
    }

    public String getWord() {
        return word;
    }
}

The Positions class contains a field for the sentence number, sentence, and for the 
position of the word within the sentence, position. The class definition is as follows:

class Positions {
    int sentence;
    int position;

    Positions(int sentence, int position) {
        this.sentence = sentence;
        this.position = position;
    }
}

To use these classes, we create a HashMap instance to hold position information about 
each word in the file:

HashMap<String, Word> wordMap = new HashMap();
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The creation of the Word entries in the map is shown next. Each sentence is tokenized 
and then each token is checked to see if it exists in the map. The word is used as the 
key to the hash map.

The containsKey method determines whether the word has already been added.  
If it has, then the Word instance is removed. If the word has not been added before,  
a new Word instance is created. Regardless, the new position information is added  
to the Word instance and then it is added to the map:

for (int sentenceIndex = 0; 
        sentenceIndex < sentences.length; sentenceIndex++) {
    String words[] = WhitespaceTokenizer.INSTANCE.tokenize(
        sentences[sentenceIndex]);
    Word word;
    for (int wordIndex = 0; 
            wordIndex < words.length; wordIndex++) {
        String newWord = words[wordIndex];
        if (wordMap.containsKey(newWord)) {
             word = wordMap.remove(newWord);
        } else {
            word = new Word();
        }
        word.addWord(newWord, sentenceIndex, wordIndex);
        wordMap.put(newWord, word);
    }
}

To demonstrate the actual lookup process, we use the get method to return an 
instance of the Word object for the word "reef". The list of the positions is returned 
with the getPositions method and then each position is displayed, as shown here:

Word word = wordMap.get("reef");
ArrayList<Positions> positions = word.getPositions();
for (Positions position : positions) {
    System.out.println(word.getWord() + " is found at line " 
        + position.sentence + ", word "  
        + position.position);
}

The output is as follows:

reef is found at line 0, word 10

reef is found at line 29, word 6

reef is found at line 1885, word 8

reef is found at line 2062, word 12
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This implementation is relatively simple but does demonstrate how to combine 
various NLP techniques to create and use an index data structure that can be saved 
as an index file. Other enhancements are possible including:

•	 Other filter operations
•	 Store document information in the Positions class
•	 Store chapter information in the Positions class
•	 Provide search options such as:

°° Case-sensitive searches
°° Exact text searches

•	 Better exception handling

These are left as exercises for the reader.

Summary
In this chapter, we addressed the process of preparing data and discussed  
pipelines. We illustrated several techniques for extracting text from HTML,  
Word, and PDF documents. 

We showed that a pipeline is nothing more than a sequence of tasks integrated to 
solve some problem. We can insert and remove various elements of the pipeline as 
needed. The Stanford pipeline architecture was discussed in detail. We examined the 
various annotators that can be used. The details of this pipeline were explored along 
with how it can be used with multiple processors.

We demonstrated how to construct a pipeline that creates and uses an index for 
text searches using OpenNLP. This provided an alternate way of creating a pipeline 
and allowed more variation in how a pipeline can be constructed in contrast to the 
Stanford pipeline.

We hope this has been a fruitful introduction to NLP processing using Java. 
We covered all of the significant NLP tasks and demonstrated several different 
approaches to support these tasks using various NLP APIs. NLP is a large and 
complex field. We wish you the best of luck in your application development.
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